## B.C.E. 2<sup>ND</sup> YEAR 1<sup>ST</sup> Ref No. –Ex/CE/T/215/2018 SEMESTER 2018

(1st / 2nd\_Semester / Repeat / Supplementary / Annual / Bianual)

SUBJECT: Structural Mechanics-II

Time: Two hours/Three hours/Four hours/ Six hours

Full Marks 100 (60 marks for part-II)

Use a separate Answer-Script for each part

| o, of Q. | PART – I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|          | Answer any THREE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| i.a)     | State and prove Castigliano's theorem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| b)       | Find the vertical deflection at A of the structure shown in Fig. 1. Assume flexural rigidity El and torsional rigidity GJ to be constant for the structure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|          | Fig.1 $\frac{\delta}{\Delta}$ Fig.2 $\frac{\delta}{\Delta}$ Fig.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8+8+4=<br>20 |
| c)       | What will be the instantaneous deflection of an axial member fixed at base, subjected to an impact load <b>P</b> from a height <b>h</b> ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |
| 2.a)     | Find the forces in each member of the truss as shown in Fig. 2. Member AC is found to be 1.4 mm short of required length. The diagonal members are each $900 \text{mm}^2$ and remaining members are $1200 \text{mm}^2$ in area. Take $E = 200 \text{kN/mm}^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,            |
|          | 6 in $4 m$ | 10+10=       |
| b)       | Analyze the portal frame as shown in fig. 3 and draw bending moment diagram. Apply strain energy method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| 3.a)     | Find the fixed end moments and draw the SFD and BMD for a <i>fixed beam</i> subjected to TWO point load P <sub>1</sub> and P <sub>2</sub> at a distance l <sub>1</sub> and l <sub>2</sub> respectively from left end.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12           |
| b)       | A Three Hinged Parabolic arch with span 10m, rise 3.0m is subjected to udl of 2KN/m for half the span at right. Find the horizontal and vertical reactions. Also find the bending moment at a distance 2m from left end.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8            |
| 4.a)     | Solve the Complex truss as in Fig.4 by Henneberg's bar exchange method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15           |
| b)       | Find the rotation angle $\theta_A$ at A when a simply supported beam AB of length L and constant EI is subjected to an external moment $M_0$ at end A. Use strain energy method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5            |

.......B. Civil Engineering 2<sup>nd</sup> Year... EXAMINATION, 2018 (1<sup>st</sup> / 2<sup>nd</sup> Semester / Repeat / Supplementary / Annual / Bi-Annual)

## SUBJECT ... Structural Mechanics-II (Name in full)

| PAPER | XX |
|-------|----|
|       |    |

Full Marks 100 (40 marks for part II)

Time: Two hours/Three hours/Four hours/Six hours

Use a separate Answer-Script for each part

| No. of Questions | DADTI                                                                                                                                                                      | Marks |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Questions        | PART II  Answer question no. 1 and any two from the rest.                                                                                                                  |       |
| 1.               | Find the slope and deflection at point B of given beams (Fig. 1) by Conjugate Beam Method. Given, $I=8603.6 \times 10^4 \text{ mm}^4$ and $E=2 \times 10^5 \text{ N/mm}^2$ | 12    |
|                  | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                     |       |
|                  |                                                                                                                                                                            |       |
|                  | Fig. 1                                                                                                                                                                     |       |
| 2.               | Determine the force in each member of the truss shown in Fig. 2. All members have the same cross-sectional area.  100kN                                                    | 14    |
|                  | $\frac{B}{A}$ $\frac{Am}{Am}$ $\frac{Am}{Fig.2}$                                                                                                                           |       |
| 3.               | Find the slope and deflection at points $B$ and $D$ of given beam (Fig. 3) by Moment Area Method.                                                                          | 14    |
|                  | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                     |       |
|                  | 4m 4m 2.5m                                                                                                                                                                 |       |

T/215/2018

Full Marks 100 parks for part II)

|   | Marks |  |
|---|-------|--|
| n | 12    |  |

| Evaluate the slo  Method. | The fining interestion |  |  |  |  |
|---------------------------|------------------------|--|--|--|--|
| -                         | A B EI EI 5m           |  |  |  |  |
| Fig.4                     |                        |  |  |  |  |
|                           |                        |  |  |  |  |
|                           |                        |  |  |  |  |

14

14