Ex./CE/MATH/T/221/2018(OLD)

**BACHELOR OF CIVIL ENGG. EXAMINATION, 2018** 

(2nd Year, 2nd Semester, Old Syllabus) Mathematics - IV C

Time : Three hours

Full Marks: 100

Use a separate Answer Script for each part. Symbols/Notations have their usual meanings.

> **PART - I** (50 marks) Answer any *five* questions.

1. (a) Show that the function  $f(z) = \begin{cases} \frac{(\overline{z})^2}{z}, & z \neq 0\\ 0, & z = 0 \end{cases}$ 

satisfies Cauchy-Riemann equations at (0,0), but the function is not differentiable at origin.

(b) Show that 
$$\lim_{z \to \infty} \frac{1}{z^2} = 0$$
 6+4

2. Define singular point. Also show that  $u = x^3 - 3xy^2 - 3x^2 - 3y^2 + 1$  is a harmonic function and find the corresponding analytic function. 2+8

(Turn Over)

- (2)
- 3. (a) A complex valued function f(z) is defined by

$$f(z) = \begin{cases} \frac{\operatorname{Im} g \, z}{|\, z \,|} , & \text{if } z \neq 0 \\ 0 & , & \text{if } z = 0 \end{cases}$$

Is f(z) continuous of z = 0?

(b) Show that polar form of Cauchy Riemann equations

are 
$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
,  $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$  5+5

- 4. (a) If  $\vec{r} = a\cos t \hat{i} + a\sin t \hat{j} + bt \hat{k}$ , then show that
  - $\left|\frac{d\vec{r}}{d\vec{t}}\right| = a^2 + b^2$
  - (b) Find the directional derivative of f = xy + yz + zx in the direction of the vector  $\hat{i} + 2\hat{j} + 2\hat{k}$  at (1,2,0). 4+6
- 5. (a) Find the curvature and torsion for the curve  $x = a \cos t$ ,  $y = a \sin t$ , z = bt.
  - (b) A particle moving along the curve  $x = 2t^2$ ,  $y = t^2 4t$ , z = 3t - 5. Find components of its velocity and acceleration at time t=1, in the direction  $\hat{i} - 3\hat{j} + 2\hat{k}$ . 5+5

14. (a) Find the standard deviation of the following distribution :

| ſ | x : | 7 | 8 | 9 | 10 | 11 | 12 | 14 |
|---|-----|---|---|---|----|----|----|----|
| ſ | f : | 2 | 3 | 4 | 5  | 3  | 2  | 1  |

(b) For a Binomial distribution the mean is 3 and  $q = \frac{1}{2}$ . Find n. 8+2



9. Find the median and mode for the following distribution. Hence find the mean. 10

| Class:     | 25-29 | 30-34 | 35-39 | 40-44 | 45-49 |
|------------|-------|-------|-------|-------|-------|
| Frequency: | 16    | 28    | 14    | 12    | 7     |

10. Find the correlation coefficient of the two variables X and Y from the following data. Also find the regression equation of Y on X. 6+4

| X : | 5  | 6  | 7  | 8  | 10 | 12 |
|-----|----|----|----|----|----|----|
| Y : | 15 | 18 | 24 | 26 | 27 | 32 |

11. Find f (2.5) using Newton's forward interpolation formula from the following table.10

| X : | 1 | 2 | 3  | 4  | 5   | 6   |
|-----|---|---|----|----|-----|-----|
| Y : | 0 | 1 | 10 | 81 | 256 | 625 |

12. Evaluate the integral 
$$\int_0^1 \frac{dx}{1+x}$$
 by using

(a) Trapezoidal rule

(b) Simpson 
$$\frac{1}{3}$$
 rd rule with h=0.5 5+5

13. State Newton-Raphson method to solve non-linear equations and compute a real roof of  $f(x) = x - e^{-x} = 0$  using this method. 3+7

6. (a) Verify Stokes' theorem for

 $\vec{F} = (2x+y)\hat{i} + yz^2\hat{j} + y^2z\hat{k}$ , when S is the upper half of the sphere  $x^2 + y^2 + z^2 = 1$  and C is its boundary.

(b) Find the angle between

$$\vec{A} = 2\hat{i} + 2\hat{j} - \hat{k}$$
 and  $\vec{B} = 6\hat{i} - 3\hat{j} + 2\hat{k}$  7+3

7. (a) Suppose f(z) by an analytic function. Then prove that  $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2$ 

$$=4|f'(z)|^{2}$$

(b) Find div 
$$\vec{F}$$
 and curl  $\vec{F}$  where  
 $\vec{F} = \text{grad} (x^3 + y^3 + z^3 - 3xyz).$  5+5

## **PART - II** (50 marks) Answer any *five* questions.

- 8. (a) State and prove Baye's theorem.
  - (b) A dice is thrown three times in succession. Find the probability of getting two ones. 5+5