BACHELOR OF CIVIL ENGG. EXAMINATION, 2018

(2nd Year, 2nd Semester, Old Syllabus)
Mathematics - IV C

Time : Three hours
Full Marks : 100

Use a separate Answer Script for each part. Symbols/Notations have their usual meanings.

PART - I (50 marks)

Answer any five questions.

1. (a) Show that the function $f(z)= \begin{cases}\frac{(\bar{z})^{2}}{z}, & z \neq 0 \\ 0, & z=0\end{cases}$ satisfies Cauchy-Riemann equations at $(0,0)$, but the function is not differentiable at origin.
(b) Show that $\lim _{z \rightarrow \infty} \frac{1}{z^{2}}=0$
$6+4$
2. Define singular point. Also show that $u=x^{3}-3 x y^{2}-3 x^{2}$ $-3 y^{2}+1$ is a harmonic function and find the corresponding analytic function. $2+8$
3. (a) A complex valued function $f(z)$ is defined by

$$
f(z)=\left\{\begin{array}{cc}
\frac{\operatorname{lm} g z}{|z|}, & \text { if } z \neq 0 \\
0, & \text { if } z=0
\end{array}\right.
$$

Is $\mathrm{f}(\mathrm{z})$ continuous of $\mathrm{z}=0$?
(b) Show that polar form of Cauchy Riemann equations are $\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}$
4. (a) If $\vec{r}=a \cos t \hat{i}+a \sin t \hat{j}+b t \hat{k}$, then show that
$\left|\frac{d \vec{r}}{d \vec{t}}\right|=a^{2}+b^{2}$
(b) Find the directional derivative of $f=x y+y z+z x$ in the direction of the vector $\hat{i}+2 \hat{j}+2 \hat{k}$ at $(1,2,0) . \quad 4+6$
5. (a) Find the curvature and torsion for the curve $\mathrm{x}=\mathrm{a} \cos \mathrm{t}, \mathrm{y}=\mathrm{a} \operatorname{sint}, \mathrm{z}=\mathrm{bt}$.
(b) A particle moving along the curve $\mathrm{x}=2 \mathrm{t}^{2}, \mathrm{y}=\mathrm{t}^{2}-4 \mathrm{t}$, $z=3 t-5$. Find components of its velocity and acceleration at time $t=1$, in the direction $\hat{i}-3 \hat{j}+2 \hat{k}$.
14. (a) Find the standard deviation of the following distribution :

$\mathrm{x}:$	7	8	9	10	11	12	14
$\mathrm{f}:$	2	3	4	5	3	2	1

(b) For a Binomial distribution the mean is 3 and $q=\frac{1}{2}$.

Find n .
$8+2$
9. Find the median and mode for the following distribution. Hence find the mean.

10

Class:	$25-29$	$30-34$	$35-39$	$40-44$	$45-49$
Frequency:	16	28	14	12	7

10. Find the correlation coefficient of the two variables X and Y from the following data. Also find the regression equation of Y on X .
$6+4$

$\mathrm{X}:$	5	6	7	8	10	12
$\mathrm{Y}:$	15	18	24	26	27	32

11. Find $f(2.5)$ using Newton's forward interpolation formula from the following table.

10

$\mathrm{X}:$	1	2	3	4	5	6
$\mathrm{Y}:$	0	1	10	81	256	625

12. Evaluate the integral $\int_{0}^{1} \frac{d x}{1+x}$ by using
(a) Trapezoidal rule
(b) Simpson $\frac{1}{3}$ rd rule with $\mathrm{h}=0.5$
13. State Newton-Raphson method to solve non-linear equations and compute a real roof of $f(x)=x-e^{-x}=0$ using this method.
$3+7$
14. (a) Verify Stokes' theorem for
$\vec{F}=(2 x+y) \hat{i}+y z^{2} \hat{j}+y^{2} z \hat{k}$, when S is the upper half of the sphere $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=1$ and C is its boundary.
(b) Find the angle between
$\vec{A}=2 \hat{i}+2 \hat{j}-\hat{k}$ and $\vec{B}=6 \hat{i}-3 \hat{j}+2 \hat{k}$
15. (a) Suppose $f(z)$ by an analytic function. Then prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}$ $=4\left|f^{\prime}(z)\right|^{2}$
(b) Find $\operatorname{div} \vec{F}$ and curl \vec{F} where
$\vec{F}=\operatorname{grad}\left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}\right)$.

PART - II (50 marks)
Answer any five questions.
8. (a) State and prove Baye's theorem.
(b) A dice is thrown three times in succession. Find the probability of getting two ones. $5+5$

