B.E. CIVIL ENGG. 1st YEAR 2nd SEM. EXAM. 2018(Old) BASIC ELECTRONICS

Time: 3Hrs Full Marks: 100

Answer any ten (10) of the following questions.

1) Answer any five (<u>any 05</u>) briefly. [02x5=10]
i) Write the relation for Fermi-Dirac Function.

- ii) What is Atomic Energy Level?
- iii) Define orbital angular momentum quantum number.
- iv) What is effective mass of an electron?
- v) Define work-function of a metal.
- vi) What is the transformer utilization factor (TUF) in a rectifier?
- vii) Draw a diode half wave rectifier circuit.
- viii) Arrange the three regions of a transistor according to their doping concentration.
- 2) Derive and explain the PIV and PRV ratings of Si and Ge diode.

[10]

- Describe the Energy Band in crystals with appropriate figures and equations. Explain Fermi-Dirac
 Distribution Function with appropriate figures and equations. [05+05=10]
- 4) i) What is meant by mobility of carriers? Give an expression for it.
 - ii) At 300 K the intrinsic concentration of Si is 1.5×10^{16} m⁻³. If the electron and the hole mobilities are 0.13 and 0.005 m²/(V-s) resp., determine the intrinsic resistivity of Si at 300 K. [03+03+04]
- 5) i) Why is the BJT so called?
 - ii) How does the BJT act as an amplifier?
 - iii) Define β and α of a BJT and find a relation between them.

[02+04+04]

6) i) Prove the following identity and implement it in a logic circuit.

 $\overline{A}B+\overline{A}+AB=0$

ii) Draw a digital full adder circuit. Give the truth table of this circuit.

[04+06]

- 7) i) Subtract 25 from 19 after converting them to binary value.
 - ii) Express the OR and AND logic in terms of NAND logic and represent the same with a neat figure.

[04+06=10]

8) An electron at rest is accelerated through a potential difference of 100v. Calculate its final kinetic energy in Joules (J) and electron-volts (eV). What is its final velocity? [10]

- 9) As system of particles obeys Fermi-Dirac distribution function. Show that the probability of vacancy of an energy level ΔE above the Fermi level E_F is the same as the probability of occupancy of an energy level ΔE below E_F.
 [10]
- 10) Why the field effect transistor is called unipolar? Draw schematically the structure of an n-channel JFET and explain the terms source, drain, gate and channel. What is the significance of the term field-effect? Draw the circuit symbol of the JFET.
- 11) A diode has a forward resistance of which is 50Ω , supplies power to a load resistance 1200Ω for a 20V (rms) source. Calculate,
 - i) The DC load current. ii)The AC load current. iii)The DC voltage across the diode.
 - iv) The DC output power. v) The conversion efficiency, vi) The % regulation. [10]
- 12) i) An npn transistor with α =0.96 and negligible I_{CO} carries a base current of 0.2 mA in the active region. Determine the emitter and the collector currents.
- ii) A transistor operating in the CE mode draws a constant base current I_B of $30\mu A$. The collector current I_C is found to change from 3.5 mA to 3.7 mA when the collector-emitter voltage V_{CE} changes from 7.5 V to 12.5 V. Calculate the output resistance and β at $V_{CE}=12.5$ V. What is the value of α ? [05+05]
- 13) (i) Draw the input and output characteristics of a npn BJT amplifier circuit.
 - (ii) A transistor in CE mode is connected to supply of 8 V. The voltage drop across a resistance of 800 in the collector circuit is 0.5 V. Determine V_{CE} and I_B for α =0.96. [05+05]