## BACHELOR OF CIVIL ENGINEERING SUPPLEMENTARY EXAMINATION 2018 1st YEAR, 1st SEMESTER

Subject: PHYSICS 1C

Time: Three Hours

Full Marks: 100

## Answer any five questions.

- 1. (a) What is the molecular theory of surface tension? Derive an expression for the excess pressure inside a spherical air bubble in water.
  - (b) Write down Bernoulli's theorem for incompressible fluid flow and explain each term.
  - (c) Water is flowing through a horizontal pipe line. At two points A and B, the diameters are 0.6 m and 0.2 m. The pressure difference between the points A and B is 1 meter column of water. Calculate the volume of water flowing per second.
  - (d) Define surface energy. Show that the surface energy per unit area is numerically equal to the surface tension per unit length.

[(3+4)+3+4+(2+4)]

- 2. (a) What do you mean by coherence of light? What are the different methods of obtaining two coherent sources? Discuss clearly the necessary conditions for the sustained interference of light.
  - (b) Explain the formation of Newton's ring. Obtain the expressions for the diameter of the bright and dark rings of Newton's ring due to reflected light.

[(2+4+4)+10]

- 3. (a) Explain the theory of plane transmission grating and hence obtain the expression for primary and secondary maxima and minima. Plot the grating intensity profile.
  - (b) A 10 µm transparent plate when placed in the path of one of the interfering beams of a double slit experiment [\(\lambda=5800\) A], the central fringe shifts by a distance equal to ten fringes. Calculate refractive index,  $\mu$  of the plate.
  - (c) Find the half angular width of the central bright maximum in the Fraunhoffer diffraction when a slit of width 120 µm is illuminated by a light of wavelength 6000 Å.

[(8+2)+5+5]

- 4. (a) What are X-rays and what is its wavelength range? Discuss the properties of X-rays.
  - (b) What are the origins of continuous and sharp peaks in an X-ray spectrum? Find the shortest wavelength present in the radiation from an X-ray machine whose accelerating potential is 20,000 V?
  - (c) The  $K_{\alpha}$  line from molybdenum has a wavelength of 0.7078 Å. Calculate the wavelength of  $K_{\alpha}$  line of copper. Atomic number of molybdenum = 42 and Atomic number of copper = 29.

[(4+4)+(4+4)+4]

- 5. (a) What is Gauss' law? Derive Coulomb's law from Gauss law in case of a single point charge. How is Gauss' law modified in presence of a dielectric?
  - (b) Find the expression for the electric field due to an infinite plane sheet of charge (of uniform surface charge density,  $\sigma$ ) and show that it is independent of the distance from the sheet.
  - (c) Using Gauss's law find the electric field inside a parallelplate capacitorkept in vacuum, where A is the plate area and d is these paration between the plates.

[(3+3+4)+5+5]

- 6. (a) State Zeroth, First and Second laws of thermodynamics. What are their significance?
  - (b) Deduce the expression for work done by an ideal gas in adiabatic, isobaric and isochoric process.
  - (c) A Carnot engine has the same efficiency between 1000° K and 500° K and between X° K and 1000° K. Calculate X.

[10+5+5]

- 7. (a) Deduce and expression for the magnetic field at a point distant 'r' from a long straight conductor carrying a current'i', using Biot Savart's law.
  - (b) State Ampere's circuital law and show how it leads to thesame result as obtained above case.
  - (c) What are the laws of electromagnetic induction? Define co-efficient of self-inductance? Deduce an expression for the self-inductance of a circular coil of adius 'a' with 'n' number of turns.

[5+(2+3)+(3+2+5)]

8. Write short notes (any two):

- (a) Fresnel Biprism experiment.
- (b) Matter waves and de-Broglie hypothesis.
- (c) Hydrogen spectra
- (d) Carnot reversible engine

[10 x2]