15. (a) Solve the one dimensional heat equation: 10

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, 0 \le x \le l, \quad t > 0,$$

satisfying the following conditions:

$$u(x,0) = 3 \sin(n\pi x), u(0,t) = 0, u(1,t) = 0$$

16. Solve the one dimensional wave equation :

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} , \ 0 \le x \le l, \ t > 0 ,$$

together with following initial and boundary conditions:

$$u(x,0) = f(x), u_t(x,0) = g(x) \text{ for } 0 < x < 1 \text{ and } u(0,t) = u(1,t)=0 \text{ for } t > 0.$$

BACHELOR OF CIVIL ENGINEERING EXAMINATION, 2018

(1st Year, 2nd Semester)

Mathematics - III C

Time: Three hours

Full Marks : 100

Use a separate Answer Script for each part. Symbols/Notations have their usual meanings.

PART - I (50 marks)

Answer any *five* questions.

1. Solve:

(a)
$$xdy - ydx = \sqrt{x^2 + y^2} dx$$

(b)
$$(D^2 + 4)y = \cos 2x \left(\text{where } D = \frac{dy}{dx} \right)$$
 5+5

2. (a) Construct a differential equation by eliminating the parameter λ from the equation.

$$\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$$

where a and b are fixed constants.

(b) Solve:

$$x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y = 2x^2$$
(Turn Over)

3. (a) Solve:

$$(D^2-D-6)y = x$$

(b) Find the singular solution of

$$p = \tan\left\{x - \frac{p}{1+p^2}\right\}, where \ p = \frac{dy}{dx}$$

OR

Solve:

$$\frac{dy}{dx} - \frac{3y}{x+2} = (x+2)^3$$
 5+5

4. (a) Find the Fourier series for the function.

$$f(x) = 0, -\pi < x \le 0$$

= $\frac{\pi x}{4}$, $0 \le x < \pi$ Also find the value of $\frac{\pi^2}{8}$.

(b) Find the Fourier coefficients for the function

$$f(x) = 0$$
, $0 < x < 1$
= 1, $1 < x < 2l$. 7+3

- 5. (a) Classify the singular points of the differential equation $(x^3+x^2)y'' + (x^2-2x)y' + y = 0$
 - (b) Prove that

$$\int_{-1}^{1} p_m(x) P_n(x) dx = \begin{cases} 0 & \text{if } m \neq mn \\ \frac{2}{2n+1} & \text{if } m = n \end{cases}$$
 2+8

- 11. (a) Find the differential equation of all spheres, whose centres lie on the z-axis.
 - (b) Form the partial differential equation by eliminating the arbitrary function 'f' from the following: 4 $f(x+y+z, x^2+y^2+z^2) = 0$
 - (c) Solve the following partial differential equation: 3

$$\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$$

12. Solve:

(a)
$$\frac{y^2z}{x}p + xzq = y^2$$

(b)
$$x(y-z)p + y(z-x)q = z(x-y)$$
 5+5

13. Solve:

(a)
$$(p^2 + q^2)y = qz$$

(b)
$$zpq = p + q$$
 5+5

14. (a) Determine the solution of the Laplace's equation :

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 z}{\partial x^2} = 0 , 0 < x < \pi, 0 < y < \pi$$

subject to the following initial and boundary conditions $u(0,y) = u(\pi,y) = u(x,\pi) = 0$, $u(x,0) = \sin^2 x$.

(Turn Over)

(3)

(c) Use Laplace transform method to solve the following differential equation

$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 5x = e^{-t}\sin t, \ x(0) = 0, x'(0) = 1$$

OR

$$\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + 2x = 0, \ x(0) = x'(0) = 1$$

- 10. (a) Show that the function $f(z) = \sqrt{|xy|}$ is not differentiable at z = 0, although Cauchy-Riemann equations are satisfied.
 - (b) If f(z) = u(x,y) + iv(x,y) is an analytic function, find f(z) if $u v = e^{x}(\cos y \sin y)$.

(c) Prove that
$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \log |f'(z)| = 0$$

OR

Find the general solution of the following partial differential equations:

(a)
$$\frac{\partial^2 z}{\partial x^2} + 5 \frac{\partial^2 z}{\partial x \partial y} + 6 \frac{\partial^2 z}{\partial y^2} = xy$$

(b)
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - 2 \frac{\partial^2 z}{\partial y^2} = 5e^{x+2y}$$

- 6. Find the series solution of Bessel's equation.
- 7. (a) Starting from generating function show that $(n+1)p_{n+1}(x) = (2n+1)xP_n(x) nP_{n-1}(x)$
 - (b) Prove the following result for Bressel's function $J_n(x)$

$$\frac{d}{dx}\left\{x^n \ J_n(x)\right\} = x^n J_{n-1}(x)$$
5+5

8. Find the series solution near x=0 of the differential equation 10

$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + \left(x^2 + 2\right)y = 0$$

Write at least three nonzero terms in each series.

PART - II (50 marks)

Answer any *five* questions.

- 9. (a) If $L\{f(t)\} = F(s)$, then find $L\{e^{at} f(t)\}$.
 - (b) Find the inverse Laplace transform of

$$\frac{5s+3}{(s-1)(s^2+2s+5)} \quad or \quad \frac{1}{\sqrt{2s+3}}$$

(Turn Over)

10