15. (a) Solve the one dimensional heat equation :

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, 0 \leq x \leq l, t>0,
$$

satisfying the following conditions :

$$
u(x, 0)=3 \sin (n \pi x), u(0, t)=0, u(1, t)=0
$$

16. Solve the one dimensional wave equation:
$\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, 0 \leq x \leq l, t>0$,
together with following initial and boundary conditions : $\mathrm{u}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x}), \mathrm{u}_{\mathrm{t}}(\mathrm{x}, 0)=\mathrm{g}(\mathrm{x})$ for $0<\mathrm{x}<1$ and $\mathrm{u}(0, \mathrm{t})=$ $u(1, t)=0$ for $t>0$.

10

BACHELOR OF CIVILENGINEERINGEXAMINATION, 2018

(1st Year, 2nd Semester)
Mathematics - III C

Time : Three hours
Full Marks: 100
Use a separate Answer Script for each part.
Symbols/Notations have their usual meanings.
PART - I (50 marks)
Answer any five questions.

1. Solve :
(a) $x d y-y d x=\sqrt{x^{2}+y^{2}} d x$
(b) $\left(D^{2}+4\right) y=\cos 2 x\left(\right.$ where $\left.D=\frac{d y}{d x}\right)$
2. (a) Construct a differential equation by eliminating the parameter λ from the equation.
$\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1$
where a and b are fixed constants.
(b) Solve :
$x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+4 y=2 x^{2}$
3. (a) Solve :
$\left(D^{2}-D-6\right) y=x$
(b) Find the singular solution of

$$
p=\tan \left\{x-\frac{p}{1+p^{2}}\right\} \text {, where } p=\frac{d y}{d x}
$$

OR
Solve :
$\frac{d y}{d x}-\frac{3 y}{x+2}=(x+2)^{3}$ $5+5$
4. (a) Find the Fourier series for the function.

$$
\begin{aligned}
f(x) & =0,-\pi<x \leq 0 \\
& =\frac{\pi x}{4}, 0 \leq x<\pi \quad \text { Also find the value of } \frac{\pi^{2}}{8} .
\end{aligned}
$$

(b) Find the Fourier coefficients for the function

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =0,0<\mathrm{x}<1 \\
& =1,1<\mathrm{x}<2 l .
\end{aligned}
$$

5. (a) Classify the singular points of the differential equation

$$
\left(x^{3}+x^{2}\right) y^{\prime \prime}+\left(x^{2}-2 x\right) y^{\prime}+y=0
$$

(b) Prove that

$$
\int_{-1}^{1} p_{m}(x) P_{n}(x) d x=\left\{\begin{array}{c}
0 \text { if } m \neq m n \\
\frac{2}{2 n+1} \text { if } m=n
\end{array}\right.
$$

11. (a) Find the differential equation of all spheres, whose centres lie on the z-axis.
(b) Form the partial differential equation by eliminating the arbitrary function ' f ' from the following : 4 $f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$
(c) Solve the following partial differential equation : 3

$$
\frac{\partial^{2} z}{\partial x \partial y}=\sin x \sin y
$$

12. Solve:
(a) $\frac{y^{2} z}{x} p+x z q=y^{2}$
(b) $x(y-z) p+y(z-x) q=z(x-y)$
13. Solve :
(a) $\left(p^{2}+q^{2}\right) y=q z$
(b) $z p q=p+q$
14. (a) Determine the solution of the Laplace's equation:
$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} z}{\partial x^{2}}=0,0<x<\pi, 0<y<\pi$
subject to the following initial and boundary conditions $\mathrm{u}(0, \mathrm{y})=\mathrm{u}(\pi, \mathrm{y})=\mathrm{u}(\mathrm{x}, \pi)=0, \mathrm{u}(\mathrm{x}, 0)=$ $\sin ^{2} \mathrm{x}$.
(c) Use Laplace transform method to solve the following differential equation

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+5 x=e^{-t} \sin t, x(0)=0, x^{\prime}(0)=1 \tag{4}
\end{equation*}
$$

OR

$\frac{d^{2} x}{d t^{2}}-2 \frac{d x}{d t}+2 x=0, x(0)=x^{\prime}(0)=1$
10. (a) Show that the function $\mathrm{f}(\mathrm{z})=\sqrt{|x y|}$ is not differentiable at $z=0$, although Cauchy-Riemann equations are satisfied.
(b) If $f(z)=u(x, y)+i v(x, y)$ is an analytic function, find $f(z)$ if $u-v=e^{x}(\cos y-\sin y)$.
(c) Prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \log \left|f^{\prime}(z)\right|=0$

OR

Find the general solution of the following partial differential equations :
(a) $\frac{\partial^{2} z}{\partial x^{2}}+5 \frac{\partial^{2} z}{\partial x \partial y}+6 \frac{\partial^{2} z}{\partial y^{2}}=x y$
(b) $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial x \partial y}-2 \frac{\partial^{2} z}{\partial y^{2}}=5 e^{x+2 y}$
6. Find the series solution of Bessel's equation.
7. (a) Starting from generating function show that

$$
(\mathrm{n}+1) \mathrm{p}_{\mathrm{n}+1}(\mathrm{x})=(2 \mathrm{n}+1) \mathrm{x} \mathrm{P}_{\mathrm{n}}(\mathrm{x})-\mathrm{nP}_{\mathrm{n}-1}(\mathrm{x})
$$

(b) Prove the following result for Bressel's function $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$

$$
\frac{d}{d x}\left\{x^{n} J_{n}(x)\right\}=x^{n} J_{n-1}(x)
$$

8. Find the series solution near $x=0$ of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}+2\right) y=0
$$

Write at least three nonzero terms in each series.

PART - II (50 marks)

Answer any five questions.
9. (a) If $\mathrm{L}\{\mathrm{f}(\mathrm{t})\}=\mathrm{F}(\mathrm{s})$, then find $\mathrm{L}\left\{\mathrm{e}^{\text {at }} \mathrm{f}(\mathrm{t})\right\}$.
(b) Find the inverse Laplace transform of

$$
\frac{5 s+3}{(s-1)\left(s^{2}+2 s+5\right)} \text { or } \frac{1}{\sqrt{2 s+3}}
$$

