(b) If $a+\frac{1}{a}=2 \cos \alpha$, then show that $a^{n}+\frac{1}{a^{n}}=2 \cos n \alpha$, $a^{n}-\frac{1}{a^{n}}=2 i \sin n \alpha$
10. (a) Express θ in terms of $\tan \theta$.
(b) If $\frac{z-i}{z+1}$, is purely imaginary then show that the point z lies on a circle.
11. (a) Test the convergence of the following series.
(i) $\left(\frac{2^{2}}{1^{2}}-\frac{2}{1}\right)^{-1}+\left(\frac{3^{3}}{2^{3}}-\frac{3}{2}\right)^{-2}+\left(\frac{4^{4}}{3^{4}}-\frac{4}{3}\right)^{-3} \ldots .$.
(ii) $\frac{1}{1.3}+\frac{2}{3.5}+\frac{3}{5.7}+$ \qquad 10

Ex./CE/MATH/T/113/2018(S)

BACHELOR OF CIVIL ENGINEERING EXAMINATION, 2018

(1st Year, 1st Semester, Supplementary)
Mathematics - II C

Time : Three hours
Full Marks : 100

Use a separate Answer Script for each part Symbols/Notations have their usual meaning.

PART - I

Answer q.no. 1 and any three questions.

$$
(2+3 \times 16)
$$

1. Define direction cosines of a straight line.
2. (a) Prove that

$$
(\vec{A} \times \vec{B}) \cdot(\vec{B} \times \vec{C}) \times(\vec{C} \times \vec{A})=(\vec{A} \cdot \vec{B} \times \vec{C})^{2}
$$

(b) If $\vec{A}=2 i+j-3 k$ and $\vec{B}=i-2 j+k$ find a vector of magnitude 5 and perpendicular to both A and B .
3. (a) Prove that

$$
(\vec{A} \times \vec{B}) \cdot(\vec{C} \times \vec{D})+(\vec{B} \times \vec{C}) \cdot(\vec{A} \times \vec{D})+(\vec{C} \times \vec{A}) \cdot(\vec{B} \times \vec{D})=0
$$

(b) Prove that law of sines for plane triangle

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

4. (a) Find the equation of the image of the line

$$
\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-4}{4}
$$

in the plane $3 x+y-4 z+21=0$
(b) Find the center and the radius of the circle

$$
x^{2}+y^{2}+z^{2}=25, x+2 y+2 z+9
$$

5. (a) Find the shortest distance between the lines

$$
\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1} \quad \text { and } \quad \frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}
$$

(b) The direction cosines of two straight lines are given by equations

$$
l-3 \mathrm{~m}+\mathrm{n}=0 \quad \text { and } l^{2}-5 \mathrm{~m}^{2}+\mathrm{n}^{2}=0
$$

Find the angle between them.

PART - II

Answer any five questions.
6. (a) Define eigen values of a matrix. Show that if λ is an eigen value of a non singular matrix A , then λ^{-1} is also an eigen value of A^{-1}.
(b) Find the eigen values and the corresponding eigen vector of the matrix

$$
A=\left(\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right)
$$

7. (a) Solve the system of equations by Cramer's rule :

$$
\begin{aligned}
& x+2 y-3 z=1 \\
& 2 x-y+z=4 \\
& x+3 y=5
\end{aligned}
$$

(b) If $A=\left(\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)$, then show that $\mathrm{A}^{2}-4 \mathrm{~A}-5 \mathrm{I}_{3}=0$. Hence obtain a matrix B such that $A B=I_{3}$.
8. (a) Prove that

$$
\left|\begin{array}{ccc}
2 b c-a^{2} & c^{2} & b^{2} \\
c^{2} & 2 c a-b^{2} & a^{2} \\
b^{2} & c^{2} & 2 a b-c^{2}
\end{array}\right|=\left(a^{3}+b^{3}+c^{3}-3 a b c\right)^{2}
$$

(b) Solve by matrix method, the system of equations

$$
\begin{aligned}
& x+z=0 \\
& 3 x+4 y+5 z=2 \\
& 2 x+3 y+4 z=1
\end{aligned}
$$

9. (a) If $\mathrm{z}=\cos \theta+\mathrm{i} \sin \theta$ and n is a tune integer, then show that

$$
(1+z)^{n}+\left(1+\frac{1}{z}\right)^{n}=2^{n+1} \cos ^{n} \frac{\theta}{2}+\cos \frac{n \theta}{2}
$$

