BACHELOR OF CIVIL ENGINEERING EXAMINATION, 2018 (1st Year, 1st Semester)

Mathematics - I C

Time: Three hours

Full Marks: 100

(50 marks for each part)

Use a separate Answer Script for each part.

PART - I

Answer q.no. 6 and any three from the rest.

- 1. (a) State Leibnitz theorem on higher order derivatives. Using the theorem find y_n where $y = x^2 \cos x$. 8
 - (b) If $y = (x^2 1)^n$, prove that

$$(x^2 - 1)y_{n+2} + 2xy_{n+1} - n(n+1)y_n = 0.$$
 8

- 2. (a) State and prove Lagrange's Mean Value theorem. Verify whether the Mean Value theorem is applicable to the function $1 x^{2/3}$ in the interval [-1,2].
 - (b) Evaluate the following limits : (any *two*)
 - (i) $\lim_{x\to 0} x^x$
 - (ii) $\lim_{x \to 0} \frac{\log x}{\operatorname{cosec} x}$

(iii)
$$\lim_{x \to 0} \frac{5 \sin x - 7 \sin 2x + 3 \sin 3x}{\tan x - x}$$

(Turn over)

6

(a) Find the maxima and minima of the function

$$y = \sin x(1 + \cos x)$$

- (b) Expand by Maclaurin's theorem upto the terms containing x^4 of the function $y = e^{\sin x}$.
- (c) Differentiate $tan^{-1}\frac{2x}{1-x^2}$ with respect to

$$\sin^{-1}\frac{2x}{1+x^2}$$
.

(d) Find $\frac{dy}{dx}$ in the following case.

$$e^{xy} - x^2 + y^3 = 0$$

(a) Show that the function

$$f(x,y) = {xy \over x^2 + y^2}, (x,y) \neq (0,0)$$

$$= 0 , (x,y) = (0,0)$$

3

(b) Evaluate the following limit
$$\lim_{\substack{x \to 1 \\ y \to 2}} \frac{(x-1)^3}{(x-1)^2 + (y-2)}$$

(c) Find
$$\frac{\partial z}{\partial x}$$
, $\frac{\partial z}{\partial y}$ when $z = x^3 + y^3 + 3axy$.

- 11. (a) Prove that $\int_{0}^{\infty} \left(\frac{1}{1+x} \frac{1}{e^{x}} \right)^{\frac{1}{x}} dx$ is convergent.
 - (b) Evaluate $\iint_{\mathbb{R}} (x^2 + y^2) dxdy$ over R where R is bounded by $y = x^2$, x = 2, y = 1. 5+5
- 12. Find the volume of the solid formed by the rotation of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
 - (a) about the major axis and rotating about ox.
 - (b) about the minor axis and rotating about oy. 5+5
- 13. (a) Evaluate $\int_{0}^{3} \frac{dx}{x+1}$ using Simpson's rule with 4 subintervals correct upto 4 decimal places.
 - (b) Evaluate $\int_{1}^{1} \sqrt{x^2 + 1} dx$ using the Trapezoidal rule with 5 subintervals, correct upto 3 decimal places. 5+5

---- X ----

- (b) Show that the function f(x) is not integrable on [0,1], where
 - f(x) = 1, if x rational

= 0. x rational.

5+5

5+5

8. (a) Prove that

(i)
$$\frac{\pi^2}{9} < \int_{\frac{\pi}{6}}^{\pi/2} \frac{x}{\sin x} dx < \frac{2\pi^2}{9}$$

(ii)
$$B(m,m) = 2^{1-2m} B\left(m, \frac{1}{2}\right)$$
 5+5

- 9. (a) Find $\int_{0}^{1} \frac{1}{(1-x^3)^{1/3}} dx$
 - (b) Evaluate $\iint_{R} xy(x^2 + y^2) dxdy$ on R: [0,a; 0.b].

10. Examine the convergence of $\int_{0}^{\infty} x^{-\frac{1}{2}} e^{-x} dx$.

Deduce that
$$\int_{0}^{1} \frac{1}{(1-x^{n})^{1/n}} dx = \frac{\pi}{n} \csc \frac{\pi}{12} n > 1.$$
 5+5

(d) If $u = log \frac{x^2 + y^2}{xy}$

verify that

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$$
 5

- 5. (a) State and prove Euler's theorem on homogeneous function.
 - (b) Verify Euler's theorem for

$$u = x^n \sin\left(\frac{y}{x}\right)$$

(c) Find the extremum of the following function:

$$u = xy (3 - x - y)$$

6. Find the derivative of $y = \tan^{-1}(\cos \sqrt{x})$.

PART - II

Answer any five questions.

7. (a) A function f(x) is defined by $f(x) = e^x$ on [a,b]. Find $\int_a^b f(x)dx \text{ and } \int_{-a}^b f(x)dx \text{ . Deduce that } f(x) \text{ is integrable }$ on [a,b].

(Turn over)