Ex./CE/MATH/T/112/2018
BACHELOR OF CIVIL ENGINEERING EXAMINATION, 2018
(1st Year, 1st Semester)
Mathematics - I C
Time : Three hours
Full Marks : 100
(50 marks for each part)

Use a separate Answer Script for each part.

PART - I

Answer q.no. 6 and any three from the rest.

1. (a) State Leibnitz theorem on higher order derivatives. Using the theorem find y_{n} where $y=x^{2} \cos x$. 8
(b) If $y=\left(x^{2}-1\right)^{n}$, prove that

$$
\left(x^{2}-1\right) y_{n+2}+2 x y_{n+1}-n(n+1) y_{n}=0 .
$$

2. (a) State and prove Lagrange's Mean Value theorem. Verify whether the Mean Value theorem is applicable to the function $1-x^{2 / 3}$ in the interval $[-1,2]$.
(b) Evaluate the following limits: (any two)
(i) $\lim _{x \rightarrow 0} x^{x}$
(ii) $\lim _{x \rightarrow 0} \frac{\log x}{\operatorname{cosec} x}$
(iii) $\lim _{x \rightarrow 0} \frac{5 \sin x-7 \sin 2 x+3 \sin 3 x}{\tan x-x}$
3. (a) Find the maxima and minima of the function

$$
\begin{equation*}
y=\sin x(1+\cos x) \tag{4}
\end{equation*}
$$

(b) Expand by Maclaurin's theorem upto the terms containing x^{4} of the function $\mathrm{y}=\mathrm{e}^{\sin \mathrm{x}}$.
(c) Differentiate $\tan ^{-1} \frac{2 x}{1-x^{2}}$ with respect to

$$
\sin ^{-1} \frac{2 x}{1+x^{2}} .
$$

(d) Find $\frac{d y}{d x}$ in the following case.

$$
\begin{equation*}
e^{x y}-x^{2}+y^{3}=0 \tag{4}
\end{equation*}
$$

4. (a) Show that the function

$$
\begin{align*}
f(x, y) & =\frac{x y}{x^{2}+y^{2}},(x, y) \neq(0,0) \\
& =0, \quad(x, y)=(0,0) \tag{3}
\end{align*}
$$

(b) Evaluate the following limit

$$
\lim _{\substack{x \rightarrow 1 \\ y \rightarrow 2}} \frac{(x-1)^{3}}{(x-1)^{2}+(y-2)}
$$

(c) Find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ when $\mathrm{z}=\mathrm{x}^{3}+\mathrm{y}^{3}+3 a \mathrm{x} y$.
11. (a) Prove that $\int_{0}^{\infty}\left(\frac{1}{1+\mathrm{x}}-\frac{1}{\mathrm{e}^{\mathrm{x}}}\right)^{\frac{1}{\mathrm{x}}} \mathrm{dx}$ is convergent.
(b) Evaluate $\iint_{R}\left(x^{2}+y^{2}\right) d x d y$ over R where R is bounded by $y=x^{2}, x=2, y=1 . \quad 5+5$
12. Find the volume of the solid formed by the rotation of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(a) about the major axis and rotating about ox.
(b) about the minor axis and rotating about oy.
13. (a) Evaluate $\int_{2}^{3} \frac{d x}{x+1}$ using Simpson's rule with 4 subintervals correct upto 4 decimal places.
(b) Evaluate $\int_{0}^{1} \sqrt{x^{2}+1} d x$ using the Trapezoidal rule with 5 subintervals, correct upto 3 decimal places.

5+5
(b) Show that the function $f(x)$ is not integrable on $[0,1]$, where

$$
\begin{aligned}
f(x) & =1, \text { if } x \text { rational } \\
& =0, x \text { rational. }
\end{aligned}
$$

8. (a) Prove that
(i) $\frac{\pi^{2}}{9}<\int_{\frac{\pi}{6}}^{\pi / 2} \frac{x}{\operatorname{Sin} x} d x<\frac{2 \pi^{2}}{9}$
(ii) $B(m, m)=2^{1-2 m} B\left(m, \frac{1}{2}\right)$
9. (a) Find $\int_{0}^{1} \frac{1}{\left(1-x^{3}\right)^{1 / 3}} d x$
(b) Evaluate $\iint_{R} x y\left(x^{2}+y^{2}\right) d x d y$
on $\mathrm{R}:[0, \mathrm{a}$; 0.b].
5+5
10. Examine the convergence of $\int_{0}^{\infty} x^{-\frac{1}{2}} e^{-x} d x$.

Deduce that $\int_{0}^{1} \frac{1}{\left(1-x^{n}\right)^{1 / n}} d x=\frac{\pi}{n} \operatorname{cosec} \frac{\pi}{12} n>1 . \quad 5+5$
(d) If $u=\log \frac{x^{2}+y^{2}}{x y}$ verify that

$$
\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}
$$

5. (a) State and prove Euler's theorem on homogeneous function.
(b) Verify Euler's theorem for

$$
\begin{equation*}
u=x^{n} \sin \left(\frac{y}{x}\right) \tag{4}
\end{equation*}
$$

(c) Find the extremum of the following function: $u=x y(3-x-y)$
6. Find the derivative of $y=\tan ^{-1}(\cos \sqrt{x})$.

PART - II

Answer any five questions.
7. (a) A function $f(x)$ is defined by $f(x)=e^{x}$ on $[a, b]$. Find $\int_{a}^{b} f(x) d x$ and $\int_{-a}^{b} f(x) d x$. Deduce that $f(x)$ is integrable on [a,b].

