(1st Year, 1st Semester, Supplementary)

Mathematics - I C

Time : Three hours
Full Marks : 100

Answer any ten questions.

The notations have their usual meanings.

1. (a) Find y_{n} for
(i) $y=\frac{1}{x^{2}-a^{2}}$
(ii) $y=e^{a x} \cos b x$
(iii) $y=\sin a x$.
(b) If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ find $\frac{d y}{d x}$. 4
2. (a) State Leibnitz theorem on Successive Differentiaton. Hence find $y=x^{3} \log x$.
(b) Given $y=\left(x^{2}-1\right)^{n}$. Use Leibnitz theorem to show that $\left(x^{2}-1\right) y_{n+2}+2 x y_{n+1}-n(n+1) y_{n}=0$.
3. State and prove Rolle's theorem verify Rolle's theorem for $f(x)=x^{3}-6 x^{2}+11 x-6$ in $[1,3]$.
4. State L'Hospital's Rule. Using the rule find the following limits :
(i) $\lim _{x \rightarrow 0} \frac{\tan x-x}{x-\sin x}$
(ii) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\sin x}\right)$
(iii) $\lim _{x \rightarrow 0} \log \left(\frac{\sin x}{x}\right)^{1 / x}$
5. (a) Using Maclaurin's theorem with remainder in Lagrange's form expand $\sin \mathrm{x}$ in a finite series in powers of x .
(b) State Taylor's theorem (single variable) with Lagrange's form of remainder. $\quad 6+4$
6. (a) Define the continuity of a function $f(x, y)$ at (a, b).

Examine the continuity of the function given by
$f(x, y)=\left\{\begin{array}{cc}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & \text { where } x^{2}+y^{2} \neq 0 \\ 0, & \text { where } x=0, y=0\end{array}\right.$
at the point $(0,0)$.
12. A river is 80 ft wide. The depth d in feet at distance xft from one bank is given by the table :

x	0	10	20	30	40	50	60	70	80
d	0	4	7	9	12	15	14	8	3

Find the area of cross-section of the river both by
(a) Simpson's $\frac{1}{3}$ rd rule and (b) Trapezoidal rule. 10
\qquad

(ii) $\int_{0}^{\frac{\pi}{4}} \tan ^{6} x d x$
(iii) $\int_{0}^{\frac{\pi}{4}} \log (1+\tan \theta d \theta$
(b) Find
(i) $\int_{-\infty}^{\infty} \frac{d x}{x^{2}+2 x+2}$
(ii) $\int_{1}^{\infty} \frac{d x}{(1+x)^{3 / 2}}$
10. (a) Prove that $B(m, n)=B(n, m)$.
(b) Show that
$B(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}, m, n>0$
11. (a) Evaluate $\iiint_{R}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$, where R is the region bounded by $x=0, y=0, z=0$ and $x+y+z=a$, $a>0$.

6
(b) Find the moment of intertia of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ about the x -axis.
(b) Show that the following limits do not exist :
(i) $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{2 x y^{2}}{x^{2}+y^{4}}$
(ii) $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{x y}{x^{2}+y^{2}}$
7. (a) Verify that $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$ where $u=\sin ^{-1} \frac{x}{y}$.
(b) State Euler's theorem on Homogeneous functions of two variables. Verify the theorem for $u=x^{n} \log \left(\frac{y}{x}\right)$.
8. (a) Investigate the maxima and minima for

$$
\begin{equation*}
f(x)=x^{5}-5 x^{4}+5 x^{3}-1 \tag{4}
\end{equation*}
$$

(b) A right circular cone with a flat circular base is constructed of sheet material of uniform thickness. Show that for a given volume the area of the surface is a minimum if $\theta=\operatorname{Sin}^{-1}\left(\frac{1}{3}\right)$.
9. (a) Evaluate
(i) $\int_{0}^{\pi / 2} \cos ^{2} \theta \sin ^{4} \theta d \theta$

