B.E. CHEMICAL ENGINEERING FOURTH YEAR FIRST SEMESTER SUPPLEMENTARY EXAM 2018 INDUSTRIAL POLLUTION CONTROL ENGINEERING

Use a separate Answer-Script for each part

Time: Three Hours

Full Marks: 100

Part-I (50 Marks)

Answer any 5 questions

1. a) Explain the parallel plate precipitator.

- b) Before the installation of an electrostatic precipitator, the stack gas of a power plant contained 6.0 g particulates per m³ of gas. The gas flow rate is 350 m³/min and the new precipitator can remove 2500 kg particulates/day.
- 1. What is the emission rate of particulates before and after pollution control in kg/day?
- 2. What is the efficiency of the electrostatic precipitator?
- 3. Will the new system meet an emission standard of 0.7 g/m³?

5+5=10

- 2. a) Explain with diagram the electrostatic precipitator used for controlling particulate contaminants.
 - b) An electrostatic precipitator for use with standard air containing dust particles of 1.0 μ m diameter is in the form of a cylinder 0.3 m diameter and 2.0 m long. The volumetric flow rate of air is 0.075 m³/s. Compute the collection efficiency if the electric field strength is 100000 V/m and particle charge is 0.3×10^{-15} coulomb. [Given: $\mu_g = 1.81 \times 10^{-5}$ kg/m-s, Cunningham correction factor, $C = 1 + \frac{2\lambda}{d_p} (1.257 + 0.4e^{-0.55d_p/\lambda})$]. 5+5=10
- 3. a) Discuss briefly thermal incineration and catalytic oxidation of gaseous pollutants.
 - b) A conventional cyclone with diameter 1.0 m, air entrance height 0.5 m and width 0.25 m, handles 3.0 m³/s of standard air of viscosity 1.81x 10⁻⁵ kg/m-s. Using, effective number of turns a gas makes in traversing the cyclone, Ne=6, determine the cut-size and the collection efficiency as a function of particle diameter for particles of density 2000 kg/m³.
- 4. a) Describe the microflocculation and macroflocculation.
 - b) Assume that 40 kg of a) alum (mol. wt. 666.5) and b) ferrous sulfate and lime as $Ca(OH)_2$ is added per 4000 m³ of waste water. Also assume that all insoluble and very slightly soluble products of the reactions, with the exception of 15 g/m³ CaCO₃, are precipitated as sludge. How many kg of sludge/1000 m³ will result in each case? 5+5=10
- 5. a) Classify the solid waste.
 - b) Write the advantages and disadvantages of sanitary landfilling methods.
 - c) Describe with suitable sketches the different phases of refuse stabilization. 2+3+5=10
- 6. a) Classify the disposal methods of solid waste.
 - b) Write the different methods of composting of solid waste.
 - c) Explain the Indore and Nusoil processes for composting of solid waste. 2+3+5=10

[Turn over

Ref. No.: Ex/ChE/T/413/2018(S)

Full marks -50

B.E. CHEMICAL ENGINEERING FOURTH YEAR FIRST SEMESTER SUPPLEMENTARY EXAM 2018 INDUSTRIAL POLLUTION CONTROL ENGINEERING

Time - Three hours

Use separate answerscript for Part I and Part II

Part II

Answer any two questions

Calculate the BOD removal efficiency for the single stage high rate trickling filter. BOD loading is 700 g/m³/d and recirculate ration is 0.60. [10]
 A plate type electrostatic precipitator for use in a cement plant for removing dust particles consists of 10 equal channels. The spacing between the plates is 0.15 m, and the plates are 2 m high and 2 m long. The unit handles 10,000 m³/hr of gas. What is the efficiency of collection? What should be the length of the plates for achieving 95% collection efficiency if other condition are the same. v_{pm} is 0.10. [15]

- 2. i) What is activated sludge process? Briefly describe. [10]
 ii) Calculate the volume of an oxidation ditch to treat the flow from a community of population 800. The sewage flow rate is 100l/head/d. The BOD of the effluent is 300 mg/L. MLSS concentration is 4000 mg/L and decay ratio is 0.025 per day, Y=0.5 and solids retention time is 20 days. The effluent BOD should not exceed 20 mg/l. [10]
 Write down the factors affecting biodegradation. [5]
- 3. I) A sanitary landfill is being designed to handle solid waste generated by a tank having a population of 1,00,000. The waste generation on the average is 0.2 kg/person/day. It is expected that the waste will be delivered by a truck to the landfill site on a 5 day/week basis. The men density of the refuse spread is 100 kg/m³. The solid waste is spread in 1.5 m layers and compacted to 0.3 m. the landfill will use 0.15 m of soil for daily cover. An intermediate cover of soil of 0.2 m is used to complete the cell and a final cover 1.0 m over the stack of 2 cells is recommended. Calculate a) annual volume required for the landfill. B) annual horizontal area covered by the solid waste
 - ii) Briefly describe bag filters and its advantage [10]