BACHELOR OF ENGINEERING IN CHEMICAL ENGINEERING EXAMINATION, 2018

(3rd Year, 1st Semester, Supplementary)

CHEMICAL REACTION ENGINEERING - I

Time: Three hours Full Marks: 100

(50 marks for each Part)

Use a separate Answer-Script for each Part

PART I

Attempt any two questions. Al questions carry equal marks, i.e. 25.

1. The first-order reversible liquid reaction

A
$$\Leftrightarrow$$
 R $C_{A0} = 0.5 \text{ mol/liter}, C_{RO} = 0$

takes place in a batch reactor. After 8 minutes, conversion of A is 33.3% while equilibrium conversion is 66.7%. Find the rate equation for this reaction.

2. The following data are obtained at 0°C in a constant-volume batch reactor using pure gaseous A:

Time, (min)	0	2	4	6	8	10	12	14	œ
Partial pressure of A, (mm)	760	600	175	390	320	275	240	215	150

The stoichiometry of the decomposition is A ---> 2.5R. Find a rate equation which satisfactorily represents this decomposition.

- 3. 100 liters/hr of radioactive fluid having a half-life of 20 hr is to be treated by passing it through two ideal stirred tanks in series, V = 40,000 liters each. In passing through this system, how much will the activity decay?
- 4. A gaseous feed of pure A (1 mol/liter) enters a mixed flow reactor (2 liters) and reacts as follows:

$$2A - - - > R$$
, $-r_A = 0.05 C_A^2$

Find what feed rate (liter/min) will give an outlet concentration $C_A = 0.5$ mol/liter.

B.E. CHEMICAL ENGINEERING THIRD YEAR FIRST SEMESTER SUPPLEMENTARY EXAM 2018

CHEMICAL REACTION ENGINEERING-1

Time: Three Hours Full Marks: 100

Use a separate Answer-Script for each part

Part II

Answer question 1 and any two from the rest
Assume any missing data
All terms have usual significance

L(i) A homogeneous liquid phase reaction

$$A \rightarrow R$$
, $-r_{\perp} = kC_{\perp}^{2}$

takes place with 50% conversion in a CSTR.

- a) What will be the conversion if this reactor is replaced by one 6 times as large all else remaining unchanged?
- b) What will be the conversion if the original reactor is replaced by a plug flow reactor of equal size-all else remaining unchanged?
- 1. (ii) The decomposition of N_2O_5 is postulated to occur by the following mechanism:

$$N_2O_5 \rightleftharpoons NO_2 + NO_3$$

$$NO_3^* \xrightarrow{K_1} NO^* + O_2$$

$$NO^* + NO_3^* - \xrightarrow{k_1} 2NO_5$$

Using the steady state approximation, derive an expression for the rate of decomposition of N_2O_5 .

[(5+5) + 8]

- 2. (i) An elementary liquid phase irreversible reaction $A+B \rightarrow C+D$ is being conducted in a stirred tank reactor under semi-batch mode, wherein reactant B is slowly(continuously) added at a constant molar rate to a batch of reactant A. Derive the differential equations expressing $C_A \cdot C_B \cdot C_C$ and C_D as time dependent variables.
- 2.(ii) The irreversible 1^{31} order parallel reactions A \longrightarrow 2R (reaction rate constant, k_1) \longrightarrow 3S (reaction rate constant, k_2)

are conducted in an isothermal liquid phase PFR with a mean residence time of 15 s. The fractional conversion of A is 80%. Moles of R produced per mole of S produced is 3.5. Calculate k_1 and k_2 . [8+8]

3. (i) Find the overall order of the irreversible reaction $2H_2+2NO \rightarrow N_2+2H_2O$ from the following constant volume batch data using equimolar amounts of H_2 and NO. (Graphical solution not required)

Initial total pressure, mm Hg	200	240	280	320	360
Half Life, s	265	186	115	104	67

3. (ii) Find the first-order rate constant for the disappearance of A in the gas reaction $2A \rightarrow R$, if on holding the pressure constant, the volume of the reaction mixture starting with 80% A, decreases by 20% in 3 minutes.

[10+6]

4.(i) Substance A in the liquid phase produces R and S by the following reactions

A
$$\rightarrow$$
 R, $r_R = k_1 C_A$
S $r_N = k_2 C_A$

The feed $(C_{AB}=1.0, C_{BB}=0.4, C_{BB}=0.4, C_{BB}=0.2)$ enters two MFRs in series $(\tau_1=2.5 \text{ min}, \tau_2=5.0 \text{ min})$. Knowing the composition in the first reactor $(C_{AB}=0.4, C_{BB}=0.4, C_{BB}=0.2)$. Find the composition leaving the second reactor.

- 4. (ii) The first order reversible liquid reaction, takes place in a batch reactor. After eight minutes, conversion of A is 33.3% while equilibrium conversion is 66.7%. Find the rate equation for this reaction.
- 5.(i) Explain the graphical method of finding plug flow reactor (PFR) size for adiabatic operations in case of reversible first-order endothermic reaction $A \xrightarrow[k_1]{k_1} R$.
- 5. (ii) What are the factors governing the most effective use of a given set of ideal reactors (CSTRs and PFRs)? Explain your answer graphically. [10+6]