13. a) Classify the isolated singularities of the following functions:
i) $f(z)=\frac{z}{(z+1)(z-2)}$
ii) $f(z)=\frac{\operatorname{Sin} z}{e^{z}-1}$
b) Show that the integral $\int_{0}^{\infty} \frac{d x}{x^{4}+a^{4}}=\frac{\pi}{2 \sqrt{2} a^{3}}$ using residues.

Bachelor of Engineering in Chemical Engineering

Examination, 2018

(2nd Year, 2nd Semester)
Mathematics - IVB
Time: Three hours
Full Marks: 100
(50 marks for each part)
Use a separate Answer-Script for each part

PART - I (50 MARKS)

Answer any five questions

1. a) Define the equation of the tangent plane at a given point on a surface. Hence find the equation of the tangent plane at the point $(3,-2,1)$ to the surface $\mathrm{xy}^{2}+2 \mathrm{yz}=8$.
b) Show that the vector field $\vec{v}=x y(2 y z \hat{i}+2 x z \hat{j}+x y \hat{k})$ is conservative.
2. a) Evaluate the line integral $\int_{\mathrm{C}} \overrightarrow{\mathrm{v}} \cdot \mathrm{d} \overrightarrow{\mathrm{r}}$, where $\vec{v}=x^{2} \hat{i}-2 y^{3} \hat{j}+z \hat{k}$ and C is the straight line path joining $(-1,2,3)$ to $(2,3,5)$.
b) Evaluate the surface integral $\iint_{S} \vec{F} \cdot \hat{n} d A$, where $\overrightarrow{\mathrm{F}}=6 z \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+3 y \hat{\mathrm{k}}$ and S is the projection of the plane $2 x+3 y+4 z=12$, which is in the first octant. State Green's theorem.
3. State Gauss's divergence theorem. Verify the theorem for $\overrightarrow{\mathrm{A}}=4 \mathrm{x} \overrightarrow{\mathrm{i}}-2 \mathrm{y}^{2} \overrightarrow{\mathrm{j}}+\mathrm{z}^{2} \overrightarrow{\mathrm{k}}$ taken over the region bounded by $y=x, y=x^{2}$.
4. a) Using Green's theorem evaluate $\oint\left(x y+y^{2}\right) d x+x^{2} d y$ around the boundary of the region defined by $y=x, y=x^{2}$.
b) Show that $\iiint_{V} \frac{d V}{r^{2}}=\iint_{S} \frac{\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{n}}}{\mathrm{r}^{2}} \mathrm{ds}$, where S is a closed surface.

$$
6+4=10
$$

5. a) If $f(t)$ is of exponential order γ as $t \rightarrow \infty$ and is piecewise continuous over every finite interval of $\mathrm{t} \geq 0$, then show that Laplace transform of $\mathrm{f}(\mathrm{t})$ exits for $\mathrm{S}>\gamma$, where S is Laplace transform variable.
b) Find inverse Laplace transform of

$$
\begin{equation*}
\frac{3 S+1}{S^{2}\left(S^{2}+4\right)} e^{-3 S} \tag{3}
\end{equation*}
$$

c) Solve by Laplace transform method

$$
\mathrm{t} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}+2 \frac{\mathrm{dy}}{\mathrm{dt}}+\mathrm{ty}=\cos \mathrm{t} \text {, given that } \mathrm{y}(0)=1
$$

10. a) Prove that the Cauchy-Riemann conditions are necessary for differentiability of a complex function $\mathrm{f}(\mathrm{z})$ at a point z_{o}.
b) Evaluate $\int_{C} \frac{z^{3}+5 z-7}{\operatorname{Cos} z} d z$, where C denotes the rectangle with vertices $\pm \frac{\pi_{\mathrm{i}}}{8}, \frac{\pi(1 \pm \mathrm{i})}{8}$.
11. a) Use Cauchy's integral formula to evaluate the integral $\int_{C} \frac{e^{z}}{z^{2}(z+1)^{3}} d z$, where C is the circle $|z|=2$ in the counterclockwise direction.
b) Obtain the terms up to z^{2} in the Taylor series expansion of $f(z)=\frac{z^{2}+\sin ^{2} z}{1-\cos z}$ about the point $z=0$. What is its radius of convergence?
12. a) Find the Laurent expansion of the function $f(z)=\frac{z^{3}}{z-1}$ about the point 1 .
b) Let $\mathrm{f}(\mathrm{z})=\frac{\mathrm{g}(\mathrm{z})}{(\mathrm{z}-\mathrm{a}) \cdot \mathrm{h}(\mathrm{z})}$, where g and h are analytic functions with $h(a) \neq 0$. Prove that the residue of the function f at $\mathrm{z}=\mathrm{a}$ is $\frac{\mathrm{g}(\mathrm{a})}{\mathrm{h}^{\prime}(\mathrm{a})}$.
c) Define Christoffel symbol of the 1 st kind and 2nd kind. If $(\mathrm{ds})^{2}=(\mathrm{dr})^{2}+\mathrm{r}^{2}(\mathrm{~d} \theta)^{2}+\mathrm{r}^{2} \sin ^{2} \theta(\mathrm{~d} \phi)^{2}$, find the values of
i) [22, 1] and [13, 3]
ii) $\left\{\begin{array}{c}1 \\ 22\end{array}\right\}$ and $\left\{\begin{array}{c}3 \\ 13\end{array}\right\}$

4

PART - II (50 MARKS)

Answer Questions 8 and any three from the rest.

$$
54=20
$$

8. a) Find all values of z such that $\operatorname{Sin} z=2$.
b) If $f(z)$ is a continuous function on \mathbb{C}, what can you say about the continuity of $\overline{\mathrm{f}(\overline{\mathrm{z}})}$? Justify your answer.
c) Suppose that $\mathrm{f}(\mathrm{z})$ is a complex analytic function with the property $f^{\prime}(z)=f(z)$, for all $z \in \mathbb{C}$. Prove that $f(z)=\mathrm{ke}^{\mathrm{z}}$, for some $\mathrm{k} \in \mathbb{C}$.
9. a) Find $f^{\prime}(z)$, where

$$
f(Z)=\left(r^{2} \cos 2 \theta+r \cos \theta\right)+i\left(r^{2} \operatorname{Sin} 2 \theta+r \operatorname{Sin} \theta\right)
$$

b) Let $u(x, y)=y^{3}-3 x^{2} y$. Find the corresponding conjugate harmonic function $v(x, y)$ and construct the analytic function $f(Z)=u(x, y)+i v(x, y)$. $52=10$
6. a) Find Fourier transform of $f(x)$ defined by

$$
\mathrm{f}(\mathrm{x})= \begin{cases}1, & |\mathrm{x}| \leq \mathrm{a} \\ 0, & |\mathrm{x}|>\mathrm{a}\end{cases}
$$

and hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} d x$.
b) Find the inverse Fourier transform of

$$
\begin{equation*}
F(S)=\frac{1}{\left(S^{2}+4\right)\left(S^{2}+9\right)} \tag{3}
\end{equation*}
$$

c) Find z-transform of
i) $e^{1} \sin 2 t$
ii) $\quad \cos \left(\frac{\mathrm{n} \pi}{2}+\frac{\pi}{4}\right)$
7. a) Define covariant and contravariant tensors of order two. A covariant tensor has components $\mathrm{xy}, 2 \mathrm{y}-\mathrm{z}^{2}, \mathrm{xz}$ in rectangular co-ordinates. Find its convariant components in spherical co-ordinates.
b) Show that the kronecker delta is a mixed tensor of order two.

