13. a) Classify the isolated singularities of the following functions:

i)
$$f(z) = \frac{z}{(z+1)(z-2)}$$

ii)
$$f(z) = \frac{\sin z}{e^z - 1}$$
 $2\frac{1}{2} \times 2$

b) Show that the integral $\int_{0}^{\infty} \frac{dx}{x^4 + a^4} = \frac{\pi}{2\sqrt{2}a^3}$ using residues.

5

BACHELOR OF ENGINEERING IN CHEMICAL ENGINEERING EXAMINATION, 2018

(2nd Year, 2nd Semester)

MATHEMATICS - IVB

Time: Three hours

Full Marks: 100

(50 marks for each part)

Use a separate Answer-Script for each part

PART - I (50 MARKS)

Answer any *five* questions

- 1. a) Define the equation of the tangent plane at a given point on a surface. Hence find the equation of the tangent plane at the point (3, -2, 1) to the surface $xy^2 + 2yz = 8$.
 - b) Show that the vector field $\vec{v} = xy(2yz\hat{i} + 2xz\hat{j} + xy\hat{k})$ is conservative. 5+5
- 2. a) Evaluate the line integral $\int_C \vec{v} \cdot d\vec{r}$, where $\vec{v} = x^2 \hat{i} 2y^3 \hat{j} + z\hat{k}$ and C is the straight line path joining (-1, 2, 3) to (2, 3, 5).
 - b) Evaluate the surface integral $\iint_S \vec{F} \cdot \hat{n} dA$, where $\vec{F} = 6z\hat{i} + 6\hat{j} + 3y\hat{k}$ and S is the projection of the plane 2x + 3y + 4z = 12, which is in the first octant. State Green's theorem.

[Turn over

- 3. State Gauss's divergence theorem. Verify the theorem for $\vec{A} = 4x\vec{i} 2y^2\vec{j} + z^2\vec{k}$ taken over the region bounded by $y = x, y = x^2$.
- 4. a) Using Green's theorem evaluate $\oint (xy + y^2)dx + x^2dy$ around the boundary of the region defined by $y = x, y = x^2$.
 - b) Show that $\iiint_V \frac{dV}{r^2} = \iint_S \frac{\vec{r} \cdot \vec{n}}{r^2} ds$, where S is a closed surface. 6+4=10
- 5. a) If f(t) is of exponential order γ as $t \to \infty$ and is piecewise continuous over every finite interval of $t \ge 0$, then show that Laplace transform of f(t) exits for $S > \gamma$, where S is Laplace transform variable.
 - b) Find inverse Laplace transform of

$$\frac{3S+1}{S^2(S^2+4)}e^{-3S}$$

c) Solve by Laplace transform method

$$t\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + ty = \cos t, \text{ given that } y(0) = 1.$$

- 10. a) Prove that the Cauchy-Riemann conditions are necessary for differentiability of a complex function f(z) at a point z_0 .
 - b) Evaluate $\int_{C} \frac{z^3 + 5z 7}{\cos z} dz$, where C denotes the rectangle with vertices $\pm \frac{\pi_i}{8}$, $\frac{\pi(1 \pm i)}{8}$. $5 \times 2 = 10$
- 11. a) Use Cauchy's integral formula to evaluate the integral $\int_C \frac{e^z}{z^2(z+1)^3} dz, \text{ where } C \text{ is the circle } |z| = 2 \text{ in the counterclockwise direction.}$
 - b) Obtain the terms up to z^2 in the Taylor series expansion of $f(z) = \frac{z^2 + \sin^2 z}{1 \cos z}$ about the point z = 0. What is its radius of convergence?
- 12. a) Find the Laurent expansion of the function $f(z) = \frac{z^3}{z-1}$ about the point 1.
 - b) Let $f(z) = \frac{g(z)}{(z-a) \cdot h(z)}$, where g and h are analytic functions with $h(a) \neq 0$. Prove that the residue of the function f at z = a is $\frac{g(a)}{h'(a)}$.

[Turn over

[3]

- c) Define Christoffel symbol of the 1st kind and 2nd kind. If $(ds)^2 = (dr)^2 + r^2(d\theta)^2 + r^2\sin^2\theta(d\phi)^2, \text{ find the values}$ of
 - i) [22, 1] and [13, 3] ii) $\begin{cases} 1 \\ 22 \end{cases}$ and $\begin{cases} 3 \\ 13 \end{cases}$

PART - II (50 MARKS)

Answer Questions 8 and any *three* from the rest.

5x4=20

- 8. a) Find all values of z such that Sinz = 2.
 - b) If f(z) is a continuous function on \mathbb{C} , what can you say about the continuity of $\overline{f(\overline{z})}$? Justify your answer.
 - c) Suppose that f(z) is a complex analytic function with the property f'(z) = f(z), for all $z \in \mathbb{C}$. Prove that $f(z) = ke^z$, for some $k \in \mathbb{C}$.
- 9. a) Find f'(z), where

$$f(Z) = (r^2 \cos 2\theta + r \cos \theta) + i(r^2 \sin 2\theta + r \sin \theta).$$

b) Let $u(x,y) = y^3 - 3x^2y$. Find the corresponding conjugate harmonic function v(x, y) and construct the analytic function f(Z) = u(x,y) + iv(x,y). $5 \times 2 = 10$

5. a) Find Fourier transform of f(x) defined by

$$f(x) = \begin{cases} 1, & |x| \le a \\ 0, & |x| > a \end{cases}$$

and hence evaluate
$$\int_{0}^{\infty} \frac{\sin x}{x} dx.$$

b) Find the inverse Fourier transform of

$$F(S) = \frac{1}{(S^2 + 4)(S^2 + 9)}$$

c) Find z-transform of

i)
$$e^1 \sin 2t$$
 ii) $\cos \left(\frac{n\pi}{2} + \frac{\pi}{4}\right)$ 3

- 7. a) Define covariant and contravariant tensors of order two. A covariant tensor has components xy, $2y z^2$, xz in rectangular co-ordinates. Find its convariant components in spherical co-ordinates.
 - b) Show that the kronecker delta is a mixed tensor of order two.

[Turn over