11. a) Solve the partial differential equation

$$
4 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=3 u, u(0, y)=e^{-5 y}
$$

by the method of separation of variables.
b) Solve $y^{2} p-x y q=x(z-2 y)$ where p, q have usual meanings.
12. a) Express $\mathrm{J}_{5}(\mathrm{x})$ in terms of $\mathrm{J}_{0}(\mathrm{x})$ and $\mathrm{J}_{1}(\mathrm{x})$.
b) Solve

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial x \partial y}-6 \frac{\partial^{2} z}{\partial y^{2}}=y \cos x
$$

Bachelor of Engineering in Chemical Engineering

 Examination, 2018(2nd Year, 1st Semester)

Mathematics - III

Time: Three hours
Full Marks: 100
(50 marks for each Part)
Use separate answer script for each part.
(Unexplained Notations and Symbols have their usual meanings)
PART - I (50 marks)
Answer Q.No. 6 and any three from the rest.

1. a) Suppose V is an inner product space. Define
i) Orthogonality of two vectors v, w of v
ii) Orthogonality of a subset S of V ,
iii) Orthonormality of a subset S of V

Give example in each case.
b) Let $S=\left\{v_{1}, \cdots, v_{k}\right\}$ be an orthogonal set in an inner product space V. What do you mean by (i) Fourier expansion, (ii) Fourier co-efficients of a vector $v \in V$ with respect to S ?
c) Verify that (i) $\{1, \cos n x, \sin n x\}_{n=1}^{\infty}$ is an orthogonal set in $C[-\pi, \pi]$ with usual inner product,
(ii) $\left\{1, \cos \frac{\mathrm{n} \pi \mathrm{x}}{l}, \sin \frac{\mathrm{n} \pi \mathrm{x}}{l}\right\}_{\mathrm{n}=1}^{\infty}$
is an orthogonal set in $\mathrm{C}[-l, l]$ with usual inner product.
5
d) Determine the Fourier co-efficients of a function f in each of the following cases :
i) $\mathrm{f} \in \mathrm{C}[-\pi, \pi]$ and the orthogonal set is
$\{1 . \operatorname{Cos} n x \cdot \sin n x\}_{n=1}^{\infty}$,
ii) $\mathrm{f} \in \mathrm{C}[-l, l](l>0)$ any real number and the orthogonal set is

$$
\begin{equation*}
\left\{1, \operatorname{Cos} \frac{\mathrm{n} \pi \mathrm{x}}{l}, \frac{\operatorname{Sin} \mathrm{n} \pi \mathrm{x}}{l}\right\}_{\mathrm{n}=1}^{\infty} \tag{6}
\end{equation*}
$$

2. a) Let f be a real vlaued function defined on $[0, \pi]$. Define (i) the even extension f_{e} and (ii) the odd extension f_{o} of f to $(-\pi, \pi)$.
b) Prove that f_{e} is an even function and f_{o} is an odd function.
c) Prove that for a function $\mathrm{f} \in \mathrm{C}[0, \pi]$ the Fourier sine series is equal to the fourier series of f_{0} on $[-\pi, \pi]$. 4
d) Find the Fourier cosine series of $f(x)=\sin x$ on $[0, \pi]$.

PART - II

Answer any five questions.

7. Solve
a) $(x y \sin x y+\cos x y) y d x+(x y \sin x y-\cos x y) x d y=0$
b) $y_{2}+9 y=\sec 3 x$ by the method of variation of parameters. $5+5$
8. Solve
a) $D^{2}(D+1)^{2}\left(D^{2}+D+1\right)^{2} y=e^{x}$
b) $(\mathrm{r}+\sin \theta-\cos \theta) \mathrm{dr}+\mathrm{r}(\sin \theta+\cos \theta) \mathrm{d} \theta=0$
9. a) Find the solution in sereis of $\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+x^{2} y=0$ about at $\mathrm{x}=0$.
b) Form the partial differential equation from $f\left(x^{2}+y^{2}, z-x y\right)=0 \quad 5+5$
10. a) Express $2-3 x+4 x^{2}$ in terms of Legendre polynomials.
b) Prove that
$1+\frac{1}{2} \mathrm{P}_{1}(\cos \theta)+\frac{1}{3} \mathrm{P}_{2}(\cos \theta)+\cdots+\cdots=\log \left(\frac{1+\sin \frac{\theta}{2}}{\sin \frac{\theta}{2}}\right)$
b) the system

$$
\begin{aligned}
& \frac{d x}{d t}-6 x+3 y=8 e^{t} \\
& \frac{d y}{d t}-2 x-y=4 e^{t}
\end{aligned}
$$

satisfying $\mathrm{x}(0)=-1, \mathrm{y}(0)=0$
5. a) Find the Fourier Transform of

$$
f(x)=\left\{\begin{array}{cl}
1-x^{2}, & |x| \leq 1 \\
0 & |x|>1
\end{array}\right.
$$

Hence evaluate $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} d x$
b) Using convolution theorem, evaluate the inverse Z-
transform of $\frac{z^{2}}{(z-a)(z-b)}$
c) Find the Z-transform of $e^{t} \sin 2 t$.
6. Evaluate $\mathrm{L}^{-1}\left\{\frac{3}{\mathrm{~s}}\left(\mathrm{e}^{-3 \mathrm{~s}}-\mathrm{e}^{-5 \mathrm{~s}}\right)\right\}$.
e) From the Fourier series of $f(x)=x$ using parseval's equality deduce that $\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{2}}=\frac{\pi^{2}}{6}$.
3. a) Find $L\{f(t)\}$ if $f^{\prime \prime}(t)+3 f^{\prime}(t)+2 f(t)=0, f(0)=1$, $f^{\prime}(0)=2$. 2
b) Evaluate the integral $\int_{0}^{\infty} \frac{\mathrm{e}^{-a t}-\mathrm{e}^{-\mathrm{bt}}}{\mathrm{t}} \mathrm{dt}$ using laplace transform, where a, b are positive real numbers. 3
c) Evaluate
i) $L\left\{\int_{0}^{t} \frac{e^{t} \sin t}{t} d t\right\}$
ii) $\quad \mathrm{L}^{-1}\left\{\frac{1}{\mathrm{~s}^{3}\left(\mathrm{~s}^{2}+1\right)}\right\}$
d) Using convolution theorem evaluate

$$
\begin{equation*}
\mathrm{L}^{-1}\left\{\frac{1}{(\mathrm{~s}+1)(\mathrm{s}+9)^{2}}\right\} \tag{3}
\end{equation*}
$$

4. Using Laplace transform method solve
a) $\frac{d^{3} y}{d t^{3}}+4 \frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+2 y=10 \cos t$,

$$
y(0)=0, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=3
$$

