8. (a) Solve : $x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}+2 y=10\left(x+\frac{1}{x}\right)$
(b) Find integrating factor of the equation $\left(x^{4} y^{2}-y\right) d x$ $+\left(x^{2} y^{4}-x\right) d y=0$ and hence solve it. $\quad 8+7$
9. (a) A lightly stretched string with fixed end points $x=0$ and $x=e$ is initially in a position given by $y(x, 0)=y_{0} \sin ^{3}\left(\frac{\pi x}{e}\right)$. If it is released from rest from this position, find the displacement y at any time t.
(b) A rod of length e with insulated sides is initially at a uniform temperature u_{0}. Its ends are suddenly cooled to $0^{\circ} \mathrm{C}$ and kept at that temperature. Find the temperature function $u(x, t)$.
$8+7$
10. (a) Let $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$ denote the Legendre polynomial of degree n. Prove that

$$
x^{4}=\frac{1}{5} P_{0}(x)+\frac{4}{7} P_{2}(x)+\frac{8}{35} P_{4}(x)
$$

(b) Find the complete integral of the $P D E z^{2}=p q x y . \quad 7+8$

BACHELOR OF ENGINEERING CHEMICAL EXAMINATION, 2018

(2nd Year, 1st Semester, Supplementary, Old Syllabus)

Mathematics - III B

Time : Three hours
Full Marks : 100

Use a separate Answer-Script for each part.

PART - I (40 marks)

Answer q.no. 5 and any three from the rest.
Symbols/Notations have their usual meaning.

1. (a) Suppose f is a Riemann integrable function on $[-\pi, \pi]$. What is meant by the Fourier series of f on $[-\pi, \pi]$?
(b) Find the Fourier series of f defined by

$$
\begin{aligned}
f(x) & =0,-\pi \leq x \leq 0 \\
& =\sin x \quad 0 \leq x \leq \pi .
\end{aligned}
$$

Hence deduce that

$$
\begin{equation*}
\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots . .=\frac{1}{2} \tag{8+2}
\end{equation*}
$$

2. Obtain the Fourier series for

$$
f(x)=\left\{\begin{array}{l}
x,-1<x \leq 0 \\
x+2,0<x<1
\end{array}\right.
$$

Hence deduce the sum of
$1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots .$.
3. Discuss the convergence of the series
(i) $\sum_{n=1}^{\infty} \sqrt{\frac{n+1}{2 n^{3}+1}}$
(ii) $\sum_{n=1}^{\infty}\left(\sqrt[3]{1+n^{3}}-n\right)$
$4+8$
4. (a) Prove that if the series $\sum_{n=1}^{\infty} a_{n}$ converges then $\lim _{n \rightarrow \infty} a_{n}=0$. Give an example to illustrate that the converse is not true.
(b) State and prove alternating series test.
5. What do we usually mean by
(a) Fourier sine series,
(b) Fourier cosine series of a Riemann integrable function over $[0, \pi]$? Find Fourier co-efficients in each case.
6. (a) Solve the equation $\frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+3 y=0$ near the ordinary point $\mathrm{x}=0$.
(b) Show that Bessel functions of first kind of order zero can be put in the form

$$
J_{0}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n!)^{2}}\left(\frac{x}{2}\right)^{2 n}
$$

7. (a) Form the PDE by eliminating the arbitrary functions from
(i) $z=f\left(\frac{x y}{z}\right)$
(ii) $f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$
(b) Find the general integrals of the following linear PDE

$$
\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) z=z^{2}-x y
$$

