BACHELOR OF ENGINEERING CHEMICAL EXAMINATION, 2018

(2nd Year, 1st Semester, Supplementary)
Mathematics - III

Time : Three hours
Full Marks : 100

Use a separate Answer-Script for each part.

PART - I (40 marks)

Answer q.no. 5 and any three from the rest.
Symbols/Notations have their usual meaning.

1. (a) Suppose f is a Riemann integrable function on $[-\pi, \pi]$. What is meant by the Fourier series of f on $[-\pi, \pi]$?
(b) Find the Fourier series of f defined by

$$
\begin{aligned}
f(x) & =0,-\pi \leq x \leq 0 \\
& =\sin x, 0 \leq x \leq \pi .
\end{aligned}
$$

Hence deduce that

$$
\begin{equation*}
\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots . .=\frac{1}{2} \tag{8+2}
\end{equation*}
$$

2. (a) Find the laplace transform of

$$
2^{t}+\frac{\cos 2 t+\cos 3 t}{t}+t \sin t
$$

(b) (i) Find the inverse Laplace transform of

$$
\frac{1}{\left(s^{2}+a^{2}\right)^{z}}(\text { ais } a \text { constant })
$$

(ii) Using convolution theorem find the inverse Laplace transform of $\frac{s}{\left(s^{2}+1\right)\left(s^{2}+4\right)} .4+(4+4)$
3. (a) Use the method of Laplace transform to solve
(i) $t \frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+t y=\cos t$ given that $\mathrm{y}(0)=1$.
(ii) $\frac{d^{2} y}{d t^{2}}+9 y=\cos 2 t$ given that $\mathrm{y}(0)=1, y\left(\frac{\pi}{2}\right)=1$.
(b) Find the Fourier cosine transform of

$$
f(x)=\left\{\begin{array}{ccc}
x & \text { for } & 0<x<1 \tag{4+4}\\
2-x & \text { for } & 1<x<2 \\
0 & \text { for } & x>2
\end{array}\right.
$$

(b) Find the solution of the equation $\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+4 x=3 \sin 2 t$ which will satisfy $\mathrm{x}=0$, $\frac{d x}{d t}=0$ at $\mathrm{t}=0$.
(c) Solve by the method variation of parameters the equation $\frac{d^{2} y}{d x^{2}}+9 y=\sec 3 x . \quad 5+5+5$
11. (a) Solve $\left(e^{x}+1\right) y d y=\left(y^{2}+1\right) e^{x} d x$, given $y=0$ when $\mathrm{x}=0$.
(b) Show that all circles of radius r are represented by the differential equation

$$
\left(1+\left(\frac{d y}{d x}\right)^{2}\right)^{3}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}
$$

(c) Solve the equation $\left(y^{2} e^{x}+2 x y\right) d x-x^{2} d y=0$.
4. (a) $\mathrm{P}_{0}(\mathrm{x})=1, \mathrm{P}_{1}(\mathrm{x})=\mathrm{x}$ and $P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$ are orthogonal on $[-1,1]$ with respect to the usual inner product.
7. (a) Form the PDE by eliminating the arbitrary functions from
(i) $z=f\left(\frac{x y}{z}\right)$
(ii) $f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$
(b) Find the general integrals of the following linear PDE

$$
\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y
$$

8. (a) Solve : $x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}+2 y=10\left(x+\frac{1}{x}\right)$
(b) Find an integrating factor of the equation $\left(x^{4} y^{2}-y\right) d x$ $+\left(x^{2} y^{4}-x\right) d y=0$ and hence solve it. $8+7$
9. (a) Find the complete integral of the $\operatorname{PDE~z}{ }^{2}=p q x y$.
(b) Find the solution of the two dimensional Laplace equation by the method of separation of variables.
10. (a) Let $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$ denote the Legendre polynomial of degree n. Prove that

$$
x^{4}=\frac{1}{5} P_{0}(x)+\frac{4}{7} P_{2}(x)+\frac{8}{35} P_{4}(x)
$$

Find the constant $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}$ such that $\mathrm{C}_{0} \mathrm{P}_{0}(\mathrm{x})+$ $\mathrm{C}_{1} \mathrm{P}_{1}(\mathrm{x})+\mathrm{C}_{2} \mathrm{P}_{2}(\mathrm{x})$ is the Fourier expansion of f on $[-1,1]$.
(b) Find the inverse z-transform of

$$
\frac{2 z^{2}+3 z}{(z+2)(z-4)}
$$

5. What do we usually mean by
(i) Fourier sine series,
(ii) Fourier cosine series of a Riemann integrable function over $[0, \pi]$? Find Fourier co-efficients in each case.

PART - II (60 marks)

Answer any four questions.
6. (a) Solve the equation $\frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+3 y=0$ near the ordinary point $\mathrm{x}=0$.
(b) Show that Bessel functions of first kind of order zero can be put in the form

$$
J_{0}(x)=\sum_{x=0}^{\infty} \frac{(-1)^{n}}{(n!)^{2}}\left(\frac{x}{2}\right)^{2 n}
$$

