
Ex./CHE/MATH/T/215/2018(S)

BACHELOR  OF  ENGINEERING  CHEMICAL  EXAMINATION, 2018

(2nd Year, 1st Semester, Supplementary)

Mathematics - III

Time : Three hours Full Marks : 100

Use a separate Answer-Script for each part.

PART - I (40 marks)

Answer q.no. 5 and any three from the rest.

Symbols/Notations have their usual meaning.

1. (a) Suppose f  is a Riemann integrable function on
[–  ,]. What is meant by the Fourier series of  f on
[–  ,] ?

(b) Find the Fourier series of f defined by

f(x) = 0 , –  x  0

       = sin x, 0  x .

Hence deduce that
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2. (a) Find the laplace transform of
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(b) (i) Find the inverse Laplace transform of
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(ii) Using convolution theorem find the inverse
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3. (a) Use the method of Laplace transform to solve
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(b) Find the Fourier cosine transform of
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4. (a) P
0
(x) = 1, P
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(x) = x and 2
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P x x   are

orthogonal on [–1,1] with respect to the usual inner
product.

(b) Find the solution of the equation
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2 4 4 3sin 2
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    which will satisfy x = 0,

0
dx
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  at t =0.

(c) Solve by the method variation of parameters the

equation  
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11. (a) Solve (ex+1)y dy = (y2+1)ex  dx, given y = 0 when
x = 0.

(b) Show that all circles of radius r are represented by
the differential equation
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(c) Solve the equation (y2 ex + 2xy)dx – x2 dy = 0.
5+5+5
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Find the constant C
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(x) is the Fourier expansion of  f  on

[–1,1].

(b) Find the inverse z-transform of
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5. What do we usually mean by

(i) Fourier sine series,

(ii) Fourier cosine series of a Riemann integrable
function over [0,] ? Find Fourier co-efficients in
each case. 4

PART - II (60 marks)

Answer any four questions.

6. (a) Solve the equation 
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    near the

ordinary point x = 0.

(b) Show that Bessel functions of first kind of order zero
can be put in the form
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7. (a) Form the PDE by eliminating the arbitrary functions
from

(i) 
xy
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z
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        (ii) f (x+y+z, x2+ y2+ z2) =0

(b) Find the general integrals of the following linear PDE

       (x2 – yz)p + (y2 – zx) q = z2 – xy (4+5)+6

8. (a) Solve : 
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(b) Find an integrating factor of the equation  (x4y2 – y)dx
+ (x2y4 – x)dy = 0 and hence solve it. 8+7

9. (a) Find the complete integral of the PDE z2 = pqxy.

(b) Find the solution of the two dimensional
Laplace equation by the method of separation of
variables. 6+9

10. (a) Let P
n
(x) denote the Legendre polynomial of degree

n. Prove that
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