B. Construction Engineering 4th Year 2nd Semester Examination 2019 STRUCTURAL DYNAMICS & EARTHQUAKE ENGINEERING

Assume any relevant data not provided, IS: 1893(Pt-I), 2016 is allowed in the Hall

Time: Three hours

Answer any Four Questions

Full Marks: 100

- a) Describe D' Alembert's principle and derive the dynamic equation of equilibrium of a SDOF structural system.
 - b) Derive the free vibration solution of a SDOF system with initial condition. 12[CO3]
 - c) Discuss the significance of Free Vibration Analysis and Natural Frequency 7[CO2]
- a) What do you mean by Critical Damping? Deduce Logarithmic Decrement Method for evaluating damping.
 10 [CO3]
 - b) Calculate natural period, circular frequency of the cantilever beam spanning 0.9 m. The member is made of mild steel round section of diameter 50 mm and subjected to a load of 30 KN at the free end as shown in Fig.1. Neglect the mass of the beam. 6

- c) Find also the damped natural frequency of the system with the spring at the end if the critical damping ratio (ξ) is 2 %
- d) If the cantilever is made of square section mild steel of same cross sectional area calculate the change in time period.
- e) If the same cantilever is made with 50 mm diameter round bar made of Aluminium with $E = 6.9 \times 10^4$ MPa, $\xi = 2.5\%$, calculate the change in frequency of the beam. 3 [CO2]
- a) What do you mean by transient phase with respect to force vibration? What will happen in case of an absolute un-damped system?

 4[CO4]
 - b) Derive the solution for Steady State Motion of the SDOF system under Forced Vibration of $M\ddot{x} + C\dot{x} + Kx = F_f \sin w_f t$.
 - c) Deduce the expression of Dynamic Load Factor from the above solution 5[CO4]
 - d) Evaluate the D.L.F for tuning factor 0. 98 and damping ratio is 5 %. 4 [CO4]

a) What do you mean by Magnitude & Intensity of Earthquakes?

5 [CO5]

b) Compare between Near Field & Far Field effects of Earthquake

6 [CO5]

c) Discuss on favourable structural elevation for seismic considerations.

6 [CO5]

- d) Compare and discuss Static coefficient Method and Response Spectrum Method for Dynamic Analysis of structures.

 8[CO5]
- 5 A Four Storied RCC frame office building located in Guwahati, Assam. The plan of the building is shown below in Fig 2.

Fig. 2

The soil condition is soft and supported on Raft foundation. The RC frames are in-filled with brick-masonry. The lump weight due to DL is 12 KN/m² on floors and 10.5 KN/m² on roof. The Live load on floors is 3 KN/m². Determine the Design seismic Force of the frame 3/P-Q-R-S by **dynamic analysis** method. The free vibration analysis dynamic properties are given below.

Natural Period (S)	Mode 1	Mode 2	Mode 3
	1.50	0.965	0.334
Floor	Mode Shape		
Roof	1.000	1.000	0.694
3 rd Floor	0.787	0.404	-0.783
2 nd Floor	0.661	-0.603	- 0.496
1 st Floor	0.359	- 0.816	1.000