BACHELOR OF ENGINEERING IN CHEMICAL ENGINEERING EXAMINATION, 2018

(1st Year, 2nd Semester)

PHYSICAL CHEMISTRY

Time: Three hours Full Marks: 100

(50 marks for each Group)
Use separate answer script for each Group

GROUP - A

- 1 a) A cell contains decinormal aqueous KCl solution which has an equivalent conductance of 129 ohm 1 cm²eq⁻¹. The measured resistance was 28.44 ohm. When the same cell was filled with 0.5 N aqueous NaOH solution, the resistance was 31.6 ohm. Find the equivalent conductance of the aqueous NaOH solution.
 - b) "In aqueous medium, ionic conductance values of H⁺ and OH⁻ ions are remarkably higher than all other ions" Justify or criticize.
 - c) Describe a method of determination of transport number in electrolytes. "In exceptional cases transport number may be negative" justify or criticize.

$$6+4+(5+3)$$

- 2 a) 10 mL 0.2 N NaOH was mixed with 10 mL of 0.2 N acetic acid. The pH of the resulting solution was determined not to be equal to 7.0. Explain (Given, at the experimental temperature K_a of acetic acid is 1.75 X 10⁻⁵).
- For the reaction AB + CD → AD(↓) + BC, predict the variation of conductance of a solution of AB when CD solution is gradually added to it.
 (Given: The medium is water. AB, CD and BC are water soluble salts and AD is water insoluble)
- c) Explain and draw the variation of equivalent conductance of an aqueous solution of NH₄OH with a variation of concentration of the solution.

$$6 + 5 + 4$$

- 3 a) Describe saturated quinhydrone electrode. How can we determine the pH of a solution using this electrode?
- b) Giving an example describe the characteristics of a standard cell.
- c) From thermodynamics, establish that a real cell must have a positive potential.
- d) Write down the individual electrode reactions and also the total cell reaction for the electrochemical cell: Zn | Zn⁺⁺ H⁺ H₂ (g), Pt

$$(4+3)+4+3+3$$

Chemical Engineering – First Year – Second Semester – New Syllabus – Regular Examination – 2018

Physical Chemistry

Group - B

- 1. a) Define surface tension. Give its unit.
- b) Explain capillary action.
- c) Calculate the height to which water will rise in a glass capillary if the radius of the tube is 0.02 cm. The surface tension of water is 72.8 dynes cm⁻¹.
- d) Deduce Laplace equation of excess pressure acting a bubble.

3+4+3+3

- 2. a) Write down Eotvos equation. At what temperature the surface tension will be zero?
- b) How does surface tension of water vary when a surfactant is dissolved?
- c) What is CMC?
- d) Calculate the energy required to disperse one spherical water drop of radius 3.0 mm into droplets of radius 3.0x10⁻³ mm. Given surface tension of water is 72.8 dynes cm⁻¹.

3+4+2+4

- 3. a) What is zeta potential?
- b) What is coagulation? State Hardy-Schulze rule for power of coagulation. Arrange the following in increasing order of flocculation value for a positively charged sols. Mg Cl₂, Al₂(SO₄)₃, Na₃PO₄.
- c) What is Gold Number?

2+5+2

- 4. a) Distinguish between physical adsorption and chemisorptions.
- b) How can you show Freundlich adsorption isotherm is aspecial case of Langmuir isotherm?
- c) Volume of nitrogen gas (measured at S.T.P.) required to cover a sample of silica gel with unimolecular layer is 129 cm³ g⁻¹. Calculate surface area per gram of silica gel if each nitrogen molecule occupies 16.2x10⁻²⁰ m².
- d) What do you understand by positive and negative adsorption?

3+2+2+2

5. What are nanodispersions? How does a nanodispersion get stability? What are the applications of nanodispersions?

2+2+2