11. a) Prove that eigen values of a real symmetric matrix is real.
b) Show that $\left[\begin{array}{ccc}1 & 2+i & -1 \\ 2-i & 2 & i \\ -1 & -\mathrm{i} & 0\end{array}\right]$ is a Hermitian matrix.
c) If a line makes angles $\alpha, \beta, \gamma, \delta$ with the four diagonals of a cube, then prove that

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3} \quad 3+2+5
$$

12. a) Find the shortest distance between two skew lines
$\frac{\mathrm{x}-\mathrm{x}_{1}}{l_{1}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~m}_{1}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{n}_{1}}$ and $\frac{\mathrm{x}-\mathrm{x}_{2}}{l_{2}}=\frac{\mathrm{y}-\mathrm{y}_{2}}{\mathrm{~m}_{2}}=\frac{\mathrm{z}-\mathrm{z}_{2}}{\mathrm{n}_{2}}$
b) Show that the equation of the plane through the points $(2,3,-3),(1,1,-2),(-1,1,4)$ is $3 x-y+z=0 \quad 5+5$
13. a) Find the equation of the sphere described on the join of points $\mathrm{P}(2,-3,4)$ and $\mathrm{Q}(-5,6,7)$ as diameter.
b) Find the equation of the plane passing through the points $(1,1,2)$ and $(2,4,3)$ and perpendicular to the plane $x-3 y+7 z+5=0$ $5+5$
14. a) Show that the equation of the plane passes through the point $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ and perpendicular to the straight line OP , where O is the origin, is $a x+b y+c z=a^{2}+b^{2}+c^{2}$.
b) Show that the points $(3,9,4),(4,5,1),(-4,4,4)$ and $(0,-1,-1)$ are co-planer.

Bachelor of Engineering in Chemical Engineering

Examination, 2018

(1st Year, 2nd Semester)

Mathematics - II

Time: Three hours
Full Marks: 100
(50 marks for each group)
Symbols and Notations have their usual meaning.

GROUP - A (50 MARKS)

(Answer any five questions

and bold letters indicate the vector quantity)

1. a) Find a unit vector \mathbf{u} parallel to the resultant \mathbf{R} of vectors $\mathbf{r}_{1}=2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}$ and $\mathbf{r}_{2}=-\mathbf{j}+6 \mathbf{k}$.
b) Suppose $\mathbf{A}=\mathbf{i}+2 \mathbf{j}-3 \mathbf{k}, \quad \mathbf{B}=5 \mathbf{i}+\mathbf{j}, \quad \mathbf{C}=3 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$, Find A. $(\mathbf{B} \times \mathbf{C})$.
c) Show that the vector $\mathbf{V}=\left(y^{2}+z^{3}\right) \mathbf{i}+(2 x y-5 z) \mathbf{j}$ $+\left(3 x^{2}-5 y\right) \mathbf{k}$ irrotational.
d) Also show that \mathbf{V} can be expressed as the gradient of a scalar function. $2+2+2+4$
2. a) A particle moves along the curve $x=2 t^{2}, y=t^{2}-4 t$, $z=-t-5$. Find the components of its velocity and acceleration at $\mathrm{t}=1$ in the direction of $\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$.
b) $\varphi(x, y, z)=x^{2} y z-4 x y z^{2}$. Find the directional derivative of φ at the point $(1,3,1)$ in the direction $2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}$.
c) Suppose $\mathbf{A}=x^{2} z^{2} \mathbf{i}-2 y^{2} z^{2} \mathbf{j}+x y^{2} z \mathbf{k}$. Find curl curl \mathbf{A} and $\operatorname{div} \operatorname{curl} \mathbf{A}$.
$3+3+4$
3. a) Prove that $\nabla^{2}\left(\frac{1}{r}\right)=0$.
b) Suppose $\quad \mathbf{F}=\mathrm{yi}+(\mathrm{x}-2 \mathrm{xz}) \mathbf{j}-\mathrm{xyk}$. Evaluate $\iint(\nabla \times \mathbf{F}) \cdot \mathbf{n}$ ds over the surface S where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ above the $x y-$ plane. $3+7$
4. Prove that a Necessary and Sufficient Condition that $\oint \mathbf{F} \cdot \mathbf{d r}=\mathbf{0}$ over C for every closed path C is that $\nabla \times \mathbf{F}=\mathbf{0}$ identically.
5. a) Evaluate by Green's Theorem,
$\oint[(\cos x \sin y-x y) d x+\sin x \cos y d y]$ over C where C is the circle $x^{2}+y^{2}=1$.
b) State The Divergence Theorem of Gauss.
c) Prove $\iiint_{V} \operatorname{divndv}=S$ by Gauss Divergence Theorem, where V is a region bounded by surface S . $6+2+2$
b) Show that the following equations are consistent and solve them.

$$
\begin{gather*}
x-3 y-8 z+10=0 \\
3 x+y-4 z=0 \\
2 x+5 y+6 z-13=0
\end{gather*}
$$

10. a) State Cayley Hamilton theorem. Using this theorem show that the matrix A satisfies the equation $A^{3}-23 A-40 I=0$. Hence find A^{-1} where,

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & -2 & 1 \\
4 & 2 & 1
\end{array}\right]
$$

b) Show that

$$
\left|\begin{array}{ccc}
-\mathrm{bc} & \mathrm{bc}+\mathrm{b}^{2} & \mathrm{bc}+\mathrm{c}^{2} \\
\mathrm{ca}+\mathrm{a}^{2} & -\mathrm{ca} & \mathrm{bc}+\mathrm{c}^{2} \\
\mathrm{ab}+\mathrm{a}^{2} & \mathrm{ab}+\mathrm{b}^{2} & -\mathrm{ab}
\end{array}\right|=(\mathrm{bc}+\mathrm{ca}+\mathrm{ab})^{3}
$$

c) Determine the eigen values of the matrix

$$
\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & 1 \\
0 & 1 & 0
\end{array}\right] .
$$

GROUP - B

(Answer any five questions.)

8. a) Show that the square matrix A can be expressed as the sum of a symmetric and a skew symmetric matrix, where

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
5 & 6 & 7
\end{array}\right]
$$

b) For what value of K, the matrix

$$
\left[\begin{array}{ccc}
3-\mathrm{k} & 2 & 2 \\
2 & 4-\mathrm{k} & 1 \\
-2 & -4 & -1-\mathrm{k}
\end{array}\right] \text { is singular? }
$$

c) Prove that $\left[\begin{array}{cc}\frac{1+\mathrm{i}}{2} & \frac{-1+\mathrm{i}}{2} \\ \frac{1+\mathrm{i}}{2} & \frac{1-\mathrm{i}}{2}\end{array}\right]$ is a unitary matrix. $4+3+3$
9. a) Find the rank of the matrix $\left[\begin{array}{cccc}2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7\end{array}\right] \begin{aligned} & \text { using } \\ & \text { Normal } \\ & \text { Form. }\end{aligned}$
6. a) Evaluate $\oint \mathbf{F} \cdot \mathbf{d r}$ over C by Stokes' theorem, where $\mathbf{F}=\mathrm{y}^{2} \mathbf{i}+\mathrm{x}^{2} \mathbf{j}-(\mathrm{x}+\mathrm{z}) \mathbf{k}$ and C is the boundary of the triangle with vertices $(0,0,0),(1,0,0)$ and $(1,1,0)$.
b) Evaluate $\iint \mathbf{F} \cdot \mathbf{d r}$ over S where $\mathbf{F}=\mathrm{xi}-\mathrm{yj}+\left(\mathrm{z}^{2}-1\right) \mathbf{k}$ and S is the closed surface bounded by the planes $\mathrm{z}=0$, $\mathrm{z}=1$ and the cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}=4$ by the application of Gauss Divergence Theorem.
7. If φ and ψ are scalar point functions which together with their derivative in any direction are uniform and continuous within the region V bounded by a closed surface S . Then prove that
a) $\iiint_{V}\left[\varphi \nabla^{2} \psi+\nabla \varphi \cdot \nabla \psi\right] d v=\iint_{S}(\varphi \nabla \psi) \cdot \mathbf{d s}$
b) $\iiint_{V}\left[\varphi \nabla^{2} \psi-\psi \nabla^{2} \varphi\right] \mathrm{dv}=\iint_{\mathrm{S}}(\varphi \nabla \psi-\psi \nabla \varphi) \cdot \mathbf{d s}$

