Ref No. Ex/CHE/CHEM/T/112/2018(S) (OLD) ## B.E. Chemical Engineering 1st Year, 1st semester Supplementary Examination 2018 (OLD) SUBJECT: Inorganic Chemistry Time 3 hours Full Marks: 100 ## Answer any five questions | 1 (a) Write the canonical forms of N ₃ and N ₂ O ₅ and account their stability. | [4] | |--|-----------------| | (b) Trimethyl amine and trisilyl amine have nearly similar formula but they have structures. Suggest a reason. | differer
[4] | | ii) Sn(II) is a reducing agent, but Pb(IV) is an oxidizing agent, although both Sn and Pb belor same group of the periodic table. Justify | ng to
[4] | | (d) Why heavy metals are toxic? Write a note on 'Mercury toxicity'. | [4] | | (e) Write the structure and bonding of B ₃ N ₃ H ₆ | [4] | | | | | 2 (a) KHF ₂ exists but KHCl ₂ , KHBr ₂ , and KHI ₂ doesn't exist. Suggest a reason. | [4] | | (b) CCl ₄ does not undergoes hydrolysis whereas SiCl ₄ readily undergoes hydrolysis. Justify. | [4] | | (c) Write a short note on pesticides | [4] | | (d) Find the oxidation state of the central metal ion and spin only magnetic moment (μ_s) of the following complexes [8] | | | $i) \ [Fe(CN)_6]^{3-} \ ii) \ Ni(CO)_4 \ iii) \ [CoCl_4]^{2-} \ iv) \ [Co(H_2O)_6]^{2+} \ v) \ Ni(DMG)_2 \ vi) \ Cu(OAc)_2.H_2O(CO)_2 Cu(OAc)_2 \ vi) \ vi) \ Cu(OAc)_2 vi) \ Cu(OAc)_2 \ vi) \ vi) \ Cu(OAc)_2 \ vi) \ vi) \ Cu(OAc)_2 \ vi) v$ | 9 | | 3.a) What do you mean by conjugate acid base pair? Give example. [5] b) Why second acid dissociation constant of a dibasic acid is always small than first dissociation constant? [5] c) B-F bond distance in BF₃ is shorter than B-F bond distance in H₃N→BF₃ adduct. Is statement true? Give explanation in support of your answer. [5] d) Define hard acids and hard bases. Give examples. [5] | acid
this | [Turn over | 4. a) How can you calculate pH of a very dilute solution of a strong acid? What is the pl (M) HCl solution? b) What is the relation between hydrolysis constant and acid dissociation constant? Calculate of a solution containing 25 mL of 0.01 (M) actetic acid and 25 mL of 0.01 (M) KO acetic acid is 1.75 × 10⁻⁵. c) Derive the expression of pH when a salt of weak acid and weak base is hydrolyzed. d) Arrange the following in their increasing acidity order and explain elaborately: HF, HCl, HBr and HI | [5]
culate pH | |---|------------------| | 5. (a) Draw the Walsh Diagram for Linear and bent H_3 system and hence commen structure of H_3^+ and H_3^- . | t on the | | (b) Draw the MO energy level diagram for BeH ₂ . | [5] | | (c) Draw the MO energy level diagram for CO and hence explain that Metal-Carbon stabilized by σ - π synergic effect in transition metal carbonyls. | bond is [5] | | (d) Comment on the structures and shapes of the following chemical species. Drastructures. Write the hybridization of the central atoms | aw their
[5] | | XeF ₄ , SF ₄ , ClF ₃ , NCl ₃ , XeF ₂ | | | 6. (a) Draw molecular orbital energy level diagram of HF and hence comment on its pola
(b) He ₂ does not exist. Comment. | rity. [5] | | (c) Draw the MO energy level diagram for B ₂ and hence explain its magnetism. | [5] | | (d) Show that Bohr's 2 nd postulate involving the quantization of the angular momentum derived from de Broglie's hypothesis. Draw the shapes of Bohr-Summerfield orbits for label them. | n can be |