## BACHELOR OFARCHITECTURE ENGINEERINGEXAMINATION, 2018

(1st Year, 2nd Semester)
Mathematics - II

Time : Three hours
Full Marks : 100

Use a separate Answer-Script for each part.
PART - I (40 marks)
Answer any four questions.

1. (a) Prove that

$$
\left|\begin{array}{ccc}
(b+c)^{2} & a^{2} & a^{2} \\
b^{2} & (c+a)^{2} & b^{2} \\
c^{2} & c^{2} & (a+b)^{2}
\end{array}\right|=2 a b c(a+b+c)^{3}
$$

(b) Solve the equations

$$
\left|\begin{array}{ccc}
x+2 & 2 x+3 & 3 x+4 \\
2 x+3 & 3 x+4 & 4 x+5 \\
3 x+5 & 5 x+8 & 10 x+17
\end{array}\right|=0
$$

2. (a) Solve by Cramer's rule

$$
3 x+y+2 z=3 ; 2 x-3 y-z=-3 ; \quad x+2 y+z=4
$$

(b) Express

$$
\left|\begin{array}{ccc}
\left(2 b c-a^{2}\right) & c^{2} & b^{2} \\
c^{2} & \left(2 c a-b^{2}\right) & a^{2} \\
b^{2} & a^{2} & \left(2 a b-c^{2}\right)
\end{array}\right|
$$

as a square of a determinant and hence find its value.
3. (a) If $A+B=\left[\begin{array}{cc}1 & -1 \\ 3 & 0\end{array}\right]$ and $A-B=\left[\begin{array}{ll}3 & 1 \\ 1 & A\end{array}\right]$, Calculate the product AB .
(b) Prove that $A^{3}-4 A^{2}-3 A+11 I=0$, where

$$
A=\left[\begin{array}{ccc}
1 & 3 & 2 \\
2 & 0 & -1 \\
1 & 2 & 3
\end{array}\right]
$$

4. (a) Find the inverse of $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4\end{array}\right]$ and hence show that $\mathrm{AA}^{-1}=\mathrm{I}$.
5. (a) Find the point where the straight line joining the points $(2,-3,1)$ and $(3,-4,-5)$ cuts the plane $3 \mathrm{x}+\mathrm{y}+\mathrm{z}=8$.
(b) Find the equation of the straight line through the point $(\alpha, \beta, \gamma)$ at right angles to the st.lines $\frac{x}{l_{1}}=\frac{y}{m_{1}}=\frac{z}{n_{1}}$ and $\frac{x}{l_{2}}=\frac{y}{m_{2}}=\frac{z}{n_{2}}$.
6. Find the equation of the straight line in symmetrical form whose general equation is given by $x-2 y+3 z=4$, $2 x-3 y+4 z=5$. Also find its direction cosines.
7. (a) Find the image of the point $(-3,8,4)$ in the plane $6 x-3 y-2 z+1=0$.
(b) Find the condition that the straight line $\frac{x}{\alpha}=\frac{y}{\beta}=\frac{z}{\gamma}$; $\frac{x}{a \alpha}=\frac{y}{b \beta}=\frac{z}{c \gamma}$ and $\frac{x}{l}=\frac{y}{m}=\frac{z}{n}$ will lie on a plane.
8. Find the shortest distance between the straight lines $\frac{x-3}{-3}=\frac{y-8}{1}=\frac{z-3}{-1}$ and $\frac{x+3}{3}=\frac{y+7}{-2}=\frac{z-6}{-4}$. Also find the equation of the line of shortest distance. 10
9. (a) Determine the coordinate of the centre and lengths of the semi axes of the ellipse $9 x^{2}+4 y^{2}+18 x-16 y=11$.
(b) Find the equation of the hyperbola whose eccentricity is $\sqrt{3}$, one of whose foci is $(3,2)$ and corresponding directrix is $2 \mathrm{x}+\mathrm{y}=1$.
$5+5$
10. (a) Find the asymptotes of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
(b) If the equation of one asymptotes of the hyperbola $9 x^{2}-16 y^{2}+90 x+32 y=367$ be $3 x-4 y+19=0$, then find the other asymptotes.
$4+6$
11. (a) Find the ratio in which the line segment joining the points $(2,-3,5)$ and $(7,1,3)$ is divided by the xy-plane.
(b) Find the projection of the line segment joining the points $(3,3,5)$ and $(5,4,3)$ on the straight line joining the points $(2,-1,4)$ and $(0,1,5)$.
$5+5$
12. (a) Find the equation of the plane which passes through the point $(2,1,-1)$ and is orthogonal to each of the planes $x-y+z=1$ and $3 x+4 y-2 z=0$.
(b) Find the equation of the plane passing through the intersection of the planes $2 x+y+2 z=9$ and $4 x-5 y-4 z=1$ and the point $(3,2,-1)$.
(b) Find the rank of

$$
\left[\begin{array}{cccc}
0 & 1 & -3 & -1 \\
1 & 0 & 1 & 1 \\
3 & 1 & 0 & 2 \\
1 & 1 & -2 & 0
\end{array}\right]
$$

5. (a) Write the 'Rouche's theorem' related to consistency and inconsistency of system of linear equation.
(b) Investigate the values $a$ and $b$ for which the equations $x+a y+z=3, x+2 y+2 z=b, x+5 y+3 z=9$ are consistent. When these equations have a unique solution. $2+8$

PART - II (60 marks)
Answer any six questions.
6. (a) Find the tangent to the curve

$$
\frac{x^{2}}{4}-\frac{y^{2}}{9}=1 a t(a, b)
$$

(b) Find the curvature of the curve $x=a(t-\sin t)$, $y=a(1-\cos t)$ at $t=\pi . \quad 5+5$

