BACHELOR OF ARCHITECTURE EXAMINATION, 2018
(1st Year, 1st Semester)
Mathematics-I
Time : Three hours
Full Marks : 100

Answer any ten questions.
All questions carry equal marks. (Symbols/notations have their usual meaning)

1. (a) Find the expression for nth order derivative of the function $(\operatorname{Sin} x)$.
(b) State Leibnitz's theorem.
(c) If $x=\tan (\log y)$, then find the value of $\left(1+x^{2}\right) y_{n+1}$ $+(2 n x-1) y_{n}+n(n-1) y_{n-1} . \quad 3+2+5=10$
2. (a) State Rolle's Mean Value Theorem.
(b) Give an example to verify : "If differentiability fails at an interior point of the interval, the conclusion of Rolle's theorem may not hold."
(c) Suppose $f(x)$ is continuous and differentiable on $[6,15]$, such that $f(6)=-2$ and $f^{\prime}(x) \leq 10$ for all $x t$ $(6,15)$. What is the largest possible value of $f(15)$.
$2+3+5=10$
3. (a) Find first 3 non zero terms of Taylor's expansion for the function $\sin \pi x$ centred at $x=\frac{1}{2}$. Hence approximate the value of $\operatorname{Sin}\left(\frac{\pi}{2}+\frac{\pi}{10}\right)$. $4+2$
(b) Find Maclaurin's series for $\operatorname{Sin}^{2} \mathrm{x}$.
4. (a) Compute :
(i) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+3 x+7-x}\right)$
(ii) $\lim _{x \rightarrow-\infty} x e^{x}$

3
(b) Is $y=|x|$ is monotonic on interval $[-2,2]$?4
(b) Evaluate $\iiint_{E} 2 x d V$, where E is the region under the plane $2 x+3 y+z=6$, that lies in the first octant. $3+7$
14. Using Simpson's rule evaluate (taking 4 sub-intervals) :
(a) $\int_{0}^{1} \cos \left(x^{3}+x\right) d x$
(b) $\int_{1}^{3} x^{z} d x$
5. (a) Define : Stationery points, points of inflexion. $2+2$
(b) Find the maximum value of $2 x^{3}-24 x+107$ in the interval $[-3,-1]$ and minimum value in the interval [1,3].
6. (a) Find all the 2 nd order partial derivatives of the function $f(x, y)=e^{x y^{2}}$. 3
(b) Define homogeneous function for two variables.
10. (a) Find the area between $f(x)=-x^{2}+4 x$ and $g(x)=x^{2}-6 x+5$
(b) Determine the length of $x=\frac{2}{3}(y-1)^{3 / 2}$ between $1 \leq y \leq 4$.
11. (a) Determine the surface area of the solid obtained by rotating $y=\sqrt[3]{x}, 1 \leq \mathrm{y} \leq 2$ about the y -axis.
(b) Determine the volume of the solid obtained by rotating the portion of the region bounded by $y=x^{1 / 3}$ and $y=\frac{x}{4}$ that lies in the first quadrant about y-axis.
$5+5=10$
12. (a) Compute $\iint_{R} 6 x y^{2} d A$, where $R=[2,4] \times[1,2]$.
(b) Evaluate $\iint_{D}\left(6 x^{2}-40 y\right) d A, D$ is the triangle with vertices $(0,3),(1,1),(5,3)$.
$3+7$
13. (a) Evaluate $\iint_{B} 8 x y z d V$, where $B=[2,3] \times[1,2] \times[0,1]$.
(c) State Euler's theorem for homogeneous function. 2
(d) Find the value of $x \frac{\partial t}{\partial x}+y \frac{\partial t}{\partial y}$ for $\frac{x^{2}+y^{2}}{x^{5}-y^{5}}$.
7. (a) Integrate: $\int \frac{x^{2}+x-1}{x\left(x^{2}-1\right)} d x$.
(b) Using definition of definite integral evaluate,

$$
\int_{0}^{4}\left(-3 x^{2}+5 x-1\right) d x \quad 4+=6=10
$$

8. Check the convergence of the followings :
(a) $\int_{1}^{\infty} \frac{\sin x}{x^{3}} d x$
(b) $\int_{1}^{\infty} \frac{d x}{\sqrt{x+1}}$
9. Evaluate the following integrals :
(a) $\int_{0}^{\infty} \sqrt{x} \cdot e^{-\sqrt[3]{x}} d x$
(b) $\int_{0}^{\pi / 2} \sin ^{6} \theta d \theta$
