B. Constn. Engg. 3rd Year 2nd Sem. Exam. 2019

Foundation System - I

Time: Three hours

Part - I

Full Marks: 100

Answer any two questions.

- Q.1 (a) Explain the significance of various terms in the formula for determination of static load carrying capacity of bored and cast-in-situ piles as given in IS codes. Discuss how these components are derived?
- Q.1.(b) Throw light on using the appropriate factor of safety for the various components of this expression giving reasons.
- Q.1.(c) Illustrate the significance of critical depth giving neat sketch. Discuss its values as per the IS code.
- Q.1.(d) Given below is the details of sub-soil profile of a site.

Strata No.	Soil	Туре	Thickness (m)	Design Parameter		□Bulk Density,
Strat	stratification	of Soil		Cu T/m ²	φ	T/m ³
Į	Fill layer consisting of brick-bats, rubbish etc.	С	1.5	2.1	0.0	1.83
Н	Soft brownish grey silty clay	·C	1.9	2.4	0.0	1.79
111	Medium stiff grey silty clay	С	6.7	3.5	0.0	1.81
IV	Stiff bluish grey silty clay	С	7.4	6.8	0	1.89
V	Medium dense/dense yellowish brown silty sand	phi	4.9	0.0	30	1.90

The water table may be assumed to be located at a depth of 1.5 m below the ground level. Determine the safe vertical load carrying capacity of a 450 mm diameter bored cast-in-situ pile having cut-off level at a depth of 1.5m.

Assume shaft length of pile as 15 m.

- Q.2(a) What do you mean by negative skin friction of piles? Discuss its various causes. State the methods of overcoming this phenomenon.
- Q. 2 (b) State and explain the Converse-Labarre Equation in connection with determining the group efficiency of piles giving neat sketches.
- Q.2(d) Compute the efficiency of a group by the above formula for a single pile capacity of 600kN. Assume D=400mm, s=1000mm (bothways), m=5, n=3. Consider all cohesionless material in embedment zone.
- Q.3(a) What are the criteria for ascertaining safe lateral load on single pile from initial load test?
- Q.3(b) Write short notes on:

-5

- i) Initial test
- ii) Routine test
- Q.3(c) Determine the silt factor of soil collected from a river bed with the following gradations.

Sieve Size (mm)	Weight of soil retained (gm)				
4.00	0				
2.00	16.2				
1.18	76.5				
0.425	79.2				
0.150	150.4				
0.075	41.0				
Pan	55.4				

Q.3(d) What do you mean by tilting of wells? How this can be rectified?

B.E CONSTRUCTION ENGINEERING 3rd YR 2nd SEMESTER EXAMINATION-2019

FOUNDATION SYSTEM

PART-II

FULL MARKS: 50

Answer either Question [2 (a) (i) + 2 (a) (ii)] or Question [2 (b) (i) + 2 (b) (ii)] and

Similarly answer either Question [3 (a) (i) + 3 (a) (ii)] or Question [3(b) (i) + 3 (b) (ii)]

Different part of the same question should be answered together. [Assume relevant data if required]

No code is allowed in examination hall.

CO-1.

Q-1. (a) Explain the significance of differential settlement and angular distortion with reference to the stability of different types of structures resting on different types of subsoil. (10)

CO-2 (a) (i) Describe the limitations of plate load test for estimation of foundation settlement .(7)

(ii) Explain the method of estimation of settlement using De Beer & Marten's approach. (8)

OR

- (b) (i) Explain the significance of the corrections required for estimation of settlement of shallow foundation. (8)
- (ii) Explain the significance and assumptions of Vesic's bearing capacity factors . (7)

CO-3

Q-3.(a) (i) Design three isolated RCC footings with zero differential settlement , which are carrying axial loads of 30 ton , 40 ton and 45 ton spaced @ 4m c/c . The footings are to be placed in a subsoil with C= 3.0 t/m², $\gamma = 1.84 \text{ t/m}^3$, $m_v = 0.0035 \text{ m}^2/t$. (12)

AND

(ii) Determine the feasibility of construction of a G+4 storied building with strip footing in the same subsoil as specified in the problem 3 (a) (i) above. (13)

(

OR

Q-3(b) (i) A square footing with 2.0 m base width is located at a depth of 1.5 m in a sandy subsoil with a ground water table lying at a depth of 2.0 m b.G.L. The average N value of soil below the base level of the footing is 25. Determine the net allowable bearing pressure for a factor of safety of 3 against shear failure and a permissible settlement of 25 mm. [Use Teng' equations] (10)

AND

Q-3(b) (ii) Design a raft foundation of size [12m X 20m] for a B+G+5 storied building in a subsoil as specified below

$$[C_c/1 + e_0] = 0.086$$
 , $C_u = 35 \text{ KN / m}^2$ $\gamma_{sat} = 19 \text{ KN /m}^3$ $\varphi_u = 0$.