Ref. No.: Ex/CON/T/216/2019 # B.E. CONSTRUCTION ENGINEERING SECOND YEAR FIRST SEMESTER EXAM 2019 Subject: WATER RESOURCES ENGINEERING Time: Three hours Different parts of the same question should be answered together. Full Marks 100 | | The answer of answer ea together, | | | | | | | |----------|---|--|--|--|--|--|--| | CO1 | [1] Answer any one from (a) and (b) in this block | | | | | | | | [5] | a Indicate the drinking water quality at 1 ft | | | | | | | | | a. Indicate the drinking water quality standard for the following characteristics of | | | | | | | | İ | water—(i) Colour (ii) Turbidity (iii) Total solid (iv) nitrate content (v) iron content (v) | | | | | | | | | Pri value, (vii) Alseine content (viii) Ellioride content | | | | | | | | | b. Make out a list of water borne diseases noting the impurities against each as the cause | | | | | | | | CO2 | Tot the disease, | | | | | | | | [15] | [2] (a) What is BOD? Deduce an expression for BOD with time. What are the factors on which the De ovygenation and talk of the Decoverage of the control | | | | | | | | | Willen the De-oxygenation constant (K) depended | | | | | | | | | (b) The BOD of a sewage incubated for one day at 30°C has been found to be 120 mg/l | | | | | | | | | What will be the 5 day 20°C BOD? Assume $K = 0.14$ (Base 10) at 20°C. | | | | | | | | | | | | | | | | | | [10+5] | | | | | | | | CO3 [10] | Answer any two(2) from (a), (b) and (c) in this block: | | | | | | | | [10] | [5+5] | | | | | | | | 4 | [3] | | | | | | | | | [a] Write short notes on any two of the following with neat sketches: | | | | | | | | | (i) Drop Manholes.(ii) Inverted syphon. (iii) Lamp hole | | | | | | | | <u> </u> | Types (m) Eamp hole | | | | | | | | - | b.Enlist various sewer appurtenances and write short note on any one. | | | | | | | | | c. Discuss importance of manholes in sewerage system and describe with sketch | | | | | | | | L | deep manhole. | | | | | | | | CO4 | Answer any one(1) from (a) and (b) in this block: | | | | | | | | [01] | (a) with otock. | | | | | | | | | 4. (a) Explain the biological treatment techniques for treating waste-water OR Activated | | | | | | | | | Sludge Process. | | | | | | | | | © Discuss the detail construction and operation of rapid gravity filter during filtration and | | | | | | | | | back washing. | | | | | | | | | | | | | | | | | | c. Draw a complete flow diagram of wastowester treatment of the complete flow diagram of wastowester treatment of the complete flow diagram | | | | | | | | | c. Draw a complete flow diagram of wastewater treatment plant and describe the function of its each unit. | | | | | | | | | [10] | | | | | | | CO5 Answer **all** question from this block: [2+8] 5. - (a) Explain the importance of the following in the design of sewer - (i) Self-cleansing velocity - (ii) Non-scouring velocity - (b) Design a sewer running 0.7 times full at maximum discharge for a town provided with the separated system, serving a population of 80,000 persons. The water supplied from the water works to thee town is at a rate of 190litres/person/day. The sewer is made up of brick work plastered smooth with cement mortar (n = 0.013) and the permissible slope is 1 in 600. The variations of n with depth may be neglected. Assume any other data not given and needed. Course objectives: CO1: To define the different important water quality parameters, their relevance to human health and in treatment processes and their permissible limits as per the standards and hydrologic cycle.(K1) CO2: To estimate physical, chemical and biological water quality parameters in laboratory and also precipitation. (K2) CO3: To illustrate basic concepts of wastewater generation, collection system, wastewater quality and standards and compute stream flow measurement, components of run-off (K3). CO4: To classify various methods of waste water treatment and outline stage.(K4). **CO5:** To develop discharge relationship its significance methods for design of sewerage system components, construction methodologies of sewerage system and hydrograph and ground water hydrology (K3). ## B. Construction Engg. 2nd Yr 2nd Sem. Exam.2016 #### Sub.: Water Resources Engg. (Part - I) #### Answer Q. No. 1 and any two from the rest. ### 1. (CO4 & CO5) (A) Write TRUE or FALSE: 1 x 5 - a) For estimating the missing precipitation data P_x , there is no importance of the average annual rainfall of the unknown station (x). - b) Ranking of the storm is the product of recurrence interval and total number of years on record. - c) In case of moderate rain of uniform intensity, the W_{index} will be higher than Φ_{index} . - d) In Thiessen's mean method, the contours of rainfall data are used. - In order to obtain the surface runoff graph from the runoff hydrograph, the base flow is not required. - B) Write short notes on the following: 1 x 5 - i) Rain gauges - ii) Measurement of velocity of a stream - iii) Estimation of missing rainfall data - iv) Hydrology - v) Hyetograph - 2. (CO3) a) State which one is higher among φ_{index} and W_{index} and why? Explain with neat sketch. Can they ever be equal? - b) A storm with a15.0 cm precipitation produces a direct runoff of 8.7 cm. The time distribution of the storm is as follows: | Time from start in hr | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |--|-----|------|------|------|-----|-----|-----|------| | Incremental
rainfall in
each hr in
cm | 0.6 | 1.35 | 2.25 | 3.45 | 2.7 | 2.4 | 1.5 | 0.75 | b) The maximum values of 24 hours summer precipitation at a rain gauge station expressed in cm from 2003 to 2017 are indicated below: Estimate the maximum precipitation having a recurrence interval of (a) 5 years, (b) 10 years and (c) 20 years. Draw necessary plot on graph paper. 5+15 4. (CO5) (a) What is a unit hydrograph? (b) In a certain basin, ordinates of a unit hydrograph (1cm - 6 hr) are given below: | Time | 0 | 6 | 12 | 18 | 24 | 30 | . 36 | 42 | 48 | |-----------------------|---|---|----|----|----|----|------|----|----| | (in hr) | | | | | | | | | | | Ordinates
(cumecs) | 0 | 4 | 12 | 25 | 18 | 12 | 7 | 4 | 0 | Determine the peak flood and the total volume of flood flow in the basin corresponding to storm described below from plotted graphs: | Period (h) | 0 -6 | 6-12 | |-------------|------|------| | Runoff (mm) | · 10 | 20 | #### Base flow at the time of storm was 5 cumecs. 2 + 18 CO1: To define the different important water quality parameters, their relevance to human health and in treatment processes and their permissible limits as per the standards and hydrologic cycle.(K1) CO2: To estimate physical, chemical and biological water quality parameters in laboratory and also precipitation. (K2) CO3: To illustrate basic concepts of wastewater generation, collection system, wastewater quality and standards and compute stream flow measurement, components of run-off (K3). CO4: To classify various methods of waste water treatment and outline stage discharge relationship and its significance (K4). CO5: To develop methods for design of sewerage system components, construction methodologies of sewerage system and hydrograph and ground water hydrology (K3).