Ref. No.: Ex/PG/PT/T/116A/2018

M.TECH PRINTING ENGINEERING AND GRAPHIC COMMUNICATION FIRST YEAR FIRST SEMESTER 2018

RADIOMETRY

Time: Three hours			Maximum Marks: 100	
	Answe	r Any Four questions		
1.	Explair	n the following quantities with mathematical expression	ons	25
	a)	Radiant flux and luminous flux		
	b)	Radiant intensity and luminous intensity		
	c)	Solid angle		
	d)	Irradiance and illuminance		
	\mathbf{e}_{j}	Radiance and luminance		
	f)	Radiant exitance and luminous exitance.		
	g)	Radiance temperature and color temperature.		,
2.	a)	Explain spontaneous emission, stimulated emission a absorption.	nd stimulated	5
	b)	What are classes of laser?		5
	c)	Write on the three parts of laser construction.		15
3.	Write	on the characteristics of optical detectors		25
4.	Write	short notes on		
	a)	Incandescent light sources.		7
	b)	Fluorescent light sources		6
	c)	High-Intensity Discharge lamps.		6
	d)	light emitting diode.		6

5. ·	a)	What are the types of noises in optical detectors? Explain	20
	b)	Explain integrating sphere	5
6.	a)	The overall luminous efficiency of a 100 W electric lamp is 25 lumen/ W. Assume that light is emitted by the lamp only in the forward half, and is uniformly distributed in all directions in this half. Calculate the luminous flux falling on a plane object of area 1 cm² placed at a distance of 50 cm from the lamp and perpendicular to the line joining the lamp and the object.	10
		A point source emitting uniformly in all directions is placed above a table-top at a distance of 0.50 m from it. The luminous flux of the source is 1570 lumen. Find the illuminance at a small surface area of the table-top (a) directly below the source and (b) at a distance of 0.80 m from the source.	10
	c)	Classify UV radiation.	_