M.TECH MATERIAL ENGG FIRST YEAR SECOND SEMESTER - 2018

SUBJECT: HIGH TEMPERATURE MATERIALS

Time: Three Hours Full Marks: 100

(Use separate Answer Script for each part)

Part-1

(Answer Question 1 and any three of the rest)

1.	Draw and explain the structure of Kaolinite.	10
2.	(a) Draw schematically DTA plots of china clay, fire clay and bentonite and explain.	12
	(b) Define apparent porosity and discuss the determination of apparent porosity.	2+6
3.	(a) Discuss the classification of refractory materials.	10
	(b) Explain what is black heart and what's its effects on fire clay refractories?	5
	(c) CaO is more severe slagging agent that FeO; explain.	5
4	(a) Discuss the characteristics of 'Displacive transformation'	5
	(b) Take a typical composition of a silica brick and explain the temperature dependent phase transformation upto about 1450°C	10
	(c) High temperature strength of silica bricks is excellent above 600°C; explain	5
5	(a)What is the hydration problem of magnesite brick and explain how this could be overcome.	2+5
	(b) Define dihedral angle. Explain how the impurities affect the high temperature strength of magnesite bricks.	8
	(c) Explain how you stabilize the dolomite bricks.	5
6	(a)Discuss the properties of high temperature oxide materials	10
	(b) RUL is more important that PCE; Explain	5
	(c) From the point of view of corrosion resistance Magcarb performs better than magnesite: Explain	5

[Turn over

Ref. No.: Ex/PG/MatE/T/128A/2018

M.TECH MATERIAL ENGG FIRST YEAR SECOND SEMESTER - 2018

SUBJECT: HIGH TEMPERATURE MATERIALS

Time: Three Hours

Full Marks: 100

PART - II (<u>Use separate answerscript</u>)

Answer any two from the following:

- Q1. (a) Give a detail description about different types of alloy steels along with their nominal composition and microstruture which are used for high temperature applications.
 - (b) Draw Schaeffler diagram and explain the importance of this diagram.

5

- Q2. (a) Discuss the physical metallurgical principle, processing and microstructure of Nickel base superalloys with reference to the role of different alloying elements and strengthening mechanism.
 - (b) What is the purpose of coatings of gas turbine engine components? Write a short note on "thermal barrier coating".
- Q3. (a) Why gas turbine blades are used in cast form?
 - (b) What are ODS alloys and what is the importance of ODS alloys for high temperature applications?
 - (c) Arrange in increasing order with justification the creep resistance of materials in the following cases
 - i) Directionally solidified alloy
 - ii) Coarse grained alloy with randomly oriented polycrystal
 - iii) Alloy with single crytal
 - iv) Fine grained alloy with randomly oriented polycrystal

5+5+5 = 15