M.E.MECHANICAL ENGG. 1ST YEAR 1ST SEMESTER EXAMINATION 2018

Subject: ADVANCED HYDRO POWER ENGINEERING

Time: Three Hours Full Marks :100

Answer any **five** questions

- 1.a) How would you place hydropower in the mix of different powers?
- b) Explain the terms and the relation among Hydrology, Hydro meterology and Hydrologic Cycle.
- c) How water power can be estimated?
- d) What are the disadvantages of Hydel Power?

3 + 9 + 4 + 4

- 2, a) Describe the principle of working for any one infiltrometer.
- b) Discuss Horton's equation for infiltration along with infiltration curve.
- c) Explain the method of φ-index.
- d) A 24-hour storm occurred over a catchment of 1.5 sq. km over which 10 cm of rainfall had occurred. As infiltration capacity curve of empirical constant k = 4.5 hr⁻¹ prepared for the purpose, indicated that the infiltration capacity beginning with a value of 9mm/hr attained a value of 3 mm/hr after 15 hours of rainfall. A standard floating pan installed in the catchment indicated a decrease of 6mm in the water level during 24 hours of its operation. Other losses were found to be insignificant. Determine the runoff for this catchment.

 6+ 4+3+7
- 3. a) Explain the phenomenon of water hammer.
- b) Derive an expression for pressure rise due to sudden closure of valve considering the pipe material to be rigid.
- c) Explain the working principle of surge tank.

d) Derive the expression of specific speed.

- 3+10+3+4
- 4. a) What are the different materials generally used for making penstock?
- b) Explain banded and multilayer penstocks?
- c) How can you determine the number of Penstocks?
- d) What is economical diameter of penstock?
- e) How can you determine economical diameter of penstock graphically?

3+4+3+3+7

- 5. a)Define the followings:
- i) load factor, ii) capacity factor, iii) utilization factor, iv) secondary power.
- b) A common load is shared by two stations, one being a base load plant with 25 MW installed capacity and other being a standby station with 30 MW capacity. The yearly output of the station is 10.5×10^6 kwh. The peak-load taken by the standby station is 15 MW and this station works for 2500 hours during the year. The base load station takes a peak of 22.5 MW. Find out
- i) Annual load factors for both stations. Ii) Plant factors for bothstations. Iii)
 Capacity factors for both stations. 4 x 2 +12
- 6. a) What is the basic principle of Tidal Power generation?
- b) What should be the criteria for the location of tidal power plant?
- c) Discuss the difficulties in tidal power generation.
- d) Explain double-cycle system of tidal power generation.
- e) How can you estimate energy and power developed in a tidal power plant.

- 7.) Explain a recording type rain gauge with a neat sketch.
- b) Calculate the average precipitation by the average method and Theissen Polygon method from the following data:

Station No.	Precipitation (mm)	Area (sq. km)
1	67	82
2	85	80
3	93	92
4	117	75
5	130	32
6	52	50

c) Explain the method of isohyetes for determining the average rainfall of a region. 8+8+4

8. Write short notes on any four of the followings:

a) Pumped storage plant, b) Penstocks, c) Evaporation Pan, d) Theissen Polygon method of processing precipitation data, e) Rain gauge, f) Unit power and discharge.

