TURBULENCE

Time:-Three Hours

Full Marks :- 100

Answer two questions from each group

	GROUP A	*
1.	a) Define a turbulent flow and the intensity of turbulence. What is isotro anisotropic turbulence? In a circular pipe flow draw the entrance length fully developed velocity distributions for a laminar and turbulent flow in a sketch. Why the entrance length of turbulent flow is less than that of flow? (3+3+1+1+3+3) b) Explain the method of analysis of a turbulent flow.	and the different laminar
2.	 (a) What do you understand by correlation function in turbulence? Explain Integral, Kolmogorov and Taylor length, velocity and time scales. 'It is Vortices that is always present in a real flow, whether it is laminar or Turbulent flow', explain. (b) Explain Kolmogorov first and second hypothesis in connection with the Turbulence. 	(15)
3.	a) What is <i>ENERGY CASCADING</i> ? With a diagram explain thoroughl do you understand by <i>BACK SCATTERING</i> ? Explain with a pictorial of b) Explain vortex stretching with a diagram.	(10) y. What liagram. (15) (10)
	o) Explain voices stetoning with a diagram.	(10)
4. b)	 a) Explain the origin of turbulence. Draw a turbulent boundary layer over Plate and show the laminar sub-layer. b) Explain Kolmogorov's Energy spectrum diagram in details. What is wave number? How it is related with dissipation rate? 	(15)
	GROUP-B	
1.	Explain Prandtl's mixing length theory.	(25)
2.	Deduce Prandtl's Universal Velocity Distribution Equation and Von-Logarithmic law of the wall.	Karman (25)
3.	Deduce the RANS equation and indicate the Reynolds Stress?	(25)
4.	Deduce $K - \mathcal{E}$ equation.	(25)
		*