Design for fracture, fatigue and creep

Time: 3 hrs

PG. M.E 2nd semester Examination -2018

full Marks: 100

Answer any five questions

- 1. a) Why fracture mechanics is significant in design.
 - b) Discuss the design principle based on CTOD following PD-6493.
 - c) Explain primary secondary and reference stresses.
 - d) Explain the parameters influencing fracture toughness.

4 + 5 + 6 + 5

- 2. a) Discuss the principle and method of computing J integral by EPRI method.
 - b) How J-R curve is measured experimentally?
 - c) How tearing modulus is applied design?

8 + 6 + 6

- 3. a) Explain FAD at different levels and its application in design.
 - b) How K₁ for part through crack is measured?
 - c) How FAD is modified for application for design of welded parts?

10 + 5 + 5

- 4. a) Compare failure mechanism due to fatigue and fracture.
 - b) Discuss S-N curve and application in design considering effect of mean stress on it.
 - d) Derive the equation for fatigue crack growth curve considering all the features?

4 + 8 + 8

- 5. a) Discuss the design principle for variable amplitude fatigue loading.
 - b) What is cyclic stress strain curve.
 - c) Discuss the in detail the principles of strain life equation for LCF, HCF and also for combined?

6 + 6 + 8

- 6. a) Draw and discuss the aspects of a creep curve.
 - b) Derive the creep equation for combined dependence of temperature and stress.
 - c) How creep fatigue interaction can be modelled by strain partitioning method.
 - d) Explain the role C* Integral for design for creep.

4 + 4 + 6 + 6

- $\sqrt{7}$. Write short notes on any four: $4 \times 5 = 20$
- a) R-6 method of design b) Activation energy for creep c) weight function for arbitrary loading
- d) modelling for LCF e) Statistical nature of fracture toughness. f) Safe life estimation based on crack growth.

11