Ref. No. EX/PG/FTBE/T/129B/2018

 $1 \times 10 = 10$

M.TECH (FTBE) EXAMINATION, 2018

ADVANCED PROTEIN TECHNOLOGY TIME: 3 H FULL MARKS = 100

PART-I (60 MARKS)

USE SEPARATE ANSWER SCRIPT FOR EACH PART

Q1. Answer either (a) or (b) in this block.

(a) Describe the following (any 1):

- I. Properties of proteins that lend soya flour its functionality.
- II. Sequence of steps for identification of amino-acids of a fungal α -amylase produced from its apposite cell culture.

(b)	Define the following:	$5 \times 2 = 10$
I.	Thermally reversible protein gel	
II.	Purification fold of protein	
III.	Chaotropic agents	
IV.	Native gel	
ų.	Type I B-turn	
Q2.	. Differentiate between (any 2):	$2\times 5=10$

- a. Loading gel vs. Resolving gel
- b. Sanger reaction vs. Edman reaction
- c. NP-HPLC vs. RP-HPLC

Q3. Answer any two from (a), (b) and (c) in this block. 5+5=10

- (a) Explain the use of 'Ramachandran plot' in elucidating conformation of peptides.
- (b) Explain how '2D SDS-PAGE electrophoresis' is an improvement over '1D SDS-PAGE electrophoresis'.
- (c) Explain that 'protein folding' and 'protein degradation' are not self-assembly processes.

Q4. Answer any one from (a) and (b) in this block.

- (a) Illustrate the process of determination of MW of proteins using '1D SDS-PAGE electrophoresis'.
- (b) Illustrate protein separation in accordance with m/z values using 'MALDI-TOF and Electrospray Ionization' mass spectrometers.

Q5. Answer any two from (a), (b) and (c) in this block. 10 + 10 = 20

(a) Exo-PG enzyme is purified using column chromatography. For this purpose, 30 ml of a resin having 20 mg/ml capacity is packed into a glass column. The following data are recorded during the enzyme purification.

	Exo-PG activity at pH = 4.0	mg protein	Exo-PG activity at pH = 4.3	mg protein
In				
Column load	2346.99	382.20	2346.99	382.20
Column wash	3.28	70.15	5.64	65.40
Pre-column loss	1081.21	133.83	1262.91	151.88
0.16 M NaCl	-	8.13	-	4.52
0.25 M NaCl	0.77	5.35	0.43	2.93
0.50 M NaCl	2.68	2.59	1.17	1.98

a. Calculate the purification fold of exo-PG at either pH and recommend the pH of the binding buffer to be used for its purification. 5

- b. What is this column chromatography technique known as?
- c. Name the resin you would use in this method.
- d. Which binding buffer would you prefer for this purification procedure?
- e. What volume of binding buffer would you use to equilibrate the column?

f. Calculate dilution factor of the enzyme solution to be loaded to the column.

- (b) How can Svedberg formula be used to determine molecular weight of proteins? Which equipment would be used for this purpose? Which protein purification step should precede its molecular weight determination? 8 + 1 + 1
- (c) How would you determine pI values of glycine and histidine from their titration curves? Why are pKa values of these amino-acids perturbed? 4+6

10

1

1

1

1

MASTER OF TECHNOLOGY (F.T.B.E) EXAMINATION, 2018

 $(1^{st} Year - 2^{nd} Semester)$

Advanced Protein Technology

Time: 3 hrs.

Full Marks: 100

Part - II (Full marks 40)

- A. Answer any two of the following Q1, Q2 & Q3 : $(10 \times 2 = 20)$
 - (a) Define two nutritional and two functional parameters used to evaluate characteristics of a protein. Give example of application based on those characteristics.
 - (b) Considering the respective process steps state how the difference between soy isolate and soy concentrate is achieved.
 - (c) How would you prepare soy spun fibre? (3+3+4)
 - 2. (a) Name the major protein constituents in whey.
 - (b) How can you prepare whey protein concentrate?
 - (b) Mention the meritorious characteristics of whey protein.
 - (c) Name some application areas for whey protein
 - (d) Mention one process of modification of whey protein concentrate (2+3+2+1+2)
 - 3. (a) How would you prepare two different types of gelatine
 - (b) Why does gelatine act as a good stabilizer
 - (c) Beside being used as stabilizer, Gelatin has other functional properties --mention two such properties and give example of application (3+2+2.5x2)
- B. Answer two of the following Q4,Q5 & Q6 : $(10 \times 2 = 20)$
 - 4. (a) Mention the process variables associated with food extrusion operation
 - (b) With flow diagram show how texturized vegetable protein may be made using extrusion
 - (c) Comment on the interrelationship among screw speed and initial moisture content of feed with quality attributes of the products like bulk density and expansion ratio (3+3+4)
 - 5. (a) Explain the mechanism of action during hollow-fiber extraction process
 - (b) Name some precipitants used for protein separation operation.
 - (c) Explain: (i) affinity complexation (ii) biosorption (3+2+2.5x2)
 - 6. Write short note on:
 - (a) Foam based separation of protein
 - (b) Classification of chromatographic separation techniques
 - (c) Spacer arm and chemisorptions

(3+4+3)