Ref. No. : Ex/PG/FTBE/T/127A/2018

M.TECH. FOOD TECHNOLOGY AND BIO-CHEMICAL ENGINEERING

FIRST YEAR SECOND SEMESTER - 2018

ADVANCED ENZYME ENGINEERING

Time: Three Hours

Full Marks: 100

3.5 + 2.5 + 4

Use Separate Answer scripts for each part

Different parts of the same question should be answered together Part-I Full Marks-50

1. Answer any two questions from (a), (b) and (c):

a) What is meant by enzyme inhibitor? Classify enzyme inhibitors according to kinetic consideration. Explain with rate expression Non-competitive inhibition of enzyme. 1.5+2.5+6

b) Explain the enzymatic inhibition in following cases:

i) reaction with essential cation.

ii) antienzymes

iii) cofactor analogs

c) Describe competitive inhibition of enzyme. Discuss about antibiotic inactivating enzymes 5+5

2. Answer any one question from (a) and (b):

a) Discuss about diffusion effects in surface bound enzymes on non-porous support material. 10

b) What is meant by immobilization of enzyme? State the advantages and disadvantages if whole cell immobilization of enzyme. What is effectiveness factor? 2+5+3

3. Answer any two questions from (a), (b) and (c):

a) What important factors are to be considered for isolation of enzyme?	5
b) Discuss about chemical processes for recovery of enzyme.	5
c) Describe salt fractionation and use of solvent for precipitation of protein.	3+2

4. Answer any one question from (a) and (b):

a) Experimental data on the hydrolysis of starch with α -amylase are given in the following table. Mention the types of inhibition involved in this hydrolysis. 10

Inhibitor(mg/ml)	substrate concentration(mg/ml)	Relative hydrolysis velocity
	12.56	101
None	9.00	92.4
(0.0)	6.33	82.7
	4.28	70.9
	2.34	51.7
	10.0	77.0
Maltose	5.26	62.5
(12.7)	3.33	51.4
	2.04	38.9
	1.89	37.0
	33.30	116
α-dextrin	20.00	109
(3.34)	10.00	85.5
	2.82	47.6
	1.60	32.2

b) D. Thornton and Co-workers studied the hydrolysis of sucrose at pH 4.5 and 25° C, using crude invertase obtained from Baker's Yeast in free and immobilised form. The following initial velocity data were obtained with 408 units of crude enzyme (1 unit = quantity of enzyme hydrolyzing 1µ mol of sucrose/ min when incubated with 0.29 M sucrose in a buffer at pH 4.5 and 25° C).

Free enzyme	Immobilized enzyme	
V ₀	V ₀	S ₀
(m mol hydrolysed/lit.min)	(m mol hydrolysed/lit.min)	(mol/lit)
0.083	0.056	0.010
0.143	0.098	0.020
0.188	0.127	0.030
0.222	0.149	0.040
0.250	0.168	0.050
0.330	0.227	0.100
0.408	0.290	0.290

Determine $K_{m} \, and \, V_{m}$ for this reaction using both free and immobilized enzyme. .

10

M.TECH. FOOD TECHNOLOGY AND BIO-CHEMICAL ENGINEERING 1st YEAR, 2ND SEMESTER EXAMINATION-2018

ADVANCED ENZYME ENGINEERING

Part-II

(50 Marks for Part-I)

(Use a separate answer script for each group)

Time: 3 hrs

Full Marks: 100

GROUP A

Answer any one

- 1. (a) Write five important applications of enzymes in food industry.
 - (b) Describe the moderm enzyme immobilization techniques.
- 2. (a) What are the different resistances acted in immobilized enzyme bead?
 - (b) Define Demkohler number. What is its significance and relation with mass

transfer coefficient?

GROUP-B

Answer any one

- 3. (a) The bioconversion of glucose to ethanol is carried out in a packed bed immobilized cell bioreactor containing yeast cells entrapped in Ca-alginate beads. The rate limiting substrate in glucose and its concentration in the feed bulk liquid phase is $S_{oi} = 5g/l$. the nutrient flow rate is F = 2l/min. The particle size of Ca-alginate beads is $D_P=0.5cm$. The rate constants for this conversion are $r_m=100mg S/cm^3$.h and $Ks = 10mg.S/cm^3$, $D_s = 10^{-6} cm^2/s$. The surface area of the alginate beads per unit volume of the reactor is $a = 25 cm^2/cm^3$ and cross sectional area of the bed is 100 cm². Assuming the first order reaction kinetics determine the required bed height for 80% conversion of glucose to ethanol in exit stream.
 - (b) Give the basic principle and structure of a biosensor 15+5=20
- 4. (a) Derive the differential mass balance for the rate limiting substrate within the thin film.
 - (b) Define effectiveness factor with graph. Derive the value of modified Thiels

modulus.

12 + 8 = 20

 $20 \times 1 = 20$

 $10 \times 1 = 10$

5+5=10

5+5 = 10

_

GROUP-C

Answer any one

 $20 \times 1 = 20$

5. (a) Give prominent example of raw materials of steroids.(b) Illustrate the solvent solute nature for biotransformation of steroids.

© What are the different limitation of application of enzyme in organic

Synthesis?

5+10+5 = 20

6. (a) Give examples of analytical applications of immobilized enzymes.
(b) Briefly describe microencapsulation techniques. 10+10 = 20