Master of Electronics and Tele-Communication Engineering, First Year Second Semester, 2018

COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

Time: 3 hours

Full Marks: 100

[4]

Answer any FOUR questions.

1. a) Draw and label the basic structure of a DNA.

b) How frequency counts of A, G, T and C symbols in the DNA can help in recognizing a species? [5]

c) Write down the main steps of PCA used for data dimension reduction.[5]

d) How PCA is used to eliminate noise in frequency-count distribution of A, G, T, C symbols? [5]

e)³Show with an example that the eigen vectors of a real symmetric matrix are orthogonal to each other. How would you use this characteristic of real symmetric matrix to extract features of a linear system? [6]

2. a) What is self-organizing feature map neural network (SOFM)? [6]

b) Write down the steps of mapping N input vectors into geographically closed neurons of a SOFM. Why similar patterns are mapped in geographical close neighborhood? [8]

- c) What would happen if the number of neurons in the network is increased but input vector count remains same as N?- Illustrate with diagrams. [4]
- d) How SOFM can be used to recognize an unknown bacterium from its biologically close neighbors? [7]
- a) Define gene micro-array. [4]
 b) Write down the steps of k-means clustering. [6]
 c) Give a formal proof of k-means clustering. [6]

c) Explain how gene micro-array clustering can be performed using kmeans clustering. [5]

	d) How will you interpret the results of microarray clustering?	[4]
4.	a) Why is fuzziness incorporated in clustering algorithm?	[4]
	b)Derive FCM clustering algorithm.	[10]
	c) Write down the steps of the FCM algorithm.	[6]
	d) Develop a simpler algorithm than k-means or FCM for gene mic clustering.	roarray [5]
5.	a) What is meant by Gene Regulatory Network (GRN)?	[6]
	b) How GRN can be expressed as a system identification problem?	[6]
	c) State Differential Evolution algorithm.	[7]
	d) How Differential Evolution is used for GRN identification problem	n? [6]
6.	a) Draw the basic chemical structure of an amino acid.	[4]
	b) Show diagrammatically how protein is formed from 2 or more acids.	amino [6]
	c) What is meant by Tertiary Structure Prediction Problem?	[5]
	d) Explain how neural network and optimization together help in pre the tertiary structure of a protein?	dicting [10]
7.	a) What is protein-ligand docking problem?	[6]
	b) What is an active site of a protein?	[4]
	c) How organic structures can be represented by multi-connected list?	linked [10]
	d) Write down the steps of designing a ligand for a given protein.	[5]

.