M.E. ELECTRONICS AND TELE-COMMUNICATION ENGINEERING

FIRST YEAR SECOND SEMESETER-2018

STOCHASTIC CONTROL (CON)

Time: 3 Hours

Full Marks: 100

Answer Q.1 and Any Four from rest

1. Indicate True(T)/ False(F):

10x2

- a. Probability P(x) of event-x is: $P(x)=[N/N(x)] \mid N \rightarrow 0$
- b. If X is a random vector and x is arbitrary vector, then Probability Distribution Function of X is $Fx(X) = P(X \ge x)$
- c. Experiment on measuring a frequency component in given spectra is carried out; all possible results of the measurement is defined as Random Vector Space
- d. Conditional Probability Distribution of X and Y is $F(x \mid Y=y) = P(X=x \mid Y=y)$
- e. Joint Probability Density Function is $[\{\delta^{n+m} F\} / \{(\delta x_1, \ldots, \delta x_n) (\delta y_1, \ldots, \delta y_n)\}]$
- f. Loss function of an incorrect estimate is $L = L\{|x^2|(k|j)\}$
- g A stochastic process is Gauss-Markov, if it is only partially Markov and Full Gaussian
- h. If Ensemble of stochastic process has countable number of elements, then it is a Chain
- i. Covariance Matrixof uncorrelated random vectors is Diagonal
- j. Gaussian Random Vectors are uncorrelated and independent

2. (a) Define

(i) Joint Probability Distribution Function (JPD)

5+5

- (ii) Conditional Probability density Function (CPD)
- (b) Given two scalars X and Y having cylindrical JPD as

10

$$1/\pi : x^2 + y^2 \le 1$$

$$f\left\{ x,y\right\} =\left\{$$

0 : elsewhere

Using Baye's Rule, derive CPD for Y=0; sketch the function

3.	 a)What is a Stochastic Process; state the properties b) Explain difference between continuous-time & discrete-time stochastic process c) What are properties of Covariance Kernel 	6 +6 +8
4.	 a) What is a Gauss-Markov Stochastic Process b) A scalar process { x(t); t ≥0 } defined by differential eq. dx/dt = -x (1 - t); assuming x(t) is Random with mean= 0 & variance >0, verify the process as Gauss-Markov or Not. 	8+12 Gauss-
5.	a) Define (i)Random Binary Transmission (ii) Semi-random binary transmission	5+5
	b) Auto-correlation of a random signal y(t) is $R(\tau) = \exp(-b\tau)$; Derive an expression for its spectrum $S(\omega)$ and show its typical frequency response.	10
6.	 a) What is (i) Continuous-time stochastic process (ii) Sampled data stochastic process b) A scalar process { x(t); t ≥0 } with x(t) = A cosine t is a continuous random variable that is uniformly distributed between ±1. Obtain the ensemble representation 	5+5 10
7.	a) What is Prediction Problem	8
	b) State Wiener- Hopf integral equation; explain in terms of Impulse response h(τ)	1.2
8.	Write Short Note (any two)	10x2
	(a) Orthogonal process	
	(b) Smoothing filter(c) Recursive filter(d) Interpolation	
	(e) Kalman Gain Matrix	

..... x