Ex/PG/ETCE/T/127D/2018

M.E. ELECTRONICS AND TELE-COMMUNICATION ENGINEERING EXAM 2018 FIRST YEAR SECOND SEMESTER

QUANTUM WELL AND NANOSTRUCTURED DEVICES

Time: 3 Hours	Use separate answer scripts for each part.	Full Marks: 100
inite of trouts	(OSC SCPATACE ANSWER SCRIPES FOR CACIT PARCE)	I dil Ividi No. 10

<u>PART I</u> (Marks: 70)

	Answer any FOUR:	4x7
1. a)	Describe <i>Virtual crystal approximation</i> and its significance in relation to semiconductor alloys.	
b)	Classify semiconductor hetero-interfaces.	
c)	What is <i>Real space transfer</i> ? Explain how such transfer may take place in a finite quantum well (QW).	
d)	Give outlines of the Variational technique to determine the ground state energy of a QW perturbed by some external agency.	
e)	Describe the scheme for growth of a strained superlattice (SL). Also sketch the variation of strain along its direction of growth.	
f)	Discuss the approaches for performance improvement in Resonant tunneling diode.	
2.	Answer any THREE:	3x14
a. i) ii)	Describe Multiple QW and SL with their energy band diagrams. Compare the structures and features of Compositionally graded SL and Doping SL.	5 9
b.i)	Employ <i>Transfer matrix method</i> to determine the bound state energies in a multi-layered heterostructure comprised of two semiconductors.	9
ii)	Modify the above structure appropriately and derive the condition that will yield transmission coefficient for it.	5
c)	Derive and sketch the <i>Density-of-state (DOS) function</i> in a QW and QWW.	10+4
d)	Describe the modifications introduced in valence band structure of a bulk semiconductor due to (i) Quantum size effect, (ii) Coherent strain. Also highlight two important features that may arise if above modifications are	4+8+2

appropriately combined.

- e. i) Prove that the DOS function in bulk semiconductor exhibits singularities in 7 presence of a quantizing magnetic field.
- ii) What is Shubnikov-de Haas (sdH) effect? Suggest two different schemes to 3+4 observe it in a MOSFET.

PART II (Marks: 30)

Answer any TWO:

2×15

- 3. a) Describe spin polarization (P), and show that the value of magnetoresistance (MR) for a spin valve geometry is equal to $P^2/(1-P^2)$.
 - b) What are carbon nanotubes (CNTs)? Write down some advantages of CNTs. Calculate the diameter of a single-walled nanotube if n = m = 5 and the length of the unit vector is 0.246nm. 2+3+3
- 4. a) What is exciton? Describe different types of exciton and explain why excitonic effect in bulk is more pronounced at low temperature. 2+3+2
 - Explain quantum confined stark effect (QCSE) and how it is utilized in the operation of an optical switch.
- What is coulomb blockade? Describe conditions required to observe charging energy on the metal island. Draw the schematic and explain operation of single electron transistor (SET).