Name of the Examinations: M.E. ELECTRONICS AND TELE-COMMUNICATION **ENGINEERING FIRST YEAR FIRST SEMESTER - 2018**

Subject: PROGRAMMING METHODOLOGY Time: 3 Hours Full Marks: 100

Instructions: Answer any five questions; All questions carry equal marks

1 Explain the operational semantics of a repetitive construct? Design a program that divides a nonnegative integer X by a positive integer Y by using repeated subtractions. Show that the program you design would terminate and will produce the required result. You may choose suitable post condition, integer function and invariant.

5+7+8

2 Define Weakest precondition. State and prove all the properties of wp(S,R). Hence prove that $wp(S, 'non A') \text{ or } wp(S, 'B') \Rightarrow wp(S, 'A \Rightarrow B')$

Apply this formula to prove that wp('X:=a', R) = true when R = $(a>5 \Rightarrow x>5)$

3+8+4+5

3(a) State the expression for wp(DO,R). In connection with wp(DO,R) explain the meaning of $H_K(R)$ and justify the form

 $H_K(R) = wp(IF, H_{K-1}(R))$ or $H_0(R)$

10

3(b)Let a guarded command set with its derived alternative construct IF and a predicate P be such that P and BB \Rightarrow wp(IF,P) holds for all states. Show that for corresponding repetitive construct DO we get

P and $wp(DO, T) \Rightarrow wp(DO, P \text{ and non BB})$ holds for all states.

10

Design a program that finds the GCD of two positive integers. Show that your program terminates 4 and produces correct result. You may assume the required invariant and the integer function.

20

Describe the case construct used for the semantic specification of non-basic T functions. Show 5(a)how the semantics of an IF construct may be described by using case statements

6

- Assuming the case free axiom for operator + on natural number and using generator induction 5(b)prove that
 - (i) $\forall x, y : Nat : x + (y + z) = (x + y) + z$
 - (ii) $\forall x, y : Nat : x + y = y + x$

6(a) Consider an abstract data type seqT as a sequence of type T. The generator basis and the function profiles are defined as follows.

type seqT

func ε : \rightarrow seqT

(empty sequence)

func $^{\land} \vdash \!\!\! \vdash ^{\land} : seqT \times T \rightarrow seqT$

(append right)

func $^ -1 ^ : T \times seqT \rightarrow seqT$

(append left)

func $^{\land} \vdash \vdash ^{\land} : seqT \times seqT \rightarrow seqT$

(concatenate)

func rev $^{\land}$: seqT \rightarrow seqT

(reverse)

func # $^ : seqT \rightarrow Nat$

(length)

genbas (ε, ⊢)

Give semantic specification of all the non-basic functions using case construct.

8

6(b) Assuming the semantic definitions described in part (a) and applying the method of induction prove that

$$\forall q,r: seqT \bullet \#(q \vdash \vdash r) = \#q + \#r$$

12

7(a) State the expression for wp('x:=e', R)

Hence find

- (i) $wp('t := x ; x := y; y := t', x = A \land y = B)$
- (ii) wp('t := x ; y := t ; x := y', x = A \land y = B)
- (iii) $wp('x := x + y ; y := y x ; x := x y', x = A \land y = B)$

10

7(b) Let $Q \Rightarrow BB$

and $(\forall j: 1 \le j \le n: (Q \land B_j) \Rightarrow wp(SL_j, R))$ holds for all states

then prove that $Q \Rightarrow wp(IF,R)$ for all states

10

8(a) What are the different parameter passing mechanisms in connection with a procedure call? Illustrate your answer with examples.

8

8(b) Let a procedure be defined as

Procedure Proc(value \bar{x} ; value result \bar{y} ; result \bar{z})

$$\{P\} \leq body \geq \{Q\}$$

and let a procedure call be represented by $Proc(\bar{a}, \bar{b}, \bar{c})$ such that the corresponding post condition is R, then prove that the required weakest precondition PR for this call is

$$\{PR: P_{\overline{a},\overline{b}}^{\overline{x},\overline{y}} \wedge (\forall \overline{u},\overline{v}: Q_{\overline{u},\overline{v}}^{\overline{y},\overline{z}} \Longrightarrow R_{\overline{u},\overline{v}}^{\overline{b},\overline{c}}\}$$

Also show how the above result may be simplified.