M.E. ELECTRONICS AND TELE-COMMMUNICATION ENGINEERING FIRST YEAR SECOND SEMESTER-2018

PATTERN RECOGNITION		RN RECOGNITION	Time: 3 hours		Full Marks	ıll Marks: 100	
Ans	wer	Q. 1 and any five from the r	est.				
1.	a)b)c)d)	Mathematically express the Markov Model. Mathematically show how F State Mercer's Theorem.	rm random variable <i>x</i> in [a, b] e computational structure of Parzen windows can be used for the clustering and Forgy's met	a first-orde	stimation.	5 x 3	
2.		explanation of all the symbolic Calculate $P(-0.2 \le x \le 0.00)$	a <i>d</i> -dimensional normal cols. 5) where <i>x</i> has the triangular $0 = \begin{cases} 1 - x & \text{if } 0 \le x \le 1 \\ x + 1 & \text{if } -1 \le x \le 0 \\ 0 & \text{otherwise} \end{cases}$	density:	n a clear	-4	
		Explain the principle of m statistical distribution. How estimation using moments?	naximum likelihood estimation withis is different from me	on of param thod of the	parameter	3+2	
3.	b)	feature is also normally dis the probability that the samp Find the optimum decision to What is least-risk decision to	buted for class A with $\mu = 0$ stributed for class B with $\mu = 0$ ple with $\mu = 1$ belongs to class regions for the problem in a). boundary? Mathematically shapenerate to the optimal dec	= 2 and $\sigma = 2$ s B? sow how the	2. What is least –risk	2+	
4.	a)		Models (HMM) can help i			2+	

useful.

Ex/PG/ETCE/T/129D/2018

b) State the learning problem in HMM. Provide a detailed solution to this 2+6problem using Baum-Welch algorithm. Obtain the overall probability of classification error using a model based error 5 estimation strategy. Show that p(x) = k/NV as a general formulation of the non-parametric density 5 5. estimation problem (symbols have their usual meanings). b) Given dataset $X = \{4,5,5,6,12,14,15,15,16,17\}$, estimate the density of p(x)using Parzen window at i) y = 3 with a window size of 4 ii) v = 3 with a window size of 8 iii) y = 7 with a window size of 4 2x4 iv) y = 7 with a window size of 8 c) Discuss how smooth kernel functions can improve density estimations as compared to that of Parzen windows. 5 6. a) Consider classifying a sample using kNN algorithm with a feature vector (1, 1) given samples (3, 0), (4, 1) and (3, 2) from class A and samples (1, -1), (1, -1.5) from class B. Make separate decisions with values of k as 1 and 3 and Euclidean distance in both the cases. b) Show that the nearest neighbor error rate is bounded by twice Bayes' error rate. 5 c) Explain the importance of kernelized SVM. d) Consider the following mapping: $x \in \mathbb{R}^2 \to y \in \mathbb{R}^3$ where $y = \begin{bmatrix} x_1^2 \\ \sqrt{2} x_1 x_2 \\ x_2^2 \end{bmatrix}$ 3+1Show that $y_i^T y_i = (x_i^T x_i)^2$. What is the importance of this result? 2 7. a) Define Fisher's Discriminant Ratio. b) Describe the dimensionality reduction approach of LDA with necessary 7 mathematical details. 2 c) Show how LDA can also be used as a classifier. 4+2 d) Explain how Karhunen-Loeve transform of a vector can be obtained from its autocorrelation matrix. How can this be of help for dimensionality reduction? a) Perform a hierarchical clustering of the following data using the complete 8 8. linkage algorithm and Euclidean distance. Show the distance matrices and the

dendogram.

Ex/PG/ETCE/T/129D/2018

. 1

Sample	X	y
1	0.0	0.0
2	0.5	0.0
3	0.0	2.0
4	2.0	2.0
5	2.5	8.0
6	6.0	3.0
7	7.0	3.0

- b) Perform a partitional clustering of the above data points in a) using the k-means algorithm with k = 2. Use the first two samples as the seeds. Show necessary steps.
- c) Differentiate between hierarchical and paritional clustering.