M.E. ELECTRONICS & TELECOMMUNICATION ENGINEERING

FIRST YEAR FIRST SEMESTER. EXAM. - 2018

NONLINEAR CONTROL SYSTEM (CON)

Ref. No.: EX/PG/ETCE/T/113C/2018

,	Time: 3 Hours	Answer Q.1 & any <i>Four</i> from the rest	Full Marks:100
1. i.	Indicate True(T)/	False (F) : se-isocline represents a stable system	10x2
ii.		r improves system stability	
iii.		tem is unstable if its S-matrix is nonsingular	
iv.		state-defined system are essentially the poles of	f system
٧.	State-space repres	sentation & choice of states for control system	is unique
vi.		unction (DF) method uses a time-domain appro	
vii.		a servomechanism is basically a Synchro element	
viii.	An all-pole syster	m is stable if its phase-Lag $\theta = 210^{\circ}$ at gain cro	oss-over frequency
ix	Proportional Band	d is defined as equal to 100 x√(proportional ga	ain value)
Χ.	-	ndations on PID-controller tuning lead to (1/4)	amplitude decay ratio
	for the closed loop	p response	
2.	a) Define State Variable (SV); Show how the <i>n</i> -th. Order system is formulated by SV b) Deduce the SV formulation of an all-pole system with 3 rd order Butterworth transfer		
	Function		10+10
2	(a) What is Canania	Variable (CV)	
3.	(a) What is Canonic (b) Derive the CV-re	epresentation of a system transfer $G(s) = (s+4)/(s+4)$	$\{(s+1)(s+2)\}$ 10+10
4.	(a) Define the feature	es of PID controller	8+12
	(b) A unity feedback	system is given by $H(s) = 20/\{(s+1)(10s+1(20s))\}$ t, obtain the parameter settings of a PID control	
5.	Given for a system		10+1
	©		

 $\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u(t)$

 $X_1(t)$

 $X_2(t)$ -1 (a) Determine the Transfer Function

(b) Find the State Transition Matrix (STM)

A feedback control system has a nonlinear element as $y = \pm \text{ sgn. e(t)}$ connected to a linear block with denominator $D(t) = D^2 + D + 1$ and numerator = 1. Draw the phase plane trajectory assuming de(0)/dt = e(0) = 1. Comment on System stability by the method of Isocline assuming unit-step input. 20 7. (a) Define Describing Function (DF) 8+12 (b) A relay with dead-zone element is cascaded to a linear system H(s) in closed loop. Given E=2, D=1.5 and $T_m=1$ for the nonlinear block, with $H(s) = 10/\{s(s+1)(s+3)\}$. Determine the stability condition of the system using DF Write Short Notes (Any Two): 10x2 (a) Controllability & Observability (b) Phase Variable (c) Charecteristics of Servomechanism (d) Lyapunov Stabilty conditions