M. E. ELECTRONICS & TELE-COMMUNICATION ENGINEERING 1ST YEAR 1ST SEMESTER EXAMINATION, 2018

Subject: Microwave & Millimeter Wave Devices & Applications

Time: 3.0 Hours

Full Marks: 100

No. of questions	Answer any Four (4) questions from the followings: 4×25	Marks
1.	a) What are the limitation of bipolar junction devices used in microwave	3+3+4+5+3+7
	frequencies?	
10 N	b) Sketch the cross-sectional view of microwave BJT.	
	c) Give the microwave equivalent circuits of BJT.	8
	d) How microwave BJT is biased? Explain with suitable circuit diagram.	n n
	e) How the cut-off frequency of BJT is theoretically estimated?	9
	f) A Si microwave transistor has reactance of 2 ohm, transit time cut-off	
	frequency of 3 GHz, maximum E field 1.4×105 V/m and saturation drift	
	velocity of 5×10 ⁵ m/s. Determine the maximum allowable power.	* i
2,	a) Distinguish between MESFET and HEMT.	3+(4+4)+3+3+3+
	b) Give the physical structure and working principle of HEMT.	5
=	c) Sketch and explain the output characteristics of HEMT.	»
	d) Mention the areas of application of HEMT.	
	e) Give the equivalent circuit of HEMT.	
* B	f) A HEMT has the following parameters: $V_{th} = 0.13 \text{ V}$, $N_{d} = 2 \times 10^{24} \text{ m}^{-3}$, ψ_{ms}	
	= 0.8 V, E_{gGaAs} = 1.43 V, $E_{gAlGaAs}$ = 1.80 V and $\varepsilon_{rAlGaAs}$ = 4.43. Determine the	
	sensitivity of the HEMT. (Symbols have their usual meanings)	
3.	a) Explain Ridley, Watkinson and Hilsum theory for two valley model of n-	7+4+7+(4+3)
,	type GaAs.	
	b) Why Si and Ge are not used to fabricate a Gunn diode?	
	c) i) For a GaAs Gunn diode proof that	
,	$\frac{1}{\sigma}\frac{dJ}{dE} = 1 + \frac{d\sigma/dE}{\sigma/E}$	
	(Symbols have their usual meanings)	

M. E. Electronics & Tele-Communication Engineering $1^{\rm ST}$ Year $1^{\rm ST}$ Semester Examination, 2018

Subject: Microwave & Millimeter Wave Devices & Applications

Time: 3.0 Hours

Full Marks: 100

	ii) From this expression derive the condition for negative resistance and explain the significance of this condition.	
4.	a) Derive the expression for junction capacitance of a Varactor diode when it	7+(3+3+4)+(3+5)
	is reverse biased.	
	b) Give the doping profile, typical structure and equivalent circuit for this	
	diode.	
	c) Mention the applications of Varactor diode. Explain with suitable circuit	
	diagram how the Varactor diode can be used as a frequency multiplier?	8
5.	a) Give the impurity distribution, space charge density and electric field	4+(3+2)+(2+2)+7
	distribution of a PIN diode.	+5
	b) What do you meant by conductivity modulation? Why ordinary p-n	
	junction diode does no exhibit this phenomena.	
	c) Give the equivalent circuit of PIN diode under forward and reverse bias	*
	condition.	
	d) Derive the expression for impedance of this diode under forward and	
	reverse bias condition.	
	f) How a PIN diode used as a switch? Explain with suitable circuit diagram.	
6.	a) Briefly discuss the operation principle of Tunnel diode with suitable energy	8+(2+8)+7
	band diagram.	
	b) i) Give the equivalent circuit of a tunnel diode ii) Derive the expression for	
	resistive cut-frequency and self resonance frequency.	
	c) How a tunnel diode can be used as a negative resistance oscillator? Explain	
	clearly with suitable circuit diagram.	