Mathematics - I E

Time : Three hours
Full Marks : 100

Answer any five questions.

1. (a) Show without expanding
(i) $\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|=2(a+b+c)^{3}$
(ii) $\left|\begin{array}{lll}b^{2} c^{2} & b c & b+c \\ c^{2} a^{2} & c a & c+a \\ a^{2} b^{2} & a b & a+b\end{array}\right|=0$
(iii) $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & a+c\end{array}\right|=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$
(b) Solve by Crammer's rule

$$
2 x+3 y+z=11, x+y+z=6,5 x-y+10 z=34 .
$$

2. (a) Find the inverse of the matrix $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6\end{array}\right)$. 5
(b) If $A=\left(\begin{array}{ccc}-1 & 2 & -2 \\ 4 & -3 & 4 \\ 4 & -4 & 5\end{array}\right)$ show that $\mathrm{A}=\mathrm{A}^{-1}$.
(c) Find the rank and normal form of the matrix

$$
\left(\begin{array}{cccc}
2 & 0 & 2 & 2 \\
3 & -4 & -1 & -9 \\
1 & 2 & 3 & 7 \\
-3 & 1 & -2 & 0
\end{array}\right)
$$

(d) Show that the system of equations is inconsistent.

$$
\begin{aligned}
& x-2 y+z-w=-1 \\
& 3 x-2 z+3 w=-4 \\
& 5 x-4 y+w=-3
\end{aligned}
$$

(b) If $f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}},(x, y) \neq(0,0)$

$$
=0 \quad,(x, y)=(0,0)
$$

then show that $\frac{\partial^{2} f}{\partial x \partial y} \neq \frac{\partial^{2} f}{\partial y \partial x}$ at $(0,0)$.
(c) Let $\phi(x, y, z)=x^{2}+y^{2}+x z$. Find the directional derivative of ϕ at the point $\mathrm{P}(2,-1,3)$ in the direction of the vector $\vec{A}=\hat{i}+2 \hat{j}+\hat{k}$.
8. (a) Let $\vec{F}(x, y, z)=2 x z \hat{i}-x \hat{j}+y^{2} \hat{k}$. Evaluate $\iiint_{V} \vec{F} . d v$ where V is the region bounded by the surfaces $x=0, y=0, y=6, z=x^{2}$ and $z=4$.
(b) State Gauss' Divergence Theorem. Use it to evaluate $\iint_{\mathrm{S}} \vec{F} \cdot \overrightarrow{d s}$ where $\vec{F}=4 x z \hat{i}-y^{2} \hat{j}+y z \hat{k}$ and S is the surface of the cube bounded by $x=0, x=1$, $\mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0, \mathrm{z}=1$.
$2+8$
5. (a) State and prove Darbaux's Theorem.

6
(b) Evaluate (if possible)
(i) $\int_{0}^{\infty} \frac{d x}{(1+x) \sqrt{x}}$
(ii) $\int \frac{x d x}{x^{4}+1}$

5+4
(c) State and prove Lagrange's Mean Value Theorem.

5
6. (a) Let S and T be any two non-empty sets. Show that there is a bijection between $\mathrm{S} \times \mathrm{T}$ and $T \times S$.
(b) If $f(h)=f(0)+h f^{\prime}(0)+\frac{h^{2}}{2} f^{\prime \prime}(\theta h), 0<\theta<1$, find the value of θ when $h=1$ and $f(x)=(1-x)^{5 / 2}$. 5
(c) If $\lim _{x \rightarrow 0} \frac{\sin 2 x+a \sin x}{x^{3}}$ exists then find the value of ' a ' and also find the limit.

5
7. (a) State and prove Euler's theorem for homogeneous functions of degree n.
3. (a) Solve the following systems of equations:
(i) $x+y+z+w=0$
(ii) $x+y+z=6$
$x+3 y+2 z+4 w=0$
$x+2 y+3 z=14$
$2 \mathrm{x}+\mathrm{z}-\mathrm{w}=0$
$x+4 y+7 z=30$
5+5
(b) Find the eigen values and eigen vectors of
$\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 1 \\ 1 & 2 & 0\end{array}\right)$.
(c) Define the Riemann integral $\int_{a}^{b} f(x) d x$.
4. (a) Without integrating prove that
(i) $\int_{0}^{\pi} x \sin x \cos ^{2} x d x=\frac{\pi}{3}$
(ii) $\int_{0}^{1} \frac{\log (1+x)}{1+x^{2}}=\frac{\pi}{8} \log z$
(b) Let f be a bounded function defined on $[\mathrm{a}, \mathrm{b}]$. For any two partitions P and Q of $[a, b]$, prove that $\mathrm{L}(\mathrm{P}, \mathrm{f}) \leq \mathrm{U}(\mathrm{Q}, \mathrm{f})$.
(c) Give an example of a function which is not Riemann integrable.

