B.E. CONSTRUCTION ENGINEERING 1^{ST} YEAR 2^{ND} SEMESTER(Old)-2019 THERMODYNAMICS AND HEAT POWER

Time: Three Hours

Full Marks:100

Answer any five question

Answer to all parts of a question must be together

Assume any data, if not furnished, consistent with the problem.

1.(a) Define (i) Quasi-static process (ii) dryness fraction (iii) point function (iv) TER.

(i) Mary most reaction (ii) point function (iv) 111.	·
(b) What is the difference between intensive and extensive properties? Give examples.	4
(c) State the purpose of reheating a simple Rankine cycle.	2
(d) Establish the relation: $COP_{HP} = COP_R + 1$.	2
(e) It is desired to have a comfortable 20°C inside a room on a hot summer day having an outside	
temperature of 40°C. What will be the power consumption, if a 2 TON air-conditioner is running in	
the room? [1 TON = 3.5 kW]	4
2.(a) Show that the violation of Kelvin-Planck statement leads to the violation of Clausius	
statement.	10
(b) Derive the energy balance equation for a steady flow system with a single stream. What is the	
difference between a closed and open system?	10
3.(a) Write the expression for cycle efficiency, in terms of compression ratio, for an Otto cycle and	
show the processes on p-V planes.	8
(b) Write six difference between a 2-stroke and a 4-stroke engine.	12
4.(a) A blower handles 1 kg/s of air at 20°C and consumes a power of 15 kW. The inlet and outlet	
velocities of air 100 m/s and 150 m/s respectively. Find the exit air temperature, assuming adiabatic	
conditions.	8
(b) Define heat and work. What do you understand by "increase of entropy principle"?	6
(c) State the Kelvin-Planck statement of 2nd law? What is the difference between a refrigerator and	
a heat pump?	6
5.(a) Water is heated at a constant pressure of 0.7 MPa. The boiling point is 164.97°C. The initial	v
temperature of water is 0°C. The latent heat of evaporation is 2066.3 kJ/kg. Find the increase of	
entropy of water, if the final state is steam.	6
(b) Two bodies each of equal mass m and heat capacity c, are of temperatures T_1 and T_2 ($T_1 > T_2$)	U
respectively. The first body is used as a source of reversible engine and the second body as the sink.	
Show that the maximum work obtainable from such an arrangement is:	
$W_{max} = mc \left[\left(\sqrt{T_1} - \sqrt{T_2} \right) \right]^2$	8

(c) A 30-kg iron block and a 40-kg copper block, both initially at 80°C, are dropped into a large	
lake at 15°C. Thermal equilibrium is established after a while as a result of heat transfer between the	
blocks and the lake water. Determine the total entropy change for this process.	6
6.(a) Using an engine of 30 % thermal efficiency to drive a refrigerator having a COP of 5, what is	
the heat input into the engine for 1 MJ removed from the cold body by the refrigerator? If this	
system is used as a heat pump, how many MJ of heat would be available for heating, for each MJ of	
heat input to the engine?	8
(b) State the Clausius statement. What is a PMM-II? Also mention the Carnot principles.	-6
(c) A refrigerator plant for a food store operates as a reversed Carnot heat engine cycle. The store is	
to be maintained at a temperature of -5°C and the heat transfer from the store to the cycle is at a rate	
of 5 kW. If heat is transferred from the cycle to the atmosphere at a temperature of 25°C; calculate	
the power required to drive the plant.	6
7.(a) Air flows steadily at the rate of 0.4 kg/s through an air compressor, entering at 6 m/s with a	
pressure of 1 bar and a specific volume of 0.85 m ³ /kg, and leaving at 4.5 m/s with a pressure of 6.9	
bar and a specific volume of 0.16 m ³ /kg. The internal energy of the air leaving is 88 kJ/kg greater	
than that of the air entering. Cooling water in a jacket surrounding the cylinder absorbs heat from	
the air at the rate of 59 W. Calculate the power required to drive the compressor.	10
(b) From the definition of First law of thermodynamics derive the expression for heat interaction	
during an adiabatic process, with ideal gas as the working medium.	6
(c) Highlight two difference between a CI and SI engine.	4