Bachelor of Engineering Examination 2019 (First Year Second Semester) PHYSICS (BS/PH/T104)

Time: 3 hours

Full Marks: 100

Answer any five questions

- 1. (a) Deduce a relation among Young's modulus, Poisson's ratio and the modulus of rigidity of an isotropic elastic solid.
 - (b) Deduce the expression for the torsional rigidity of a solid cylinder of length 1 and radius r.
 - (c) Show that the strain energy of a twisted wire is $\frac{1}{2}C_m\theta_m$ where C_m is the couple for the maximum twist θ_m .
- 2. a) Write down the equation of motion for a particle executing damped simple harmonic motion. Explain the physical origin of each term. Solve it for the case of small damping.

3+3+6

b) Why is damping usually taken to be proportional to instantaneous velocity?

c) A mass of 10 kg is acted upon by restoring force of 0.01 N/m and a resisting force of 0.002 N.s/m. Find out whether the motion is oscillatory or non-oscillatory. Also find the value of resisting force for the motion to be critically damped.

3. (a) Deduce an expression for the velocity of a plane progressive wave in a fluid medium. Mention the assumptions you make.

- (b) Write the absolute unit of intensity of sound. What is decibel?
- (c) Write down the characteristics of a good auditorium. What do you mean by the optimum reverberation time of a live room?

 10+5+5
- 4. a) What do you mean by coherent sources? Give two practical examples.
- b) Show that in case of superposition of waves from two incoherent sources the resultant intensity is the sum of individual intensities.
- c) State and explain the conditions for the production of sustained interference fringes.
- d) Consider two coherent sources of same frequency and of intensities I and 2I. Find the ratio of maximum intensity to minimum intensity in their interference pattern.

5+5+5+5

- 5. a) What do you mean by diffraction of light? Distinguish between diffraction and interference of light.
- b) Derive an expression for the intensity of Fraunhofer diffraction pattern due to a single slit.

c) State Brewster's law. Light travelling in water of refractive index 1.33 is incident on a glass plate of refractive index 1.53. At what angle of incidence the reflected light is completely polarized?

6+8+6

6. (a) Explain de Broglie's concept of matter waves.

Using the concept of matter waves, obtain the Bohr's condition for quantization of angular momentum.

- (b) State uncertainty principle. Write its mathematical form for the following pairs of variables:
- (i) Position and momentum (ii) Energy and time
- (c) Explain how uncertainty principle is the outcome of the wave description of a particle.
- (d) Compute the minimum uncertainty in the location of a mass of 2.0 g moving with a speed of 1.5 m/s and the minimum uncertainty in the location of an electron moving with a speed of 0.5×10^{-8} m/s. Given that the uncertainty in momentum p for both is $\Delta p = 10^{-3}$ p.

$$6 + 4 + 4 + 6$$

7. (a) Suppose a one dimensional potential is defined as follows

$$V(x) = 0 \text{ for } 0 < x < L$$

 $V(x) = \infty$ otherwise

Write down the Schrodinger equation for the above and solve it for energy eigen values and also obtain the normalized wave function.

- (b) Plot the wave functions in the first three states of the above potential and find the position of maximum probability where the particle can be found.
- (c) The first member of Balmer series of hydrogen has a wavelength of 653.6 nm. Calculate the wavelength of its second member.

$$10 + 4 + 6$$

- 8. (a) Explain the origin of characteristic x-rays and continuous x-rays.
- (b) Obtain the Bragg equation for x-ray diffraction from a crystal. Explain why a crystal cannot diffract visible light.
- (c) Write Moseley's law and explain its significance.
- (d) In an X-ray tube the accelerating potential is 20 kV. Determine the minimum wavelength of X-rays that could be emitted from this tube.

6 + 7 + 3 + 4