Ref No: Ex/PG/EE/T/128B/2018 M.E. ELECTRICAL ENGINEERING FIRST YEAR SECOND SEMESTER EXAMINATION, 2018

SUBJECT: - COMPUTER APPLICATION IN INSTRUMENTATION (MS)

Time: Three hours

Full Marks 100 (50 marks for each part)

No. of	PART I	Marks
Questions	Auguran any two questions	
Marine 2	Answer any two questions	
1. (a)	A continuous-time system is defined as:	13
()	$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$	
	$y = \mathbf{C}\mathbf{x} + Du$	
	where each symbol has its usual meaning. Prove that, if the system is completely state controllable, then this is a sufficient condition to ensure that all the eigenvalues of matrix A can be arbitrarily placed.	
	A regulator system is employed for a plant defined as:	12
(b)	$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$	12
	where	
	$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 \end{bmatrix}$	
	-1 -5 -6 1	
	The system uses the state feedback control, $u = -\mathbf{K}\mathbf{x}$. The desired closed-loop poles are to be placed at: s = -2 + j4, $s = -2 - j4$, $s = -10$. Determine the state feedback gain matrix K by (a) Direct Substitution Method and (b) Ackermann's Formula.	
2. (a)	What are the problems associated with employing direct single-step design for predictive controllers? How can those problems be overcome?	04+03
(b)	In what respect control weighting design is more suitable than model following design for designing predictive controllers? Prove that, in a predictive controller, designed using control weighting design, we shall have:	04+06
	$M(z) = \frac{1}{\left[\left(b_{1} + \frac{\gamma}{b_{1}}\right) + b_{2}z^{-1}\right]} \left[R(z) + C(z)(a_{1} + a_{2}z^{-1})\right]$	
	where each symbol has its usual meaning.	

Ref No: Ex/PG/EE/T/128B/2018 M.E. ELECTRICAL ENGINEERING FIRST YEAR SECOND SEMESTER EXAMINATION, 2018

SUBJECT: - COMPUTER APPLICATION IN INSTRUMENTATION (MS)

T'		-1	1
Im	e: 1	nree	nours

Full Marks 100 (50 marks for each part)

	Use a separate Answer-Script for each part		
No. of	PART I	Marks	
Questions			
2. (c)	Why and how are boundary layers introduced in sliding mode control? Justify its utility, when it is introduced in the context of ideal and practical saturation control.	04+04	
3. (a)	In the context of neural networks, differentiate between pattern space 0 and weight space. With a suitable example, describe in detail how can a perceptron learning algorithm be designed in weight space.		
(b)	Let us consider a system given as: $\dot{x}(t) = A(t,x)x(t) + Bu(t)$	12	
	0 0 1 0 0 0 0		
	$A(t,x) = \begin{vmatrix} a_{11}(t,x) & a_{12}(t,x) & a_{13}(t,x) & a_{14}(t,x) & a_{15}(t,x) \end{vmatrix} B = \begin{vmatrix} 1 & 0 \end{vmatrix}$		
		-	
	$a_{21}(t,x) = a_{22}(t,x) = a_{23}(t,x) = a_{24}(t,x) = a_{25}(t,x)$ 0 1		
20440	The system is controlled using sliding mode control philosophy. The switching surface ($\sigma(x) = Sx = 0$) has been designed using the method of Equivalent Control and is given as: $S = \begin{bmatrix} 1 & 1.8 & 2 & 0 & 1 \\ 0 & 1.8 & 1 & 6 & 1 \end{bmatrix}$ Design a sliding mode controller for this system using <i>Diagonalization Method</i> . Choose: $Q = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$		
	where Ω has its usual meaning		
	where Q has its usual meaning.	.l	

Ref No: Ex/PG/EE/T/128B/2018 M.E. ELECTRICAL ENGINEERING FIRST YEAR SECOND SEMESTER EXAMINATION, 2018

SUBJECT: - COMPUTER APPLICATION IN INSTRUMENTATION (MS)

Time: Three hours

Full Marks 100 (50 marks for each part)

No. of Questions	PART I	Marks
4.	Write short notes on <i>any two</i> of the following:	$12\frac{1}{2} \times 2$
(i)	Alternative Form of the condition for complete observability of continuous-time systems.	= 25
(ii)	Determination of state observer gain matrix by Transformation Approach.	
(iii)	Common neuronal signal functions in neural networks.	
	1	
		1.20
2,524.5		
and the second		
		4

Ref No: Ex/PG/EE/T/128B/2018

MEE 1ST YEAR 2ND SEM. EXAM 2018

SUBJECT: - COMPUTER APPLICATION IN INSTRUMENTATION (MS)

Time: Three hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part

No. of Questions	PART-II		
	Answer any two	2X25=50	
1. a)	Draw a schematic of a digital vector voltmeter using synchronous detection technique. A phase-locked frequency synthesizer provides all internal references from a common reference source. Explain the principle of operation of such voltmeter.		
b)	Explain the operation of Lock-in-amplifier.		
c)	A digital frequency synthesizer employs a 8 MHz crystal oscillator and gives a 128 step-sinusoid. Determine the maximum and minimum output frequencies if the number of fractional bits is 2. Also find out the frequency control word for these cases.		
2. a)	a) A two dimensional data is shown in the table given below. Two dimensions are taken as x and y. Physical significance of each dimension is not disclosed. Find and choose a suitable principal component for the data set to reduce its dimension. Show the modified data.		
	x y		
	26 6		
	29 15	and the second	
and the state of the	56 8	and all the sugar	
	31 8		
	52 6		
	55 9	Section Accel	
	71 17		
Sector and	31 22		
1.1.1	54 18		
1	47 4		
	40 23		
	66 9		
1	68 8		
b)	Describe different architectures of Supervisory Control and Data Acquisitio (SCADA) Systems.	n 10	
c)	What are the advantages and disadvantages of Spread Spectrum Radio base deployment of a SCADA system?	d 5	
3. a)	How is the limitation of Fourier Transform overcome by Short Time Fourier Transform (STFT)?	er 3	
b)	What are the shortcomings of STFT? Justify the application of Continuous Wavele Transform (CWT) to overcome them.	et 4	
c)	Explain the terms "scale" and "translation" in CWT. What is the importance of the	ie 4+2	
	factor $\frac{1}{\sqrt{ s }}$ in CWT? (all symbols carry their usual meaning)		
d)	What are the properties of a mother-wavelet?	5	
e)	Explain the algorithm for computing Continuous Wavelet Transform of a signal.	7	

Ref No: Ex/PG/EE/T/128B/2018

MEE 1ST YEAR 2ND SEM. EXAM 2018

SUBJECT: - COMPUTER APPLICATION IN INSTRUMENTATION (MS)

Time: Three hours

Full Marks 100 (50 marks for each part)

)	What is "Gain scheduling con	ntrol" in the context of adap	tive control?	10
	A process, whose dynamics signal is introduced to the output response at different t	are not well known, is init system. The sampled value ime instants are as follows:	ially at steady state. An input is of the input as well as the	15
	Sampling instant	Input variable (units)	Output variable (units)	
	0	1.0	0.0	
	1	0.5	0.6	
	2	0.2	0.8	
	3	0.1	0.9	
	Identify the parameters of the Write notes on any <i>two</i>	e process assuming first ord	er model.	(2X12-
	a start and the			2
	Wavelet Transform based de	noising technique		=25)

Use a separate Answer-Script for each part