M. E. Electrical Engineering Examination, 2018

(First Year, 2nd Semester)
High Voltage Fields
Time: Three hours.
Full Marks: 100
Answer any five questions.

1. a) For an axi-symmetric system with unequal nodal distances derive the 10 expression for the potential of a node lying away from the axis of symmetry.
b) For the 2 - dimensional multi-dielectric configuration shown in Fig. 1, 10
write the FDM equations for nodes having unknown potentials.
2. a) Deduce expressions for the voltages inside and outside a dielectric 8 sphere placed in a uniform field.
b) Deduce the equation for potential in 2 - D multi-dielectric system using 8
FDM.
c) State the disadvantages of FEM.4
3. a) Discuss the basic principle of charge simulation method. 6
b) Deduce the expressions for potential coefficient and field co- efficient 14
along r-axis for a finite length line charge.
4. a) Discuss how electric field including volume resistance can be
computed using CSM.
b) Discuss in brief hybrid method of field calculation. 5
5. a) Derive the FEM equations in the case of two dimensional fields. 10
b) Derive the FEM equations in axi-symmetric system. Explain how the nodes are placed in a multi-dielectric system for field computation using FEM.
6. a) Explain the methods - i) exponential transformation and ii) logarithmic transformation.
b) Discuss the behavior of a conducting sphere placed in a uniform field.10
7. a) Derive the expression for pressure developed at the insulator-insulator 16 boundary.
b) Derive the expression for mechanical force developed on the electrode 4 boundary.
8. Write short notes on any two of the following:
i. Indirect boundary element method.
ii. Region oriented charge simulation method.
iii. Field calculation by CSM including volume resistance subjected to transient voltage.

Fig. 1.

