M. E. ELECTRICAL ENGINEERING Examination, 2018 (First Year, 2nd Semester)

HIGH VOLTAGE FIELDS

Time: 1	Three hours. Full Marks	s: 10
	Answer any five questions.	
1. a)	For an axi-symmetric system with unequal nodal distances derive the expression for the potential of a node lying away from the axis of symmetry.	10
b)	For the 2 – dimensional multi-dielectric configuration shown in Fig. 1, write the FDM equations for nodes having unknown potentials.	10
2. a)	Deduce expressions for the voltages inside and outside a dielectric sphere placed in a uniform field.	8
b)	Deduce the equation for potential in 2 – D multi-dielectric system using FDM.	8
c)	State the disadvantages of FEM.	4
3. a)	Discuss the basic principle of charge simulation method.	6
b)	Deduce the expressions for potential coefficient and field co- efficient along r-axis for a finite length line charge.	14
4. a)	Discuss how electric field including volume resistance can be computed using CSM.	15
b)	Discuss in brief hybrid method of field calculation.	5
5. a)	Derive the FEM equations in the case of two dimensional fields.	10

- Derive the FEM equations in axi-symmetric system. Explain how the 7+3 nodes are placed in a multi-dielectric system for field computation using FEM. Explain the methods – i) exponential transformation and ii) logarithmic 6. a) 10 transformation. Discuss the behavior of a conducting sphere placed in a uniform field. b) 10 7. a) Derive the expression for pressure developed at the insulator-insulator 16 boundary. Derive the expression for mechanical force developed on the electrode boundary. 8. Write short notes on any two of the following: 10×2
 - i. Indirect boundary element method.
 - ii. Region oriented charge simulation method.
 - iii. Field calculation by CSM including volume resistance subjected to transient voltage.

Fig. 1.