MASTER OF CONSTRUCTION ENGG.3rd SEM.EXAM-2018 STRUCTURAL SAFETY, RELIABILITY & MAINTENANCE MANAGEMENT

Time: Three hours

Part-I

Full Marks: 100

Answer any Three Questions. Answer Maximum 50 marks

- 1. a) Discuss different Limit states in the context of structural safety analysis. (7)
 - b) Discuss performance function and derive probability of failure in the context of Structural Reliability. (9)
- a) What do you mean by Reliability? Discuss reduce variables and illustrate Reliability index (FORM) as defined by Hasofer and Lind? (7)

A fixed beam is subjected to a concentrated live load P and a uniformly distributed dead load w. Assuming the length L is 7 m and the plastic section modulus Z is 1800 cm^3 are precisely known but loads P, w, and the yield stress F_y are random variables, calculate the Reliability index (FORM) with the following data. The Bias factor, which is defined as the ratio of the mean value of a variable to its nominal value (denoted by λ) is specified for each of the random variables. The distribution parameters of P, w, & F_y are as follows.

Nominal (design) value of $w = w_n = 30 \text{ kN/m}$

Bias facto for $w = \lambda_w = 1.2$, Co-efficient of Variation COV $V_w = 6\%$

Nominal (design) value of $P = P_n = 200 \text{ kN}$

Bias factor for $P = \lambda_p = 1.2$, COV $V_p = 4\%$

Nominal (design) value of $F_y = f_y = 450 \text{ MPa}$

Bias factor for $F_y = \lambda_F = 0.87$, COV $V_F = 5\%$

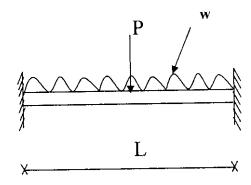


Fig 1: Fixed Beam

(10)

- 3. a) Discuss Total Probability theorem and Bay's theorem. (4)
 - b) Delay (D) in a construction project can be caused by material shortage (M), labor trouble (L), and bad weather (W); the corresponding probabilities are 40%, 40%, and 20%, respectively. Assume M, L, and W are mutually exclusive and collectively exhaustive, and the likelihood of their occurrence is 2:2:1, respectively.
 - i) What is the probability of delay of the construction project? (3)
 - ii) If the project was delayed, what is the probability that the delay was caused by bad weather? (3)
 - c) A pre-stressed concrete beam can fail due to either excessive bending moment (M), excessive shear (S) force of on concrete or Tension of Pre-stressing steel (T). It is observed that the failures of beam are occurred 65% due to moment, 5% due to shear and 30% due to tension of pre-stressing steel. It is also observed that small diagonal crakes (C) occur in 80% cases of shear failure & 10% cases of moment & tensile failure. If some diagonal crakes are noticed during inspection, calculate the probabilities of occurrences of excessive shear and excessive moment of concrete and tension of pre-stressing steel? (7)
- 4. a) Discuss **De Morgan's Rule** with example (7)
 - b) At a particular location, the probabilities of occurrence of cyclone and moderate earthquake in single minute are 10⁻⁵ and 10⁻⁸ respectively. Assuming their events are statistically independent, calculate the probability of no earthquake in a year and in 50 years life of structure. Evaluate the probability of cyclone in 50 years life of structure. Also evaluate the probability of joint occurrence of cyclone & earthquake simultaneously? (9)

MASTER OF CONSTRUCTION ENGG.3rd SEM.EXAM-2018 STRUCTURAL SAFETY, RELIABILITY & MAINTENANCE MANAGEMENT

Part -II

Answer any three of the following: Answer Maximum 50 marks

- Derive Safety Index or Reliability Index considering Load and Resistance as normal and log -normal variables. (Derive only for single load case.)
- 2) To avoid using very irregular earthquake load time histories, equivalent uniform cyclic loading N_{eq}, can be considered, specifically in geotechnical earthquake engineering. Fifteen such recorded earthquake time histories are considered and corresponding N_{eq} values are calculated. The magnitude of the earthquake on Richter scale m and the corresponding N_{eq} values are as follows:

M	5.2	5.4	5.6	5.8	6.0	6.2	6.3	6.4
Neg	5.6	5.7	5.8	5. 9	6.5	6.9	7.5	8.5
М	6.6	6.8	7.0	7.2	7.5	7.9	8.0	
Neg	9.0	11.0	13.2	14.5	18.0	24.0	26.0	

Develop regression equation of considering $N_{eq} = b_0 + b1M$ and $N_{eq} = b_0 + b1M + b2M^2$. (17)

3) The Joint function of two random variable X and Y can be represented as $f_{X,Y}(x,y) = ce^{x+y} \quad \text{Where } 0 \le x \le 1 \text{ and } 0 \le y \le 2.$ $= 0 \quad \text{elsewhere}$

- i) Determine the constant c.
- ii) Determine the marginal density function of X.
- iii) Determine the marginal Density function of Y.
- iv) Are X and Y statistically independent?

4) The test data for Modulus of Elasticity (E) of a Bridge are shown below. Compute the Sample Mean, Standard Deviation, Coefficient of Variation, Skewness and kurtosis.

Test No.	Modulus of Elasticity E (ksi)	Test No	Modulus of Elasticity E (ksi)
1	28,900	06	25,900
2	29,200	07	32,000
3	27,400	08	33,400
4	28,700	09	30,600
5	28,400	10	32,700

Calculate the Mean, Variance, Standard Deviation, Coefficient of Variation and Skewness for the Modulus of Elasticity.

(16)