Master of Civil Engineering 2nd Semester Examination 2018

Air Pollution and Control

Time: Three Hours

Full Marks: 100

(60 marks for Part 1 & 40 marks for Part 2)

Part 1

Answer **Question No. 1** and any **Two** from the rest. Turner's σ_{γ} & σ_{z} curves and Pasquill's stability chart are enclosed nerewith. Any relevant data may be assumed, if necessary.

- L. i) Why is Gaussian Air Pollution Model (GAPM) so named?
 - ii) Why is mechanical turbulence not considered in GAPM?
 - iii) Mention the assumed value of 'wind shear' in GAPM.
 - iv) When are both molecular and atmospheric diffusion not considered in GAPM?
 - v) What is 'NNW' wind? vi) How is 'downwind' direction in GAPM selected?
 - vii) How is origin of GAPM ascertained? viii) In which modified form of GAPM, σ_z is missing?
 - ix) What is the coordinate of mirror image source which is assumed to accommodate 'eddy reflection'?
 - x) Why are centerline modifications of GAPM important? xi) What is the full form of 'insolation'?
 - xii) Which criteria air pollutant is most relevant for line source GAPM after CO?
 - xiii) Which criteria air pollutant (CAP) is most reactive other than SO₂?
 - xiv) Mention the correction factor of Holland's Plume Rise Model (HPRM) for neutral stability class.
 - xv) What is the basic difference between HPRM and Briggs' Plume Rise Model (BPRM)?
 - xvi) Define 'night' as per Pasquill Stability Class Chart.

Master of Civil Engineering 2nd Semester Examination 2018

Air Pollution and Control

(60 marks for Part 1 & 40 marks for Part 2)

Time: Three Hours

Full Marks: 100

1. (contd...)

- xvii) How many CAPs are considered in current Indian AQI method (IND-AQI)?
- xviii) What may be the maximum AQI value in IND-AQI method?
- xix) Which CAP is dictating currently the AQI of India (calculated by IND-AQI method)?
- xx) Comment about correction of 'p' used in wind profile power law.
- xxi) Define a plume.
- xxii) What is the utility of X_g calculation?
- xxiii) Why is σ_x missing in GAPM?
- xxiv) Mention the correlation between relevant lapse rates for 'absolute stable' condition.
- xxv) What is 'calm' condition?
- xxvi) What may the plume patterns when inversion exists?
- xxvii) When 'neutral' plume may occur?
- xxviii) Which two CAPs are synergistic historically?
- xxix) Define PM₁₀.
- xxx) What is the main limitation of GAPM?

Master of Civil Engineering 2nd Semester Examination 2018

Air Pollution and Control

(60 marks for Part 1 & 40 marks for Part 2)

Part 1

2. a) The general Gaussian expression is as follows:

 $C_{(x,y,z;H)} = Q/(2\pi \sigma_y \sigma_z U) \left[\text{Exp} \left\{ -y^2/2 \sigma_y^{\ 2} \right\} \right] \left[\text{Exp} \left\{ -(H-Z)^2/2 \sigma_z^{\ 2} \right\} + \text{Exp} \left\{ -(H+Z)^2/2 \sigma_z^{\ 2} \right\} \right]$

The notations have their usual meanings. Now find expressions for following modifications

- (i) receptor at ground level (GL) & x<x_g
- (ii) receptor at GL centerline & $x < x_g$
- (iii) source is at GL, receptor is at a height and $x > x_g$ (iv) receptor at plume center line and $x > x_g$
- b) A stack emitting 60 g/sec of NO has an effective stack height of 80m. The wind speed at anemometer height is 4.5m/s and it is clear summer day with sun nearly overhead. Estimate the ground level NO concentration at:
 - (i) directly downwind at a distance 2.0 km ii) at a point (2000,200,0)
 - iii) at a downwind point where NO concentration is maximum

6+9= **15**

- A burning solid waste dump emits 20 g/s of oxides of nitrogen (NO_x). What may be the concentration of NO_x directly downwind from the source at a distance of 3 km on an overcast night with wind speed 6m/s? The background concentration of NO_x at the receptor location is 50μg/m³.
 - b) A stack with effective height 45m, emitting at the rate of 150 g/s. Winds are estimated at 5 m/s at the stack height, the stability class C, and there is an inversion at 100 m. Estimate the ground-level concentration at the point where reflections begin to occur from the inversion and at a point twice the distance downwind. What may be the type of inversion? What may be the probable plume pattern?
 - c) A highway has 10 vehicles per second passing a given spot, each emitting 2.13 g/km of CO. If wind is perpendicular to the highway and blowing at 2 m/s on an overcast day, estimate the ground level CO concentration 200m from the road.

 4+6+5=15

Master of Civil Engineering 2nd Semester Examination 2018

Air Pollution and Control

(60 marks for Part 1 & 40 marks for Part 2)

Part 1

Time: Three Hours

Full Marks: 100

- 4. Air Quality monitoring data for calculation of Air Quality Index by IND-AQI method:-
 - (i) Monitoring results of High Volume Sampler (with RDS attachment):

1) Initial weight of pot= 25.623gm

2) Final weight of pot= 25.859gm

3) Initial weight of filter paper=1.536gm

4) Final weight of filter paper=1.589gm

5) Average flow rate of air=1.0 m³/min

6) Period of sampling=4hour.

(ii) Monitoring results of low volume sampler:

1) Initial weight of filter paper=0.14550gm

2) Final weight of filter paper=0.14630gm

5) Average flow rate of air=15lpm

6) Period of sampling=8hour.

- (iii) Concentration of NO₂=0.05ppm
- (iv) Breakpoints (in μgm/m³) of normal AQI scale:

AQI Range	PM ₁₀	PM _{2,5}	NO ₂
0-50	0-50	0-30	0-40
51-100	51-100	31-60	41-80
101-200	101-250	61-90	81-180
201-300	251-350	91-120	181-280

Calculate AQI (show complete calculations). Comment about the result. Following equation may be needed:

Master of Civil Engineering 2nd Semester Examination 2018

Air Pollution and Control

(60 marks for Part 1 & 40 marks for Part 2)

Part 1

Time: Three Hours

Full Marks: 100

Some of the following equations may be required (notations have their usual meanings):

1)
$$\Delta h=2.6 (F/uS)^{1/3}$$

2)
$$F=gr^2v_s(1-T_a/T_s)$$

2)
$$F=gr^2v_s(1-T_a/T_s)$$
 3) $S=(g/T_a)(\Delta T_a/\Delta z + 0.01^{\circ}C/m)$

4)
$$\Delta h = [1.6F^{1/3}(x_f)^{2/3}]/u$$

$$\Delta h = [1.6F^{1/3}(x_f)^{2/3}]/u$$
 5) $x_f = 120 F^{0.4}$, if $F \ge 55m^4/s^3$ 6) $x_f = 50 (F)^{5/8}$ if $F \le 55m^4/s^3$

$$X_f = 50 (F)^{5/8}$$
 if $F < 55m^4/e^3$

7)
$$C = Q / [(2\pi)^{1/2} u \sigma_y L]$$

7)
$$C = Q / [(2\pi)^{1/2} u \sigma_y L]$$
 8) $\Delta h = [v_s d/u][1.5 + 2.68 \times 10^{-3} p (1-T_a/T_s)d]$

9)
$$C_{(x,y,0:H)} = [2q/(2\pi)^{1/2} \sigma_z u Sin\theta] [Exp(-H^2/2 \sigma_z^2)]$$

	able 3. Guide	elines for determ	ining Pasquill	Table 5. Undelines for determining Pasquill-Gifford stability classes	SSSS.
		Day with insolation	uo	Night	1
Surface	, ·			Overcast or	
Wind speed				$\geq 4/8 \log$	< 3/8 < 3/8
(ms_1)	Strong	Moderate	Slight	low cloud	pnop
2	A	A-B	B	:	į
2.3	A B	æ	ပ	闰	P
3.5	œ	B-C	ပ	О	도
5 G	ပ	C-D	Ω	Q	Ω
9	ပ	Ω	Ω	Ω	Ω

M.E. CIVIL ENGINEERING 1st YEAR 2nd SEMESTER EXAMINATION, 2018

SUBJECT: AIR POLLUTION AND CONTROL (EE)

Time: Three hours

Full Marks 100 (40 marks for part II)

Use a separate Answer-Script for each part Part-II

Question no. 1 is compulsory Answer any two from the rest (Assume any data, if required, reasonably) (Lapple's Efficiency Curve may be used)

- 1. a) What is hydro-desulfurisation of fuel oil? Describe one post-combustion regenerable wet system of flue 5 gas desulfurisation.
 - b) What are the different types of NOx generation from furnace? Describe one NOx control strategy at the 'source'. 4
 - c) Mention at least five action plans in brief to minimize the air pollution of Kolkata. 3
 - d) Define LC₅₀, LD₅₀, 'BOD half life', and 'Hydrolysis half life'. 4
 - e) How the settling efficiency of Gravitational settling chamber in air pollution can be increased without changing the size of the equipment?
 - f) In a 1.6 m diameter stack, it is decided that number of sampling points will be 12. Find out the location of the sampling points. 4
- 2. An air stream (flue gas) with a flow rate of 6m³/s is passed through a gravity settling chamber as a pretreatment, then a cyclone of standard properties. The air stream is carrying uniform particles of 10 µm diameter with a density of 1.5 g/cm³ and a concentration of 570 µg/m³ of flue gas. The removal efficiency of the gravity settling chamber for that diameter of particle is 25%. The diameter of the cyclone is 2 m. and the viscosity of air is 2.1×10⁻⁵ kg/m.s. Determine the amount of particulate removal/m³ of flue gas (i) in gravity settling chamber (ii) in cyclone separator.

8

Design a parallel plate single-stage electro static precipitator (ESP) from the following data:

Required efficiency = 99.6%; Gas flow rate = 180000 m³/hr

Particle drift velocity = 0.15 m/s; Collectrode spacing = 0.28 m $^{\circ}/_{\circ}$

Depth of collectrode = 3m; Height of collectrode = 6m; Gas flow velocity = 1.8 m/s

(a) In a bag-house filter, the value of $k_o = 33000 \text{ N.s/m}^3$ and $k_d = 76000 \text{ s}^{-1}$ (with usual notations). If the filter area is 8200 m², the air flow rate is 120 m³/s, and the mass-volume concentration (C_{mv}) is 0.02 kg/m³ then what will be the pressure drop through the filter (i) immediately after cleaning and (ii) after 3.2 hrs. of operation.

5

(b) What are the different types of combustion techniques adopted in air pollution control?

3