Ref No. -Ex/PG/CE/T/128E/2018 # M.E. CIVIL ENGINEERING 1ST YEAR EXAMINATION, 2018 (2nd Semester) SUBJECT: Process Design in Environmental Engineering Time: Three hours Full Marks 100 | No. of
Questions | | | swer-Scripts for each part 10 marks for this part) | | Nar v | |---------------------|--|--|---|---|--------------| | Q1. a) | With a neat sketch waste water. With a r | nestions. Answer shows. Assume relevant of describe the operation of the sketch explain st | ould be brief and to the lata if not provided on of a Rotating Biologic aging of a RBC? | point. All the notations have cal Contractor (RBC) to treat | Marks
5+5 | | b) | | re available for a sta
h 3 stages per train. | ged RBC system: 1 st stage | e sBOD=15g/m ³ , 9300 m ² area | | | | Parameter · | Unit | Primary Effluent | Target Effluent | | | | Flow rate | m^3/d | 4500 | | | | | BOD | g/m ³ | . 200 | 30 | • | | | SBOD | g/m ³ | 100 | 15 | | | | TSS | g/m ³ | 80 | 30 | | | | Determine: | | | | | | | i. Disc area requ | ired | | | 2×5 | | • | ii. Number of sha | ifts | | | | | , | iii. Flow rate per to | rain . | | | | | | iv. SBOD per each | ı train | | • | | | · | v. Organic and hy | draulic loadings | | | | | Q2. a) I | | • | pletely mixed flow and di | spersed flow in a reactor? | | | _{b)} 1 | Draw a complete flow s | heet of waste water to | reatment using oxidation d | litch | 2×3 | | c) F | or an aerated lagoon to | treat a waste water f | low of 5000m ³ /day the fol | Havring I. | 4 | | | i. Influent SBOD= | =200g/m ³ | 22 2000m /day me 101 | nowing data are given: | | | | ii. Effluent SBOD= | =30g/m ³ | | | | | | iii Kinetic coefficie | ents at 20-25°C: Y=0. | 6g/g, k _s =80g/m3, kd=0.06 | d-1, k=5g/g-d | | # M.E. CIVIL ENGINEERING 1ST YEAR EXAMINATION, 2018 (2nd Semester) SUBJECT: Process Design in Environmental Engineering Time: Three hours Full Marks 100 | No. of | | Use separate Answer-Scripts for each part | | |----------|--------------------|---|------------| | Question | 18 | Part I (40 marks for this part) | • | | | . iv | TVS produced=0.8TSS | Mar
——— | | | V. | Influent TSS=200g/m ³ | | | | vį. | K ₂₀ =2.5/d at 20°C | | | | vii. | Temperature coefficient, $\theta=1.06$ | | | | · . | a. Summer air temperature and waste water temperature during summer are 30 and 20 °C respectively | | | | | b. Aerator O ₂ transfer rate=1.5kgO ₂ /KWh | | | ÷. | viii. | Power required for mixing=8KW/1000m ³ | | | | ix, | Elevation= 300m | | | | X. | Depth of the lagoon =2.5m | | | | xi. | Design hydraulic retention time=3days | • | | | xii. | Aeration constant: $\alpha = 0.85, \beta = 1$ | | | , | Deter | · | | | | a. | The surface area of the lagoon | 2×3+4 | | • | b. | Soluble effluent BOD ₅ | - | | | c. | Summer lagoon temperature | | | | d. | O ₂ requirement in the lagoon assuming BOD to COD ratio 0.625 | | | Q3.a) | Discuss
along w | s the aerobic, anaerobic and facultative stabilization pond mentioning their specific fortunal | ×3+1 | | b) | For a w | aste stabilization pond for 60000 people the following data are given: | • | | · | i. | Waste water flow=150lit/capita-day | • | | | ii. | BOD5 contribution at 20°C=50g/capita-day | | | | | Final BOD5 in the effluent should be less than 50mg/L | | #### . Ref No. –Ex/PG/CE/Γ/128E/2018 # M.E. CIVIL ENGINEERING 1ST YEAR EXAMINATION, 2018 (2nd Semester) SUBJECT: Process Design in Environmental Engineering | Time: | Three | hours | |-------|-------|-------| | | | nours | Full Marks 100 | No. of | | Use separate Answer-Scripts for each part | | |-------------|------------|--|------| | Questions | | Part I (40 marks for this part) | Manh | | 4. . | iv. | Latitude of the place 23°N | Mark | | | v . | Maximum solar radiation=126cal/cm2-day, Minimum solar radiation=70cal/cm2-day, sky clearance factor =70% and conversion efficiency =6%, Oxygenetion factor=1.3 | | | | vi. | Ambient temperature=20°C and waste water temperature=15°C | | | | vii. | Kp at 20°C=0.132×log(BODu)-0.169 | • | | | viii. | $Kp(t)=Kp(20^{\circ}C)\times(1.035)^{t-20}$ | | | | De | etermine: | | | | , | a. The oxygen production b. Detention time for plug flow system c. Pond area d. Pond detection | 3×2 | | | | d. Pond depth | 2×2 | ### M.E. CIVIL ENGINEERING 1ST YEAR EXAMINATION, 2018 (2nd Semester) SUBJECT: Process Design in Environmental Engineering Time: Three hours Full Marks 100 No. of Questions Use separate Answer-Scripts for each part Part I (40 marks for this part) Marks # MASTER OF CIVIL ENGINEERING EXAMINATION, 2018 2^{nd} year, 2^{nd} Semester ### SUBJECT: PROCESS DESIGN IN ENVIRONMENTAL ENGINEERING Time: Two hours/Three hours/Four hours/ Six hours Full Marks 30/100 | No. of | Use a separate Answer-Script for each part | | |-----------|--|-------| | Questions | PART - | Marks | | | Answer any three(3) questions. Assume relevant data if necessary. | | | Q1. | | | | (a) | Discuss the following hydraulic configuration with reference to reactor. Derive necessary equation s for determining the hydraulic retention time also. Batch fed reactor. Continuous reactor | 7 | | (b) | Derive an expression to calculate the reactor volume to obtain a desired concentration of any pollutant undergoes 'n' nos of CMBR. | 5 | | (c) | Determine the reaction order and the reaction rate constant using the following data obtained from a laboratory experiment. | | | | Time in hrs:- 0 0.25 0.50 0.60 0.70 0.75 1.0 1.5 2 3 4 | 8 | | Q 2. | Concentration in mg/L :-50 48 36 30 24 20 16 12 8 6 5 | | | (a) | A city requires 105,000 M³/day of potable water for which rapid gravity filter is to be installed. The backwash water is 2% of the total requirement. The operation time is 20 hrs a day out of which half an hour is kept for service time. Determine the following components of the filtration unit. a) No. of filter beds including 25% extra as stand bye. b) Size and No. of Laterals. c) No and spacing of orifices (use 15mm dia) d) Spacing of Laterals. e) Size of Manifold. f) Size of Back wash water troughs. Assume relevant data. | 12 | | (b) | Derive an expression for estimation of head loss through filter in cleaned bed condition. | 8 | ## MASTER OF CIVIL ENGINEERING EXAMINATION, 2018 2nd year, 2nd Semester ### SUBJECT: PROCESS DESIGN IN ENVIRONMENTAL ENGINEERING Time: Two hours/Three hours/Four hours/Six hours Full Marks 30/100 | No. of | Use a separate Answer-Script for each part | | |-----------|---|-------| | Questions | [(Marks:60) | Marks | | Q3. | | | | (a) | Following information are available for designing of a mixing and flocculation unit. Flow rate = 10MLD Rapid mixing time = 60sec Viscosity of water = 1.08x10 ⁻³ N-sec/m ² The depth of rapid mixing unit = 3.6 m The depth of flocculation basin = 4.2 m Flocculation time = 20 min | | | | Determine 1) the power input in the above two units in KW 2) dimension of mixing and flocculation unit Assume G for fresh mixing unit 700 sec ⁻¹ G for flocculation unit 35 sec ⁻¹ | 13 | | (b) | Design a suitable septic tank for 30 users. Assume simultaneous equivalent fixture units to be operative as 16. Draw also a suitable sketch of the reactor. | 7 | | Q 4. | | | | (a) | Explain anaerobic digestion theory in connection with sludge treatment. | 5 | | | The thickened sludge is to be digested anaerobically in a standard rate digester. The sludge contains 68% organic out of which 65% is converted to liquid and gaseous end products after 26days time period. The digested sludge contains a solid content of 6% that should be stored for a cleaning period of 67 days. Determine the size of the digester assuming the depth of digester is 7.2m effective. Assume the raw sludge loading rate is 85 m3/day and mass of solids is 3200kg/day. The digneter of the digester shall not be more than 25 m. A. | 10 | | | 3200kg/day. The diameter of the digester shall not be more than 35m. Assume any other data if required. | - | | (c) | Explain with examples, the principle of preparation of filter bed from river run off available sand | 5 |