Ref No: EX/PG/CE/T/115C/2018

Master of Engineering Examination 2018

(1st year 1st semester)

Environmental Pollution & Management

Time: Three Hours

Full Marks: 100

Use separate Answer-Scripts for each part (60 marks for Part I and 40 marks for Part II)

Part-1

Answer Question No. 1 and any Two from the rest. Answers Question No. 1 first.

1. Answer briefly:

- a) Draw a sketch to show the hierarchy of management of environmental pollution.
- b) 'Lapse rate is favourable in Troposphere'-explain with a sketch.
- c) What are criteria air pollutants (CAPs)?
- d) What may be 'primary standard of primary air pollutant'?
- e) Why is carbon monoxide emission from industrial sources comparatively less?
- f) What is aerodynamic diameter? Give examples.
- g) Name the four air pollutants which are generally measured by high volume samplers.
- h) When was ammonia included in NAAQS and why?
- i) How are the two organic CAPs related?
- j) Name the *primary CAPs* to be controlled to control acid rain.
- k) Name the GHG whose GWP is unity and why is it unity?
- Comment about ODPs of trichlorofluoromethane and hydrochlorofluorocarbons.
- m) Write the catalytic reactions related with control of photochemical smog.
- n) With a sketch define 'NE' wind.
- o) Name two force field settlers along with relevant forces.

2X15≂**30**

Ref No: EX/PG/CE/T/1

Master of Civil Engineering Examination 2018

(1st year 1st semester)

Environmental Pollution & Management

Time: Three Hours

4

Full Mai

Use separate Answer-Scripts for each part (60 marks for Part I and 40 marks for Part II)

Part-1

- 2. a) Correlate the terms waste treatment, change of phase, threshold values, carrying capacity and sustainable development with examples from the field of air pollution.
 - b) Draw the infrared portion of combined absorption spectra and define natural Greenhouse Effect.
 - c) Draw the UV portion of global energy balance sketch and define albedo. Show that the albedo of around one-fifth of the global albedo. Comment about it.

 5+5+5=15
- 'Minimizations may be regarded as the only option to manage Ozone Depletion problem'-explain .
 'Climate Change and Ozone Depletion problem should be solved in unison.'-explain.
 - b) Define Acid Rain with respect to bicarbonate acidity only. Describe its effect on materials, aquatic ecosystem and forest ecosystem very briefly.
 - c) Describe NO-NO₂-O₃ cycle. Mention its limitation.

5+5+5=**15**

3X5 = 15

- Define/Describe any five followings with sketches, wherever possible:
 - (i) absolutely stable and absolutely unstable (ii) wind rose (iii) separation in high volume sampler
 - (iv) fumigating plume (v) ESP (vi) Baghouse (vii) mixing height (viii) Wet Scrubber

SUBJECT: ENVIRONMENTAL POLLUTION & MANAGEMENT

(Name in full)

Full Marks: 100

Time: Two hours/Three hours/Four hours/ Six hours

f earl

in .

tic

15

(40 marks for this part)

Use a separate Answer-Script for each part

No. of Question	Part-II						
	Answer Question-1 and any two from the rest						
Q.1) a) b)	What are the essential characteristics of an "Eutrophic Lake"? Describe with the help of a neat sketch the effect of "Thermal Stratification" on Dissolved Oxygen level of an oligotrophic and eutrophic lake during different	4 6					
c)	seasons. Establish the relationship between different sound levels (Li, Lp and Lw) in the context of "Outdoor Noise".	6					
d)	Derive the necessary expression for "Addition of Sound Intensity Levels".	4					
Q.2) a)	A township discharges 5.65MGD of raw sewage, containing 7.4mg/L of phosphorous and 17 mg/L of nitrogen, into an adjacent river that enters a lake short distance downstream For river it is given: i) average flow rate is 5823 l/sec. ii) Mean nitrogen content= 0.21mg/L iii) Mean phosphorous content= 0.03mg/L.	(6+4)					
	The lake is used as a municipal water source and has a surface area of 30,250 acres and a mean depth of 10m. Developments around the lake contribute an estimated 1837 Kg of phosphorous and 11,791Kg of nitrogen annually.						
	Given for 10m depth, permissible loading for nitrogen= 1.5gm/m²/year and permissible loading for phosphorous= 0.1gm/m²/year. Estimate the followings:						
	 i. Nitrogen and phosphorous loadings from lake, river, sewage and in total. ii. Determine respective % removal of nitrogen and phosphorous in the sewage treatment plant. 						

SUBJECT: ENVIRONMENTAL POLLUTION & MANAGEMENT

(Name in full)

Full Marks: 100

Time: Two hours/Three hours/Four hours/ Six hours

(40 marks for this part)

No. of Question	Part-II												Marks		
Q.3) a)	An electrical saw machine was subjected to a noise monitoring study and the results obtained in terms of sound pressure level (L _P) and sound power level (L _W) at a 30m distance are furnished in the table below. Calculate the total sound pressure level (L _{PT}) and total sound level (L _{PAT}) at a distance of 50m from the unit. Consider the propagation of sound under outdoor condition.													(5+5)	
	Levels	•	Octa	ıve ba	nd ce	ntre	fre	que	ncy	(in F	łertz)			
		63	125	250	50	00	10	000	20	000	40	000	80	00	
	Lwin dB	97	95	91	9	2	8	9		36	8	37	7	8	
	L _P in dB	65	63	59	6	1	ϵ	60		58	1	58	5	5	
Q.4) a) b)	Discuss on the significance of "Frequency Band Analysis". Vehicular Noise Data was collected for an important traffic intersection and are furnished below:												(3+3)		
	Time (sec	c)	5	10	30	45	55	70	80	95	105	120	130	150	
		vel dB(A)	72	76	75	78	81	82	77	79	74	80	71	73	
	Compute i) Equivalent Sound Level (Leq) ii) Traffic Noise Index (TNI)														