Ref. No.: Ex/PG/CE/T/111A/2018

Name of the Examinations: M.E. Civil Engineering First Year First Semester - 2018

Subject: DYNAMICS OF STRUCTURES (SE) Time: Three hours Full Marks: 100

Instructions: Answer any four questions

1. Develop the shock spectrum for a rectangular pulse shown in Figure 1. What is the maximum displacement of an undamped 1000 kg mass attached to a spring of stiffness 5 x 10^6 N/m subjected to the pulse with $F_o = 2000$ N and $t_0 = 0.09$ seconds.

Figure 1

- 2. a) From the extended Hamilton's principle develop the Lagrange's equation of motion for a MDOF system.
 - b) Develop the equation of motion for the system shown in Figure 2. Also find the expression for its natural frequencies. 20 + 5

3. Develop the governing differential equation describing the transverse vibration of a Euler-Bernoulli beam using the Hamiltonian Principle. Also find the solution to obtain the frequencies of the beam shown in Figure 3 stating clearly the nature of the boundary conditions. (25)

- 4. a) Using Laplace Transform, obtain the response of a Single Degree of Freedom system subjected to a constant load shown in Figure 4.
 - b) Obtain the power spectral density (PSD) of response for a LTI system subjected to a stationary random excitation f(t). (15)

- 5. a) Classify Geostrophic wind, Gradient wind and Cyclostrophic wind based on the forces acting on them.

 (6)
 - b) What is Ekman Spiral effect? (5)
 - c) Develop the expression for (i) Effective Modal Mass and (ii) Modal Participation Factor for a MDOF system (2+2)
 - d) Using Fourier Integral method obtain the response of a SDOF system subjected to a load

$$f(t) = \begin{cases} \frac{F_0}{k}; & -T < t < T \\ 0; & everywhere \end{cases}$$

TABLE OF LAPLACE TRANSFORM PAIRS

हुं '' धीर्ड		
tr ·····	/	
cos wt		

sinh w

$$\omega t = \sin \omega t$$

$$\frac{1}{(s+\omega)^2}$$

$$\frac{s}{s^2+\omega^2}$$

$$\frac{\omega}{s^2 + \omega^2}$$

$$\frac{s}{s^2-\omega^2}$$

$$\frac{\omega}{s^2 - \omega^2}$$

$$\frac{\omega}{s(s+\omega)}$$

$$\frac{\omega^2}{s(s^2+\omega^2)}$$

$$\frac{\omega^3}{s^2(s^2+\omega^2)}$$

$$\frac{\omega(s^2-\omega^2)}{(s^2+\omega^2)^2}$$

$$\frac{2\omega^2s}{(s^2+\omega^2)^2}$$