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Introduction



Chapter 1

Introduction

■ Historical Overview

A deformed body is one in which the relative positions of the molecules of the

body are altered under the effect of an external force. Elasticity is the ability of

a substance to deform when the substance experiences an external force and then

recover its original shape when the force causing deformations has been withdrawn.

The elastic limit of a body is the maximum amount of deformation before it no

longer retains its original shape, beyond this point, the material may fracture or

deform permanently.

The field of mathematical theory of elasticity is an attempt to address the

work involved in calculating stress-strain, or relative movement of constituents of

a solid body that is either under the effects of an equilibrium system of forces or

experiencing slight internal relative motion. It aims to obtain outcomes that are

fundamentally crucial in the domain of structural design and all other valuable

fields where engineering materials are used. The classical theory of elasticity is a

significant subdivision of continuum mechanics which addresses the stresses and dis-

tortions that occur in elastic substances as a result of external forces, variations

1



1. Introduction 2

in temperature or compression. The classical theory of elasticity provides a great

framework for evaluating the mechanical properties of a wide variety of solid mate-

rials those are frequently used in the design of civil, mechanical, and aeronautical

engineering projects etc. This theory was discovered in the early nineteenth century

and the implementation of the classical theory of elasticity are in harmony with in-

vestigations carried out of many advanced elastic materials provided the stresses are

limited. Although, in many dynamic problems characterized by the combination of

high frequency and short wavelength significant discrepancies between experimental

observations and the classical theory of elasticity are often noticeable.

Actually Galileo was the pioneer mathematician who analysed the resistance of

solids to rupture by considering them as objects having nonelastic properties. His

investigations established the foundation of a field that was subsequently explored

by numerous researchers. Two significant breakthroughs in the history of the elas-

ticity were made after Galileo’s observations, one is the discovery of Hooke’s Law in

1660 by Robert Hooke and the other is the formulation of the general equations of

elasticity by French mathematician Navier in 1821. Hooke’s law has dominated the

scientific thoughts for long period of time and its outcomes agreed with experiments

quite well. As per Hooke’s law (1678), there exist a specific correlation between

applied forces and distortions that characterizes the behaviour of elastic bodies and

later that correlation was expressed in terms of strain and stress of the deformable

bodies. In 1680, Edme Mariotte introduced a similar type law for analyzing the sta-

bility of cantilever beams. He showed that cantilever beam resists torques induced

by a transverse loading by modifying extensional and compressional deformations

respectively, in the material fibres. Though, Mariottes assumptions regarding the

force distribution in material fibres was appropriate, but his study didn’t focus on

the beams axis. By studying the bending of a beam under an applied load, Jacob

Bernoulli (1705) modified this idea. He came up with an equation which is known
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as Bernoulli equation that describes how the axis of the beam curves during defor-

mation and the correlation between the curvature and the bending moment of the

beam at every point is narrated by this equation.

In 1821, Navier published an article in which he derived the fundamental equa-

tions of elasticity when the applied forces are in equilibrium state. These equations

illustrate the relationship between stress, strain, and displacement in a deformable

solid body. He formulated three partial differential equations for the determination

of stress components of a deformable elastic material using a description of molec-

ular interaction in which forces act along particles movement. The great mathe-

matician Cauchy (1823) recognized that the stresses within a elastic solid could not

be expressed by a single quantity, but instead needed a mathematical formulation

involving several components and then introduced the idea of a stress tensor, which

is a second-order tensor containing the normal and shear stress components act on

the three mutually perpendicular planes. Cauchy introduced the principle of virtual

work done and the linear theory of elasticity for homogeneous elastic material. He

exhibited that the work done by applied forces on an elastic system is identical with

the work done by internal stresses in response to deformations formed by those ap-

plied forces. That work was a pioneer step in the development of the calculus of

variations.

The study of the theory of elasticity was not prioritized by mathematicians and

physicists in the early 1800s. Nonetheless, the area gained more recognition later

on because of its relevance to geophysics, acoustics, defence sector etc. Specifically,

the analysis of wave propagation and vibration phenomenon are crucial in com-

prehending earthquakes and developing new materials and therefore it becomes an

important field of several scientists. After Galileo’s findings, numerous researchers

including Poission, Ostrogradsky, Lame, Stokes, and Christoffel (1824 - 1887) were

made a details study on wave propagation field. It was shown that the equations
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of the general theory of elasticity could predict the existence of two distinct types

of elastic waves caused by the deformation that are capable of propagating through

isotropic elastic solid. One of those waves is commonly referred to dilatational wave

where direction of wave propagation and particle’s vibration are parallel and the

other wave is known as transverse wave where the particles vibrate perpendicular to

the direction of wave propagation.

Later in 1885, it was shown by Lord Rayleigh that a wave propagates across the

surfaces of a body and the associated motion of that waves diminishes exponentially

when the depth of the material from the surface increases. This type of surface

wave, known as Rayleigh wave, travels at a speed slightly greater than 90 percent

of that of the shear wave and it is characterized by particle motion that occurs

in planes parallel to the surface’s normal and the direction of wave propagation.

Love founded another kind of surface wave that moves transversely, parallel to the

surface and perpendicular to wave’s path of propagation. This kind of surface wave

is noticeable in solids where a surface of the material overlies a bulk solid that

is elastically stiffer. The analysis of the reflection and diffraction of elastic waves

has evolved into a valuable engineering technique for non-destructive assessment of

materials. This technique is employed for the detection of potentially hazardous

defects like cracks or flaws.

■ Stress

Let Fig.1.1 represents an elastic body in equilibrium state. When the external

forces F1, F2, F3, .........Fn act upon a body, internal forces will be generated between

its various constituent parts. In order to analyze the strength of these applied forces

at any specific point O, we consider that the body is divided into two parts M and

N by means of a cross section pqrs through this point. Considering the portion M ,
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it can be stated that it is in a state of equilibrium under the influence of external

forces F1, F2, F3, .........Fn as well as the inner forces distributed across the cross

section pqrs. It is considered that these forces are distributed continuously across

the cross sectional area pqrs. The intensities of these forces are typically determined

by the amount of force exerted per unit area of the surface where they act. When

referring to internal forces, that intensity is called stress. Hence the stress can be

calculated by dividing the total tension force by the cross section. In Fig.1.1 the

stress was uniformly distributed across the cross section.

Fig.1.1 An elastic body in equilibrium.

To determine the magnitude of stress generated on a small area ∂M , that is

extracted from the cross section pqrs at any point O, we consider that the forces

acting across ∂M as a result of the interaction of part N on part M can be reduced

to a resultant ∂P . If we now continuously reduce the size of the small elemental

area ∂M , the limiting value lim∂M→0
∂P
∂M

will be the amount of stress loading on

the section pqrs at the point O and the limiting direction of the resultant force

represents the direction of the stress. In the general case the direction of stress can

be resolved into two components, the stress components perpendicular to the surface

is known as normal stress and the stress parallel to the surface is known as shear

stress.

Let us consider an orthogonal and rectilinear system of axes to analyze the

dependence of stress on the orientation of the plane where it acts. To compute the



1. Introduction 6

stresses on a plane containing the point, regardless of its orientation, it is enough to

know the stresses acting on three planes that intersect at that point and are mutually

perpendicular. We use the symbol σ for the normal stress and the symbol τ for shear

stress and subscripts are used with these symbols, to designate the plane’s direction

on which the stress acts. If we take a very small cubic shape element at a point

O (Fig.1.2), whose sides are parallel to the coordinate axes, the stress components

acting on the sides of that cubic element and the directions considered as positive are

shown in Fig.1.2. The normal stress component acting on the side perpendicular to

y-axis is denoted by σy, where the subscript y represents that the stress is acting on a

plane whose normal is y-axis. The normal stress is considered positive when it results

tension and negative when it results compression. The shearing stress is splitted up

into two components that’s are parallel to the coordinate axes. Two subscript letters

are utilized in this case, the first one represents the direction of the normal to the

considered plane and the second one represents the direction of the stress component.

So for the the side perpendicular to the y-axis, the two components are τyx and τyz,

where τyx acts in x−direction and τyz acts in the z-direction.

Fig.1.2 Components of stress.

The positive directions of the shear stress components on any given side of the ele-

mentary cube are considered as the positive directions of the coordinate axes whether



1. Introduction 7

a tension on the similar side would have the positive direction of the corresponding

axis.

We can write those different stress components in a 3× 3 matrix as

Σ =


σx τxy τxz

τyx σy τyz

τzx τzy σz


The equation of equilibrium of an element considering moments of forces about

x−axis is

τzydy dz = τyzdy dz,

where dy dz (Fig.1.3) represents the dimension of the small elementary area, and

the other two equations for y−axis and z−axis can be drawn in a similar way as

above. From those equations we obtain

τxy = τyx, τzx = τxz.

Fig.1.3 Symmetry of stress components.

■ Strain

Just as it is important to comprehend internal forces, it is equally vital

to understand the deformations induced by external pressures. Deformations are
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defined in terms of strains, or the relative alteration in the body’s shape and size.

Additionally, a general definition of the strain at a point is given on an infinitesimal

cuboid inside a rectangular frame of reference. The sides of the infinitesimal cuboid’s

lengths vary under various loads. The cube’s faces also become deformed. A normal

strain is represented by the change of length, while a shearing strain is represented

by the distortion of the body. Fig.1.4 exhibits the distortion or strain on the face

ABCD.

Fig.1.4 Strain

■ Stress Strain Relation

Hooke’s Law is one of the fundamental principle in mechanical field that demon-

strates the co-relation between the distortions (stretching or compression) of an

elastic structure and the force that is enforced to it. The law is named after Robert

Hooke, an English physicist who pioneered it in the 17Th century. If we stretch an

elastic body in the x direction i.e. apply a normal stress σxx, then we can write

mathematically

σxx = Eϵxx,

where E denotes the modulus of elasticity related to tensile force.

Also, if a material is loaded by a compressive force within the limit of its elasticity,

it will experience a reduction in length that is directly proportional to the magnitude

of the applied force
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σyy = −νϵyy and σzz = −νϵzz,

where ν is a physical parameter of the material known as Poission’s ratio.

For multiple dimensions and directions, the generalised Hooke’s Law in tensor

form is

σij = Cijklϵkl, (i, j, k, l = 1, 2, 3), (1.1)

where σij represents the stress tensor, ϵkl indicates the strain tensor and the coeffi-

cients Cijkl represents the stiffness tensor of fourth order. As the stress tensor and

strain tensor are symmetric with respect to indices, the coefficient tensor Cijkl is

also symmetric with respect to the first two and last two indices.

We may use the following symbols to avoid the double sum.

σ11 = σ1, σ22 = σ2, σ33 = σ3, σ23 = σ4, σ31 = σ5, σ12 = σ6,

ϵ11 = ϵ1, ϵ22 = ϵ2, ϵ33 = ϵ3, ϵ23 = ϵ4, ϵ31 = ϵ5, ϵ12 = ϵ6.

Using above symbols equation (1.1) transformed to

σk = Cklϵl, (k, l = 1, 2, 3, 4, 5, 6). (1.2)

■ Types of Elastic Body and Planes of Symmetry

Our initial effort is to provide definitions for homogeneous and non-homogeneous

elastic bodies. In an elastic solid, if the elastic properties seems to be exactly uniform

throughout all of its points, the solid body is named as homogeneous, otherwise the

body is said to be non-homogeneous. Within an elastically homogeneous solids,

relations of stress-strain become independent with respect to the position, while in

non-homogeneous solids, they become functions of positions, i.e. when the medium

has non-homogeneous elastic characteristics, the modules of rigidity and Poisson’s



1. Introduction 10

ratio are not remain constants and should be anticipated that they change from

point to point inside solid material. They might differ either regularly, as in the

case of differential functions of spatial coordinates, or discretely, as in the instance

of artificial laminated materials.

An isotropic body has characteristic that are consistent in all directions drawn

through a particular location, while an anisotropic body often has variable elastic

properties for each direction. Material that is orthotropic, their physical characteris-

tics vary along three rotating axes that are mutually orthogonal. They belong to the

class of anisotropic solids as their characteristics vary depending on the direction

from which measurements are taken. Also an anisotropic material with a special

axis of rotational symmetry along which the material properties are fixed is known

as a transversely isotropic elastic solid.

The general stress strain relation given by (1.2) contains a highest of 36 indepen-

dent constants as every one of the six strains is dependent on each of six stresses.

Now if we consider the strain energy density function which satisfies

W =
1

2
Cijϵiϵj and

∂W

∂ϵi
= τi (1.3)

and then the number of elastic constants concerning a general anisotropic bodies

diminishes to 21.

The various types of elastic material can exhibit different types of symmetry, which

can be classified as follows:

1. Axis Symmetry (Transversely Isotropy):

A transtropy material such as Cobalt, Cooper, Boron-Epoxy is a material when

it admits an axis of symmetry perpendicular to the normal of that axis such that

all physical parameters are identical in the perpendicular plane. In this case the
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number of independent elastic constants reduced to 5 and the stress-strain relation

using matrix notations can be written as



σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C11 − C12





ϵ1

ϵ2

ϵ3

ϵ4

ϵ5

ϵ6


Considering z-axis perpendicular to the plane z = 0, the explicit form of stress and

strain in term of the five dimensionless elastic constants Cij are prescribed as follows

ϵxx = C11σxx + C12σyy + C13σzz,

ϵyy = C12σxx + C11σyy + C13σzz,

ϵzz = C13(σxx + σyy) + C33σzz,

ϵxy = 2(C11 − C12)σxy,

ϵyz = C44σyz,

ϵzx = C44σzx

and the expressions of Cij in terms of Young’s Modulus and Poisson’s ratio defined

by Lekhnitskii (1963) are as follows

C11 =
E1

∆µ13

(
1− E1

E3
ν213

)
,

C33 =
E3

∆µ13
(1− ν212) ,
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C12 =
E1

∆µ13

(
ν12 +

E1

E3
ν231

)
,

C13 =
E1

∆µ13
ν31 (1 + ν12) ,

where ∆ = 1 + ν212 − 2E1

E3
ν231(1 + ν12).

2. Three Planes Symmetry (Orthotropy):

An orthotropic solid such as Graphite-Epoxy, Carbon-Fibre, Glass-Epoxy has

three planes of symmetry that are mutually perpendicular and its material charac-

teristics differ across each of these three orthogonal planes and it has a coefficient

matrix of order 6× 6 with 9 non zero entries that relates the six independent com-

ponents of strain to the six independent components of stress.

The general form of stress-strain relation for an orthotropic solid can be written as



σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66





ϵ1

ϵ2

ϵ3

ϵ4

ϵ5

ϵ6



Considering the generalized plane stress, the explicit form of stress and strain in

term of the dimensionless elastic constants Cij for orthotropic body are stated as

follows

σxx

µ12
= C11ϵxx + C12ϵxy,

σyy

µ12
= C12ϵxy + C22ϵyy,
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σxy

µ12
= ϵxy,

and the constants Cij are given by

C11 =
E1

△ (1− ν23ν32),

C22 =
E2

△ (1− ν13ν31),

C12 =
E1

△

(
ν21 + ν13ν32

E2

E1

)
= E2

△

(
ν12 + ν23ν31

E1

E2

)
△,

△ = 1− ν12ν21 − ν23ν32 − ν31ν13 − ν12ν23ν31 − ν13ν21ν32,

where the subscripts 1, 2, and 3 correspond to the material orthotropy in x, y, and

z directions respectively.

Additionally, the elastic constants Ei and νij comply with the following Maxwell’s

relation

νij
Ei

= νji
Ej
.

3. Isotropy:

In isotropic materials like Aluminium, Brass, Nickel, Steel, elastic properties

remain same irrespective of directions. Here we have only two independent constants

and the stress-strain relation in matrix form becomes
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

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C11 − C12 0 0

0 0 0 0 C11 − C12 0

0 0 0 0 0 C11 − C12





ϵ1

ϵ2

ϵ3

ϵ4

ϵ5

ϵ6



The substitutions C12 = λ and C11−C12

2
= µ transform the stress-strain relation to

σij = λδijϵkk + 2µϵij, (i, j, k = 1, 2, 3). (1.4)

Here the constants λ and µ are familiar as Lame’s constants. Also two important

elastic constants E (Young’s modulus) and ν (Poisson’s ratio) are defined as

E = µ(3λ+2µ)
λ+µ

, ν = λ
2(λ+µ)

.

The expression of strain in terms of the elastic constants E and ν can be written as

ϵij =
1 + ν

E
σij −

ν

E
δijσkk, (i, j, k = 1, 2, 3). (1.5)

■ Equation of Equilibrium

The equation of equilibrium in an isotropic medium is determined by the

balance of forces acting on an infinitesimal element of the medium.

The equation of equilibrium for an isotropic media has the following general form

σij,j + Fi = 0, (1.6)
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where σij,k =
∂σij

∂xk
and F ′

is are the components of the body force acting on the

material.

The strain components in terms of displacements components can be written as

ϵij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
and ϵii =

∂ui
∂xi

, (1.7)

where u1, u2, and u3 are the displacement components in the direction of ox1, ox2, ox3.

Using (1.7), stress components for an isotropic medium can be obtained as

σij = λδij
∂uk
∂xk

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

)
. (1.8)

Using (1.8) and after some algebraic calculations, equation (1.6) can be found as

µ∇2ui + (λ+ µ)
∂

∂xi

(
∂uk
∂xk

)
+ Fi = 0. (1.9)

The above equation is known as Navier’s equation.

■ Types of Problems

In the context of elastodynamic problems, the Nevier’s equations (1.9) are

modified by adding the term ρ∂2ui

∂t2
to the right-hand side, where ρ represents the

density of the material. In general, boundary value problems are linked to the wave

propagation and diffraction phenomena.

The boundary value problems are classified into three major categories, which are

described as follows:



1. Introduction 16

Type 1: In this kind of boundary value problems, stress components of the elastic

body are specified on the boundary surface i.e. the problem is to be solved whenever

the body forces and surface forces acting on the surface of the body are provided.

The mathematical formulation of this kind of problem is

µ∇2ui + (λ+ µ)
∂

∂xi

(
∂uk
∂xk

)
+ Fi = ρ

∂2ui
∂t2

(1.10)

The equation (1.10) is to be solved subjected the initial conditions

ui = u0i(x1, x2, x3) and
∂ui
∂t

= U0i(x1, x2, x3) at t = t0, (1.11)

and the boundary conditions

σ̄i(x1, x2, x3, t) = gi(x1, x2, x3, t) for t ≥ t0, (1.12)

where σ̄i are given tractions on the surface, ρ is the density of the material, and

(u1(x1, x2, x3, t), u2(x1, x2, x3, t), u1(x1, x2, x3, t)) are the displacement com-

ponents in the directions ox1, ox2, ox3.

Type 2: In this case the body is in equilibrium under the influence of body force

and displacements on the surface i.e. in this problem displacement components are

given on some parts of the boundary of a solid.

For this displacement prescribed boundary conditions, the equation (1.10) is to

solved subjected to the initial conditions (1.11) and the boundary conditions

ui = Ui(x1, x2, x3, t) for t ≥ t0, (1.13)

where (U1, U2, U3) are the given displacement components.
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Type 3: A mixed boundary value problem in elastic solid is an another kind

of boundary value problem that involves specifying both the displacement and the

traction on several parts of the boundary of a solid or a region of a solid.

On a part of the boundary, the boundary condition may be given in terms of dis-

placement, i.e.,

ui = Ui(x1, x2, x3, t) for t ≥ t0, (1.14)

where (U1, U2, U3) are the given displacement components.

On another part of the boundary, the boundary condition may be given in terms of

stress, i.e.,

σ̄i(x1, x2, x3, t) = gi(x1, x2, x3, t) for t ≥ t0, (1.15)

where σ̄i are given traction on the surface

and (u1(x1, x2, x3, t), u2(x1, x2, x3, t), u1(x1, x2, x3, t)) are the displacement

components in the directions ox1, ox2, ox3.

■ Magnetoelasticity

In recent years, the interaction of electromagnetic fields with elastic media

is a significant area of interest for many researchers because of the possibilities of

their extensive practical applications in diverse fields such as acoustics, geophysics,

optics and so on for both theoretical and exploratory investigations. The theory of

the coupling effect of magnetic interaction and elasticity is the study of mechanical

deformations of a solid structure subjected to an externally applied magnetic field.

The total deformation of the solid body and the changes in governing laws are

influenced by both magnetic and elastic fields. Maxwell’s equations along with the

modified Ohm’s laws dictate the behavior of the electromagnetic field, whereas the



1. Introduction 18

modified Hooke’s law determines the characteristics of the elastic field. Also, due to

superposition of electromagnetic field on elastic field, elastic-stress relation and field

equations get modified by addition of a new body force known as Lorentz’s force.

In 1864, James Clerk Maxwell derived four differential equations to describe elec-

tric vector field E⃗, the magnetic field density B⃗, and the nature of electromagnetic

waves. These equations in differential form are as follows

∇⃗ · E⃗ = ρ
ϵ0
,

∇⃗ × E⃗ = −∂B⃗
∂t
,

∇⃗ · B⃗ = 0,

∇⃗ × B⃗ = µ0J⃗+ µ0ϵ0
∂E⃗
∂t
,

where ϵ0 is the permittivity of free space, µ0 is the permeability of free space, ρ is

the density of electric charge, and J⃗ is the density of electric current.

Modified Ohm’s law is obtained by merging the traditional Ohm’s law with the

Lorentz force, which explains the movement of charged particles under the influence

of a magnetic field and is given by

J⃗ = σ0(V⃗ × B⃗+ E⃗),

where V⃗ and σ0 are the velocity of charged particle and the conductivity coefficient

of electric current.

The generalized Navier’s equation in terms of the Lorentz force in a solid

structure can be written as

∇⃗ · Σ⃗ + F⃗ + J⃗× B⃗ = ρ∂2U⃗
∂t2

,
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where U⃗ is the displacement vector, Σ⃗ is the stress tensor, F⃗ is the external force

per unit volume, and J⃗× B⃗ is the Lowrentz force.

Fracture mechanics is a specialized field of study that focuses on analyzing,

prevention, and prediction of structural or mechanical malfunctions that arise from

flaws or cracks in materials. Cracks can exist in a solid engineering structure due

to variety of factors, including manufacturing defects, environmental conditions like

exposure to high temperatures, chemicals, or corrosive substances, natural catas-

trophe, negligence of materials maintenance etc. In many cases, cracks in solid

structures may begin small and gradually increases over time due to dynamic or

static loading or other factors. Due to some well known catastrophe made either by

naturally such as earthquake or by humanly such as World war II in recent history,

numerous research has been carried out to comprehend the circumstances that result

in failures and to develop the fracture criterion against such failures. Furthermore,

fracture mechanics plays a vital role in advancing the development of new materials

and manufacturing processes that exhibit greater resistance to failure and better

suited for demanding engineering applications.

The discoveries of fracture mechanics can be traced back to the work of

Leonardo Da Vinci in the 15Th century, who analyzed the behavior of cracks in

stone and masonry. Kolosov (1909) developed the fundamental mathematical tools

for studying fractures in his doctoral degree. A few years later, CE (1913) published

a research paper in which he solved some basic problem related to crack. During

the same year, Hopkinson (1913) proposed that there is a nonlinear phenomenon

near about the vicinity of the crack edge. This issue was eventually resolved by

Griffith (1920). He considered the principles of surface energy to analyze the crack

edge region. Weibull (1939) developed a statistical approach of fracture mechanics

motivated by the Griffith’s studies with thin glass rods. The approach developed by

Griffith was expanded by Orowan (1949) to include all cases of small scale yielding,
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taking into account all forms of internal energy loss, particularly surface energy. Two

fundamental physical quantities such as stress intensity factor and energy release

rate were first proposed by Irwin (1957). These parameters are used to describe

the toughness of solid materials. The field of fracture mechanics has also benefited

from Barenblatt (1959), he introduced the Barenblatt-Dugdale cohesive zone model

from the linearized model of the neighbourhood of the fatigue edge and his concept

of cohesion modulus explains the propagation of cracks in solids materials. This

model considers the cohesive forces prevailing at the crack tip, which can influence

the material’s characteristics as the crack advances.

During the latter half of the 20th century, there were remarkable quantitative

and qualitative discoveries in the study of fractography and crack analysis. Many

mathematicians and physicists made significant contributions to this field, which

have greatly impacted fatigue analysis of material. The first person that comes

to recognise is Rice (1968), who developed exceptional fracture criterion in almost

every domains of fracture and the crack analysis. Starting in the mid-1960s, he

introduced a path-independent integral, J-integral concept for the analysis of the

nature of cracks, which served as the base for nonlinear fracture mechanics, and

more recently he has made contributions to 3D dynamic crack problems. A number

of research articles had been addressed in this topic by Geubelle and Rice (1995),

Cochard and Rice (1997), Morrissey and Rice (1998). Russian scientist Kostrov

(1966) found solutions of many challenging problems and developed Kostrov source

model which was effective for the analysis of dynamics of earthquake rupture as

well as propagation of dynamic crack. He was also the 1st seismologist to find a

solution to the non constant crack expansion model. Material scientist Freund (1972)

published a research articles on crack propagation in solid structure under constant

velocity along with other physical issues, like stress wave interaction with cracks,

that helps to anticipate the conditions under which cracks will advance in materials
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and can be utilized to design more resilient materials. Also, some fundamental works

and basic concepts dealing with fatigue of materials have been described in the books

by Sih and Chen (2012), Freund (1998), Anderson (2017), and Love (1927).

Dynamic fracture mechanics deals with the mechanics of static or dynamic

moving cracks in solid materials, where the influences of material inertia and stress

wave interaction play a vital role. Therefore, the profound understanding of fracture

mechanics is crucial in developing effective strategies for designing new structures

that can withstand dynamic loads and prevent catastrophic failure of the material.

In general, dynamic fracture problems can be classified as follows

■ Solids with stationary cracks under dynamic loading.

■ Solids with dynamic and moving crack subject to quasi-static loading.

■ Solids with dynamic and moving crack subject to dynamic loading.

It is commonly accepted that the Earth is encompassed by a magnetic field that

emanates from its core. As a result, it is imperative to take into account the impact

of the magnetic field when dealing with a fractured elastic medium. The presence of

a magnetic field can lead to interaction with any charged particles or currents within

the cracked elastic medium, resulting in fascinating and valuable phenomena such

as magnetostriction, and electromagnetic induction etc. These phenomena can be

applied to control the performance of sensors and actuators made from elastic ma-

terials, generate electrical power through the process of electromagnetic induction,

develop mechanical motion in elastic media which is exploited in electric motors,

store and retrieve information in magnetized memory devices, such as hard drives

and magnetic tapes etc. When a wave encounters the crack or flaws in an elastic

material subjected to an external magnetic field, some of the energy of the wave is

reflected back, while some is passes through the crack. The transmitted energy can
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interact with the crack and result it to grow through the crack tip, which can lead

to catastrophic failure of the material structure. Therefore when cracks are present

in material, understanding the behavior of waves is very crucial for assessing the

structure’s integrity and anticipating its failure. One practical way to achieve this is

formulating a physical problem related to the diffraction of elastic waves. Generally

there are two categories of diffraction problems, the first approach involves the wave

diffraction by semi-infinite plane that contain cracks in the elastic medium and the

second approach includes the diffraction of waves influenced by inclusions such as

circular disc, rigid strips, cone, elliptical disc or barrier of several random shape.

Problems related to mechanics of solids may be divided into two types with respect

to the solution, the first one is precise analytical solutions and the other one is ap-

proximate solutions estimated by several numerical techniques. In real situation, it

seems tough to find exact analytical solution. For this reason, several techniques

have been derived to address the solution regarding the characteristic of solid struc-

tures that contain crack. The complex variable technique is one of these numerical

method to solve 2D mixed boundary value problems. The other well-known recent

technique to solve these physical problem is the integral equation approach where

the components of displacements are expressed in terms of potential function to

reduce mathematical computations.

Many structural materials contain cracks, which can result from inherent

imperfections or manufacturing methods. Many times, the cracks are negligibly

tiny, meaning that they have little effect on the material’s strength. However, in

other cases, the cracks are significant enough or could grow to be large enough to

cause fatigue, corrosion etc. Mainly three types of cracks are observed in engineering

structure and they are classified as Opening Mode, Sliding Mode and Tearing Mode.
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■ Opening Mode

The opening mode of crack takes place when the crack surfaces are pulled

apart in reverse directions, perpendicular to the crack’s plane. This means that the

tension acts perpendicular to the crack surface and the crack advances because of

the detachment of the material along the crack’s plane. This kind of fracture is often

observed in brittle materials like ceramics, glass, and certain types of polymers

Fig.1.5 Opening Mode

■ Sliding Mode:

The sliding mode of crack refers to a fracture mode where the crack surfaces

slide against each other parallel to the crack’s plane. In this mode, the tension acts

parallel to the crack plane and perpendicular to the direction of crack propagation.

This type of fracture is typically observed in materials like metals, as well as certain

polymers and composites.

Fig.1.6 Sliding Mode

■ Tearing Mode:

The term tearing mode describes a particular sort of fracture in which the crack

surfaces move relative to each other in a direction that is perpendicular to the plane
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of the crack. It occurs when the stress acts perpendicular to the crack plane and

parallel to the direction of crack propagation. This type of fracture is not common

like opening and sliding mode, it can occur in some materials that have complicated

geometries, such as thin sheets or laminates.

Fig.1.7 Tearing Mode

Such pre-existing cracks in a material lead to stress concentration in the neigh-

bourhood of the tip of the crack, which causes a singularity or a sharp increase in

stress levels. The traditional analytical inspection of fracture mechanics entails com-

puting those singular stress and displacement fields near the crack vicinities. These

singular stress helps physicist to develop a failure criterion of a continuum model, like

the homogeneous isotropic linearly elastic continuum, anisotropic continuum under

the influences of body force and surface force. One fundamental failure criterion is

to calculate the stress intensity factor, which is generally denoted by K. In fracture

mechanics, the stress intensity factor is a key parameter that helps to predict the

stress state distribution near the vicinity of the crack caused by an external load or

subjected to a body force like Lorentz force. It is a significant method in the domain

of damage tolerance for brittle materials and it is a theoretical construct for linear

elastic material. This concept can also be extended to materials that display small

scale yielding near about the crack tip. The value of stress intensity factor (K) is

influenced by various factors, including the geometry and the size of the crack, the

distribution of applied loads, materials properties, mode of loadings. According to

the linear elastic theory, the stress distributions (σij) around the crack vicinity can
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be written in terms of polar coordinate (r, θ) as

σij(r, θ) =
K√
2πr

G(θ), (1.16)

where G(θ) indicates a dimensionless quantity and its value depends on the loading

type and geometry of the cracks.

From the equation (1.16), it concludes that the stress distribution becomes intensely

localized and the magnitude of the stress escalates rapidly when the distance (r)

from the crack tip diminishes resulting in a square root singularity in the stress

distribution.

To describe the stress state around the crack tip, stress intensity factors for three

different modes of fracture can be defined by neglecting the square root singularity

as

K(I) =
√
2π limr→0

√
r σyy(r, 0),

K(II) =
√
2π limr→0

√
r σxy(r, 0),

K(III) =
√
2π limr→0

√
r σyz(r, 0),

where the suffixes (I), (II), (III) represent the SIF for opening mode, sliding mode

and tearing mode.

There are primarily two major categories of fracture mechanics problems that are

treated as dynamic problems. The first category includes elastic bodies with cracks

that experience rapidly changing loads, while the second category involves bodies

that contain cracks which grows so fast. The crack tip surroundings is disturbed by

the diffraction or scattering of wave motions in both of these categories. Vibration

analysis of the elastic medium and the effect of several loading on the cracks fall into

the first category of dynamic problem. In the analysis of these kind of problems,
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it is frequently found that at nonhomogeneities in a body, the dynamic stresses is

calculated by considering static equilibrium. Numerous engineering structures en-

counter the issue of rapid crack growth in various forms, such as gas transmission

pipelines, nuclear reactor, automobile engine, ship hulls, and aircraft fuselages. The

use of elastic waves in seismology and geophysics has become increasingly relevant in

recent years, but one major challenge is their diffraction or scattering effect when en-

countering cracks or other structural irregularities. The investigation of propagation

of waves can be done by considering a mixed boundary value problems.

If cracks or inclusions present in a composite medium when the medium is

subjected to an externally applied magnetic field, the analysis of singular stress field

and the diffraction of waves become more challenging. Numerous researchers have

investigated various types of elastodynamic problems for different kind of elastic

materials with several geometry regarding to the position of cracks. Mandal and

Ghosh (1994) studied the response of a series of coaxial Griffith cracks in an infinite

orthotropic plane to time harmonic elastic waves that propagate in the direction

normal to the plane.

The dispersion effect of a normally incident shear wave by two symmetrically

placed co-planar finite rigid strips in an infinitely long elastic strip that is perpendic-

ular to the lateral surface was investigated by Pramanik et al. (1999). The study also

includes the prediction of the dispersion coefficient of the elastic strip. Transient SIF

of a cracked elastic structure where the crack is located within a non-homogeneous

layer sandwiched by two distinct elastic half-planes have been analyzed by Itou

(2001). The study conducted by Matysiak and Pauk (2003) focused on the model

that is based on edge cracks in an elastic layer lying on the Winkler foundation. The

dynamic behaviour regarding a crack located at the edge of a functionally graded

orthotropic strip was examined by Guo et al. (2005). Kadıogˇlu (2005) investigated

elastodynamic response related to an edge crack located within a hollow cylinder
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made of transversely isotropic substance. Munshi and Mandal (2006) addressed the

P-wave diffraction problem caused by an edge crack inside an infinitely long elas-

tic strip. The singular stress field of a 3D interfacial crack in different anisotropic

materials was analyzed by Nagai et al. (2007).

The model of a flexible elastic plate with a stiff core on the ground (saturated)

under the influence of a vertical vibration was examined by Chen et al. (2007). Vi-

bration phenomena due to the cracks inside a generalized anisotropic elastic plane

have been discussed by Willis and Movchan (2007). Matbuly (2008) analyzed the

propagation behaviour of mode-III crack located at the interface of a functionally

graded material and an isotropic material. Eskandari-Ghadi et al. (2011) described

rigid circular disc’s vibration effect in an infinitely extended transversely isotropic

elastic plane and examined that stress singularity exists near the edge of the disc.

Ding and Li (2014) considered a series of cracks which are collinear in nature and lo-

cated within a functionally graded coating-substrate made of orthotropic media and

analyzed the singular nature of the stress in the neighbourhood of crack vicinities.

Basak and Mandal (2019) developed fracture criterion for a crack (semi-infinite)

located at the juncture of two distinguished elastic strips made of isotropic mate-

rial based on the Wiener-Hopf approach. Singh et al. (2020) calculated the SIF

and COD around the rim of a crack (semi-infinite) which propagates in a linear

orthotropic strip of finite width implanted between two identical type half-planes.

Mandal (2020) derived implicit expressions of SIF and COD near a crack (semi-

infinite) moving along the intersection of a strip of finite width and an isotropic half

plane to analyzed the scattering phenomena of shear loads. Naskar et al. (2023)

solved a physical problem of the dispersion of longitudinal wave caused by the pres-

ence of three cracks of finite length under sudden load which acts normally to the

crack surfaces.

To generate novel structural designs, advance material characterization, and
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optimize their performance, it is crucial to address the influence of torsional waves

in order to mitigate damage to solids during earthquakes and other real-world sce-

narios. Torsion is a type of wave disturbance that generates pressure on crack and

disc surfaces, triggering crack propagation and creating stress fields around circular

sections within engineering solids. Torsional waves can occur in any type of solid

structure like beams, columns, shafts, and plates, etc. Also, in the field of engi-

neering foundations, creating a composite structure under the effect of a magnetic

field is a challenging process but the resulting magnetized composite structures ex-

hibit high mechanical performance, such as high-stiffness, lightweight phenomena,

flexibility, durability, etc. So the application of magnetic field in the production of

composite materials can be crucial in accomplishing the desired material properties

and performances. In fracture analysis, the response of layered composites having

cracks or inclusions is highly influenced by the anisotropic nature of the materials

and the external magnetic field.

Wang et al. (2000) explored the fracture configuration for multi-layers structure

containing a circular crack influenced by torsional load. Selvadurai (2002) solved an

axisymmetric problem related to the tensile loading on the surface of a penny shaped

crack in a homogeneous elastic space. Manna et al. (2003) investigated the physical

model of a rigid disc oscillating within an infinite cylinder subjected to an initial tor-

sion. Huang et al. (2005) investigated the stress field and displacement field around

a circular shaped crack placed within a heterogeneous elastic media under the effect

of torsion. Wu (2006) studied the adhesive characteristics between a circular disc

having nano-scale dimension and an infinite elastic surface. Li and Kardomateas

(2006) examined the interface crack problem in tearing mode for bi-material en-

gineering structure that have distinct piezo-electro-magneto-elastic properties. An

analytic way of describing the stress for a circular crack incorporating with spherical

inclusions and(or) voids in an infinite elastic space was discussed by Lee and Tran
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(2010). The physical phenomena of torsional vibration of a rigid circular shaped

interfacial crack positioned at the juncture of two dissimilar homogeneous elastic

media was analyzed by Basu (2014). Hu and Chen (2015) focused on the Mode one

crack phenomenon in a magnetoelectroelastic strip that is embedded between two

distinct isotropic half-planes and investigated the fracture toughness of the structure

under the impact of some mechanical, electric, and magnetic loads.

The axisymmetric mixed boundary value problem regarding the influence of

torsional oscillations on a crack of finite radius in a homogeneous elastic layer was

solved by Basu and Mandal (2016). Karan et al. (2018) discussed dynamic stress

intensity factor due to the presence of penny-shaped crack in a three-component

elastic structure consisting of two dissimilar half-spaces and an intermediate layer.

Propagation of torsional waves through a perfectly conducting electric medium con-

taining circular crack subjected to a thermal and magnetic load was investigated

by Li et al. (2017). Madani and Kebli (2019) analyzed and resolved the issue of

axisymmetric torsion in an elastic layer embedded between two semi infinite elastic

planes when the layer is weakened by two interfacial penny shaped crack. Panja and

Mandal (2021b) discussed the magneto elastic coupling effect on a crack of finite

length placed inside a homogeneous strip. The stress–strain state and the crack tip

field of a ferromagnetic elastic structure containing a crack under the effect of an

external magnetic field was discussed by Baghdasaryan (2023).

Based on the literature survey described above, we will present our thesis in indi-

vidual chapters as outlined below:

In our research project we have investigated some physical problems having

mixed boundary conditions related to the geometry of the location of cracks. In

Chapter 2, we present a brief summary of the standard numerical approaches and

techniques we employed to address these problems.
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Chapter 3 investigates the P-wave diffraction by an asymmetric crack in an

isotropic strip under an external impact load. The crack is suddenly loaded by

a normal stress such that the crack surfaces displaced in reverse directions. The

problem has been transformed into two integral equations and the dual integral

equations have been solved with the application of Abel’s transform and reduced into

a Fredholm integral equation of second kind in the Laplacian domain. The reduced

integral equation has been solved numerically by employing Fox and Goodwin’s

method. Time dependent stress intensity factor has been calculated numerically

by Zakian’s Laplace inversion approach and displayed graphically for different time

interval to demonstrate the influence of impact load over the crack surface.

In the first section of Chapter 4, interaction of shear waves by two collinear fi-

nite cracks in an infinite magnetoelastic orthotropic medium has been analyzed. The

physical phenomena of wave interaction have been formulated as a mixed boundary

value problem (MBVP). The MBVP has been solved with the help of Abel’s trans-

form and Hilbert transformation. The analytic expression of stress intensity factors

and crack opening displacement have been computed and demonstrated graphically

to exhibit the effect of magnetization on elastic media.

In the second section, an analytical solution of the magneto-elastic coupling

effect on the dispersion of longitudinal waves in a magnetize isotropic elastic solid

containing three co-linear cracks has been investigated. The semi-analytical expres-

sions of crack opening displacement and stress intensity factors have been derived

related to low frequency waves. Numerical outcomes of crack opening displacement

and stress intensity factors for several crack lengths with the presence of magnetic

field have been computed and presented graphically.

In the Chapter 5, we considered the response of torsional impact on a penny

shaped crack positioned at the intersection of an isotropic half space and a trans-

versely isotropic magnetoelastic layer of finite thickness. The physical problem has
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been converted to a pair of dual integral equation with the use of boundary con-

ditions, Laplace and Hankel transformation approach. A trial solution has been

considered to reduce dual integral equations into a Fredholm integral equation in

the Laplacian domain. Later, Fox and Goodwin’s procedure has been adopted to

solve the reduced integral equation numerically. The implicit expression of stress

intensity factor around the crack periphery has been calculated utilizing Zakian’s

inversion formulae and displayed graphically against time for different parameters

to demonstrate the influence of torsional impact and the magnetized layer over the

crack boundary.
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Methodology

The physical phenomena of wave interaction by single or multiple cracks can

be formulated as a mixed boundary value problem (MBVP). Generally, the aim of

structural engineer is to resist the propagating crack once it started growing. De-

termination of singular stress field and displacement field around crack vicinities

are crucial to arrest the crack propagation. Most of the fracture mechanics prob-

lems involve complex geometries such as irregular shapes or structures with varying

thicknesses, multiple cracks, various loading conditions like torsional load, magnetic

field, which are difficult to solve using analytical methods. So, evaluation of singu-

lar stresses and strains can only be done by employing several numerical approaches

also. We have employed following methods in our research work to investigate mixed

boundary value problems.

1. Abel’s Integral Approach.

2. Dual Integral Equations Method.

3. Hankel Transformation.

4. Numerical Solution of Fredholm Integral Equation of 2nd kind.

33



2. Methodology 34

5. Numerical Inversion of Laplace Transform using Zakian Algorithm.

2.1 Abel’s Integral Approach

Abel’s integral equation having singular kernel is utilized to transform the pair

of integral equation into a single Fredholm type integral equation.

First kind Abel’s integral equation with singular kernel is

α(ζ) =

∫ ζ

a

β(x)dx√
ζ − x

, (2.1.1)

where α(ζ) is a given function, β(x) represents an unknown function which is to be

determined, and the kernel l(ζ, x) = 1√
ζ−x

→ ∞ as x→ ζ is unbounded.

The unknown function in the equation (2.1.1) is obtained as

β(ζ) =
1

π

d

dζ

∫ ζ

a

α(x)dx√
ζ − x

=
α(a)

π
√
ζ − a

+
1

π

∫ ζ

a

α′(x)dx√
ζ − x

. (2.1.2)

The general form of first kind Abel’s integral equation is expressed as

α(ζ) =

∫ ζ

a

β(x)dx

(ζ − x)m
, 0 < m < 1, (2.1.3)

and the solution of (2.1.3) is

β(ζ) =
sin(πm)

π

d

dζ

∫ ζ

a

α(x)dx

(ζ − x)1−m
=

sin(πm)

π

[
α(a)

(ζ − a)1−m
+

∫ ζ

a

α′(x)dx

(ζ − x)1−m

]
.

(2.1.4)
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2.2 Dual Integral Equations Method

The method of dual integral equations is a valuable tool for solving mixed

boundary value problems. In this method the pair of dual integral equations can

be transformed to a single Fredholm integral equation containing some unknown

variable with the help of Abel’s transform and the implicit form of the unknown

function can be derived through straightforward integration technique.

Assume that a mixed boundary value problem has been transformed using

some appropriate integral transforms, resulting in a pair of dual integral equations

given by

∫ ∞

0

x−1
[
1 +K(x)

]
S(x)Jν(rx)dx = f(r), 0 ≤ r < a (2.2.1)

∫ ∞

0

S(x)Jν(rx)dx = g(r), r > a, (2.2.2)

where K(x), f(r) and g(r) represent known functions. Based on the work of Noble

(1963), the following result is derived

S(x) =

√
2x

π

[∫ a

0

t1/2θ(t)Jν− 1
2
(xt)dt+

∫ ∞

a

tν+
1
2G(t)Jν− 1

2
(xt)dt

]
, (2.2.3)

where the unknown function θ(t) satisfies the following Fredholm integral equation

θ(t) +
1

π

∫ a

0

M(τ, t)θ(τ)dτ = t−νF (t)−H(t), 0 < t < a (2.2.4)

in which

M(τ, t) = π
√
τt

∫ ∞

0

xK(x)Jν− 1
2
(τx)Jν− 1

2
(tx)dx, ν > −1

2
, (2.2.5)

F (t) =
d

dt

∫ t

0

f(r)rν+1(t2 − r2)−1/2dr, (2.2.6)
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H(t) = t1/2
∫ ∞

0

xK(x)Jν− 1
2
(xt)dx

∫ ∞

a

ξν+
1
2G(ξ)Jν− 1

2
(xξ)dξ, (2.2.7)

G(ξ) =

∫ ∞

ξ

g(r)r−ν+1(r2 − ξ2)−1/2dr. (2.2.8)

By solving the integral equation (2.2.4), θ(t) can be obtained, which in turn lead to

the determination of the desired S(x).
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2.3 Hankel Transformation

The Hankel transform is a generalization of the Fourier transform and it

is often used in solving boundary value problems involving cylindrical or spherical

symmetry. This transform is used to convert Laplace’s partial differential equation

in cylindrical coordinates to an ordinary differential equation. Let h(s) is a function

defined for r ≥ 0. The mth order ”Hankel transform” of h(s) can be stated as

Hm(u) =

∫ ∞

0

sh(s)Jm(su)ds. (2.3.1)

Here Jm(su) represents first kind Bessel function with order m and sJm(su) repre-

sents kernel related to the transformation. If m > −1
2
, an inversion formula known

Hankel inversion is defined by the following integral

h(s) =

∫ ∞

0

uHm(u)Jm(su)du. (2.3.2)

Conditions that are sufficient but not essential for the validity of (2.3.1) and (2.3.2)

are

1. h(s) = 0(s−ν) for s→ ∞ and ν > 3
2
.

2. The function h′(s) is continuous function on every bounded sub interval of the

unbounded interval [0, ∞).

3. The function |h(s)| must be integrable over the range [0,∞).
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2.4 Numerical Solution of Fredholm Integral Equa-

tion of 2nd kind

Sometimes it is impossible to solve an integral equation directly. In such cases,

an important numerical tool developed by Fox and Goodwin (1953) is employed to

solve the problem. This method consists of representing the integral equation as a

system of linear equations of desired function, where the known variables are the

pivot values of the desired function. Then the values of the desired function can be

determined using difference correction approach.

The first and second kind Fredholm-type equations are expressed as follows

∫ b

a

L(ζ, ξ)α(ξ)dξ = β(ζ), (2.4.1)

∫ b

a

L(ζ, ξ)α(ξ)dξ = β(ζ) + α(ζ). (2.4.2)

Also, another type of integral equation is given by

λ

∫ b

a

L(ζ, ξ)α(ξ)dξ = β(ζ). (2.4.3)

Here α(ξ) is the desired function which is to be calculated and L(ζ, ξ), β(ζ) are

known either in analytic form or in numeric form. For solving the equation (2.4.3),

we need to compute the eigen vectors corresponding to each eigen values λ.

For each cases mentioned above, we will represent the integral as a linear equation in

terms of arL(ζs, ξr)α(ξr). To achieve this, we must look at certain formulae regarding

numerical integration.
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Numerical Integration:

In general, the integral formula involving differences is more preferable over

the Lagrangian type formulae. The best finite-difference integration formulae is

expressed in the form

1

h

∫ a+nh

a

α(ζ)dζ =
1

2
α0 + α1 + .....+ αn−1 +

1

2
αn +∆, (2.4.4)

where αi = α(a + ih), i = 0, 1, 2, ......., n and ∆ denotes the difference correction

operation related to function α(ζ).

For n = 1, the integral is calculated between two nearby pivotal points a and a+ h

and using central differences we get the following result

1

h

∫ a+h

a

α(ζ)dζ =
1

2
(α0 + α1)−

1

12
µδ2α 1

2
+

11

720
µδ4α 1

2
(2.4.5)

and for generalised case

1

h

∫ a+nh

a

α(ζ)dζ =
1

2
α0 + α1 + ...+ αn−1 +

1

2
αn +∆, (2.4.6)

where

∆ =

(
− 1

12
∆1 +

1

24
∆2 − 19

720
∆3...

)
(αn − α0). (2.4.7)

Each of these formulae use differences that are derived from pivotal points lying

outside the integration range. If we consider the pivot point inside the range of

integration then equation (2.4.6) can be converted into a formula by rewriting the
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difference correction ∆ as

∆ =

(
− 1

12
∇1 +

1

24
∇2 +

19

720
∇3...

)
αn

+

(
1

12
∆1 − 1

24
∆2 +

19

720
∆3...

)
α0.

(2.4.8)

This modified difference correction incorporates the Gregory’s integration formula.

Our main ally in solving Fredholm type integral equations is the Gregory integration

formula. We are only interested of its solution at pivotal points under a designated

range of the integration.

Solution of Fredholm’s Equation of the Second Kind:

We commence by addressing 2nd kind Fredhlom’s equation which is represented

in equation (2.4.2). Utilizing the value of the integration given by (2.4.4), equation

(2.4.2) may be written as follows

h
[
1
2
L(ζ, 0)α0+L(ζ, 1)α1+ ...+L(ζ, n− 1)αn−1+

1
2
L(ζ, n)αn+∆(ζ)

]
= β(ζ)+α(ζ),

where L(ζ, x) gives the value of L(ζ, ξ) at (ζ, xh). Once all pivotal points are taken

into account, the integral equation (2.4.2) can be reduced to a group of (n+1) linear

simultaneous equations as

h

[
1

2
L(r, 0)α0 + L(r, 1)α1 + ...+ L(r, n− 1)αn−1 +

1

2
L(r, n)αn +∆r

]
= βr + αr,

(2.4.9)

where L(r, x) gives the value of L(ζ, ξ) at (rh, xh), r = 0, 1, 2, ..........n. By

rearranging αr and ∆r, equation (2.4.9) can be written as

[
1− 1

2
hk(0, 0)

]
α0 − hL(0, 1)α1...− hL(0, n− 1)αn−1 −

1

2
hL(0, n)αn

= −β0 + h∆0,
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−1

2
hL(1, 0)α0 + [1− hL(1, 1)]α1...− hL(1, n− 1)αn−1 −

1

2
hL(1, n)αn

= −β1 + h∆1,

.................................................................................................. (2.4.10)

−1

2
hL(n− 1, 0)α0 − hL(n− 1, 1)α1...+ [1− hL(n− 1, n− 1)]αn−1

−1

2
hl(n− 1, n)αn = −βn−1 + h∆n−1,

−1

2
hL(n, 0)α0 − hL(n, 1)α1...− hL(n, n− 1)αn−1 +

[
1− 1

2
hL(n, n)

]
αn

= −βn + h∆n.

We will briefly discuss some potential possibilities for solving these equations.

According to Gregory formulae, the difference corrections ∆r are linear functions

of αr. These linear functions would be known if we know the order of the most

significant difference in (2.4.8). ∆r in (2.4.8) could therefore be moved to the left,

leading to a set of linear equations for αr that would have distinct coefficients.

As an alternative we may select a very tiny interval with the goal of making ∆r

insignificant. This could require solving a large number of linear equations, which can

be a time-consuming process and increase the risk of errors due to poor conditioning.

So, we could solve the equation by retaining up to the fourth differences in ∆, and

then comparing the result by retaining up to the sixth differences.

In iterative method, we obtain an initial approximation to the desired solution

by omitting the ∆r in equation (2.4.10). For each ζ we then compute difference

between L(ζ, 0)α0 and L(ζ, 1)α1, using the calculated approximation of αr. Then

all ∆r can be computed and added in the right-hand side of equations (2.4.10) for

correction. Next, necessary corrections to αr are done trivially and the similar step

is iterated until there is no further change.
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This method represented symbolically as follows. IfM represents the coefficient

matrix related to αr, β is the vector having components as βr and ∆ represents the

vector with components ∆r, we solve the equations sequentially as

Mα(0) = −β,

Mα(1) = h∆(α(0)),

Mα(2) = h∆(α(1)),

.........................,

and the final solution is

α = α(0) + α(1) + α(2) + .......

The methodology is equivalent to that of Fox (1949) when tackling problems that

contains differential equations with mixed boundary conditions. The length of in-

terval h can be any value but our aim is to minimize the number of linear equations

so that we can get appropriate finite-difference equations, and therefore, the interval

should not be too large.
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2.5 Numerical Inversion of Laplace Transform us-

ing Zakian Algorithm

This numerical approach is one of a class of techniques where the Laplace

inverse l(t) of L(p) is calculated as a sum of a finite series

l(t) =
∑M

r=1KrL(pr),

where the nodes pr, weights Kr, and M are computed by a specific technique.

As per Zakian’s algorithm (Rice and Duong (1995)), the time function l(t)

can be found by computing the value of the sum of the products of weights and

exponential functions

l(t) =
∑M

r=1Kre
xrt.

The Zakian algorithm is particularly useful for functions having singular or oscil-

latory behavior, since it can flawlessly capture such configurations having small

number of poles. This algorithm gives accurate value for over damped and slightly

underdamped configuration, but it is inaccurate for systems that oscillate for a long

time.

The Following formula enables us to get the numeric value of l(t) which is the Laplace

inversion of L(p)

l(t) = 2
t

∑5
r=1REAL (Kr, L(

xr

t
)).

The values of the nodes (xr) and the weights (Kr) are given by
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r xr Kr

I 12.83767675 + i1.666063445 −36902.08210 + i196990.4257

II 12.22613209 + i5.012718792 61277.02524− i95408.62551

III 10.93430308 + i8.409673116 −28916.56288 + i18169.18531

IV 8.776434715 + i11.92185389 4655.361138− i1.901528642

V 5.22543361 + i15.72952905 −118.7414011− i141.3036911

The implementation of Zakian’s Algorithm is straightforward and yields fast com-

putations. But this algorithm fails to determine the initial phase value l(0) of the

function l(t). Also, the numeric values of l(t) becomes incorrect after the second

oscillation.
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Chapter 3

Impact Response on a Crack at Asymmetric

Position in an Elastic Strip

■ Introduction

Mechanics of fracture is a crucial branch of solid mechanics that analyzes

the behavior of existing cracks, which arise in a solid engineering structure because

of manufacturing obliquity, heavy loadings, negligence in maintenance, and natural

catastrophe like earthquake or flood. Whenever a cracked body is experienced an

impact load, existing crack may propagates which affects the rigidity and integrity of

the material. These flaws create obstruction for the completion of a solid structure.

Researchers try to develop new approaches by which the circulation of cracks or

flaws can be resisted. One such approach is the determination of stress intensity

factor that helps to characterise the singular stress at the vicinity of the crack when

the external load is applied. Sih and Chen (1977) calculated singular stress field

near the crack vicinity of various crack problem. Nilsson (1972) analyzed dynamic

stress intensity factor for the problem of elastic wave diffracted by a crack situated

in an elastic strip of finite width. An analysis of normally incident elastic waves

by a Griffith crack of finite length located in an isotropic plate was done by Mal

46
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(1970). Srivastava et al. (1981) have discussed the singular stress distribution near

the tip of a Griffith crack in an infinitely extended elastic strip. Naskar and Mandal

(2018) have investigated the diffraction effects of longitudinal wave by a finite crack

whenever an impact load is applied throughout the surface of the crack. With the

consideration of a semi infinite cracked elastic strip, Shindo et al. (1986) computed

stress intensity factor near the crack tips. Knauss (1966) evaluated asymptotic stress

field as a function of crack length and strip width in a cracked infinite strip. The

problem of finite edge crack in a semi-infinite elastic strip of finite width caused by

the normal impact has been investigated by Das et al. (2008). Wang et al. (2001)

proposed a method to calculate the dynamic stress intensity factors in a Laplace

transform plane for a crack located in a non uniform elastic media. Mishra et al.

(2016) have studied propagation of longitudinal waves in a cracked elastic structure

by integral equation method and showed that crack propagation can be arrested.

Itou (2004) was made an effort to obtain an analytic expression of stress intensity

factor near the crack tips where the crack lies in a non uniform elastic layer which is

also bonded by two elastic half spaces. The in-plane problem of diffraction of elastic

wave by an edge crack contained in an infinitely extended elastic strip was solved

by Munshi and Mandal (2006). Li (2005) investigated the fracture behaviour of

an orthotropic elastic strip containing an inter facial crack which is in symmetrical

position inside the strip.

The problems analyzed by above mentioned authors deal with cracks located

either in an infinite medium or at symmetric position in strip. In some cases, the

crack location in the elastic body is not symmetrical with respect to boundary line

ant it is difficult to detect the position of such crack as it includes additional bound-

ary conditions. Therefore, the main point of the current approach is to analyzes the

effect of impact load applied over the surface of the crack positioned in an asym-

metric location in an isotropic strip by determining the stress field around the crack
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vicinity. The diffraction effects of P-wave by a finite Griffith crack located in an

infinite isotropic strip under the effect of an impact load formulated as an MBVP.

In these type of problems, the crack is suddenly loaded by an equal and opposite

normal stresses such that the crack surfaces displaced in reverse directions. The

MBVP has been transformed into integral equations with the help of Laplace trans-

form, Fourier transform, and boundary conditions. Considering a trial solution,

dual integral equations have been solved with the application of Abel’s transform

and reduced into a Fredholm integral equation of second kind in Laplacian domain.

The reduced integral equation has been solved numerically by employing Fox and

Goodwin’s method. The time dependent expression of stress intensity factor has

been derived by Zakian’s Laplace inversion approach and displayed graphically for

different time interval to show the influence of impact load over the crack surfaces.

■ Problem Construction

Let us assume a Griffith crack located in an infinite elastic strip given

by −b1 ≤ x1 ≤ c1 subject to an external impact load and the crack location is

|x1| ≤ a, y1 = 0, |z1| < ∞. Normalizing all the lengths by a constant ‘a’ and sub-

stituting x1

a
= x, y1

a
= y, z1

a
= z, b1

a
= b, c1

a
= c, new location of the crack and strip

is found to be |x| ≤ 1, y = 0, |z| < ∞ and −b ≤ x ≤ c (Fig.3.1) regarded to the

Cartesian frame of reference (x, y, z).

c-b -1 1 X

Y

Z

Fig.3.1 Crack Geometry.
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Let an external load of magnitude τ0 acts normally on each crack surface at

time t = 0. In this problem longitudinal wave propagates in the xy plane, so τyy, τxx

and τxy are the non zero stresses and u and v are the non zero displacements only.

With the help of Helmholtz decomposition, non-vanishing stress and displacement

components can be expressed in terms of wave potentials ϕ and ψ (Panja and Mandal

(2021a)) as

u =
∂ϕ

∂x
− ∂ψ

∂y
,

v =
∂ϕ

∂y
+
∂ψ

∂x
.

(3.1)

The wave equation depending on ϕ and ψ are as follows

∂2ϕ

∂x2
+
∂2ϕ

∂y2
=
a2

c21

∂2ϕ

∂t2
, (3.2)

∂2ψ

∂x2
+
∂2ψ

∂y2
=
a2

c22

∂2ψ

∂t2
, (3.3)

where c1 =

(
λ+2µ

ρ

) 1
2

, c2 =

(
µ
ρ

) 1
2

are the velocities of dilatational and shear wave,

µ and λ are the shear moduli, and ρ is the material density.

The boundary conditions are

τyy(x, 0, t) = −τ0H(t), |x| ≤ 1, (3.4)

τxy(x, 0, t) = 0, − b ≤ x ≤ c, (3.5)

v(x, 0, t) = 0, − b ≤ x ≤ −1, 1 ≤ x ≤ c, (3.6)

τxy(−b, y, t) = 0, −∞ < y <∞, (3.7)
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τxx(−b, y, t) = 0, −∞ < y <∞, (3.8)

τxy(c, y, t) = 0, −∞ < y <∞, (3.9)

τxx(c, y, t) = 0, −∞ < y <∞, (3.10)

where H(t) is the unit step function.

Variable t can be transformed to a parameter p with the help of Laplace Transform

defined as

α∗(p) =

∫ ∞

0

α(t)e−ptdt

with inverse

α(t) = 1
2πi

∫
Br

α∗(p)eptdp,

where Br indicates Bromwich path of the integration.

Laplace transform converts the equations (3.2) to (3.10) into the following form

∂2ϕ∗

∂x2
+
∂2ϕ∗

∂y2
= k21ϕ

∗, (3.11)

∂2ψ∗

∂x2
+
∂2ψ∗

∂y2
= k22ψ

∗ (3.12)

where

k21 =
a2p2

c21
, k22 =

a2p2

c22

and

τ ∗yy(x, 0, p) = −τ0
p
, |x| ≤ 1, (3.13)

τ ∗xy(x, 0, p) = 0, − b ≤ x ≤ c, (3.14)

v∗(x, 0, p) = 0, − b ≤ x ≤ −1, 1 ≤ x ≤ c, (3.15)
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τ ∗xy(−b, y, p) = 0, −∞ < y <∞, (3.16)

τ ∗xx(−b, y, p) = 0, −∞ < y <∞, (3.17)

τ ∗xy(c, y, p) = 0, −∞ < y <∞, (3.18)

τ ∗xx(c, y, p) = 0, −∞ < y <∞. (3.19)

By separation of variable, the solutions of (3.11) and (3.12) can be written as

ϕ∗(x, y, p) =

∫ ∞

−∞
A1(ξ, p)e

−γ1yeiξxdξ

+

∫ ∞

0

[
A3(ζ, p)e

γ3x + A4(ζ, p)e
−γ3x

]
cos(ζy)dζ (3.20)

and

ψ∗(x, y, p) =

∫ ∞

−∞
A2(ξ, p)e

−γ2yeiξxdξ

+

∫ ∞

0

[
A5(ζ, p)e

γ4x + A6(ζ, p)e
−γ4x

]
sin(ζy)dζ. (3.21)

where γ21 = ξ2 + k21, γ
2
2 = ξ2 + k22, γ

2
3 = ζ2 + k21, and γ

2
4 = ζ2 + k22.

Using (3.20) and (3.21) and applying Laplace transformation on (3.1), displacement

components u∗ and v∗ can be found as

u∗(x, y, p) =

∫ ∞

−∞

[
A1(ξ, p)e

−γ1yiξ + γ2A2(ξ, p)e
−γ2y

]
eiξxdξ

+

∫ ∞

0

[A3(ζ, p)e
γ3xγ3 − A4(ζ, p)e

−γ3xγ3

−ζA5(ζ, p)e
γ4x − ζA6(ζ, p)e

−γ4x] cos(ζy)dζ (3.22)
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and

v∗(x, y, p) =

∫ ∞

−∞

[
−A1(ξ, p)e

−γ1yγ1 + iξA2(ξ, p)e
−γ2y

]
eiξxdξ

+

∫ ∞

0

[A3(ζ, p)e
γ3xζ + A4(ζ, p)e

−γ3xζ

+γ4A5(ζ, p)e
γ4x − γ4A6(ζ, p)e

−γ4x] sin(ζy)dζ. (3.23)

Using the boundary condition (3.14) and puttingA2(ξ, p) = − 2γ1
2ξ2+k22

A(ξ, p), A(ξ, p) =

iξA1(ξ, p), equations (3.22) and (3.23) become

u∗(x, y, p) =

∫ ∞

−∞

[
e−γ1yiξ − 2γ1γ2

2ξ2 + k22
e−γ2y

]
A(ξ, p)eiξxdξ

+

∫ ∞

0

[A3(ζ, p)e
γ3xγ3 − A4(ζ, p)e

−γ3xγ3

−ζA5(ζ, p)e
γ4x − ζA6(ζ, p)e

−γ4x] cos(ζy)dζ (3.24)

and

v∗(x, y, p) = i

∫ ∞

−∞
γ1

[
− 2ξe−γ1y

2ξ2 + k22
+
e−γ2y

ξ

]
A(ξ, p)eiξxdξ

+

∫ ∞

0

[A3(ζ, p)e
γ3xζ + A4(ζ, p)e

−γ3xζ

+γ4A5(ζ, p)e
γ4x − γ4A6(ζ, p)e

−γ4x] sin(ζy)dζ. (3.25)

The non vanishing components of stress are given by

τ ∗yy(x, y, p) = −iµ
∫ ∞

−∞

[
2ξ2 + k22

ξ
e−γ1y − 4ξγ1γ2

2ξ2 + k22
e−γ2y

]
A(ξ, p)eiξxdξ

−µ
∫ ∞

0

[
(
2γ23 + k22){A3(ζ, p)e

γ3x + A4(ζ, p)e
−γ3x

}
−2ζγ4

{
A5(ζ, p)e

γ4x − A6(ζ, p)e
−γ4x

}
] cos(ζy)dζ, (3.26)
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τ ∗xx(x, y, p) = iµ

∫ ∞

−∞

[
2γ23 + k22

ξ
e−γ1y − 4ξγ1γ2

2ξ2 + k22
e−γ2y

]
A(ξ, p)eiξxdξ

+µ

∫ ∞

0

[
(
2ζ2 − k22){A3(ζ, p)e

γ3x + A4(ζ, p)e
−γ3x

}
−2ζγ4

{
A5(ζ, p)e

γ4x − A6(ζ, p)e
−γ4x

}
] cos(ζy)dζ (3.27)

and τ ∗xy(x, y, p) = −2µ

∫ ∞

−∞
γ1
[
e−γ1y − e−γ2y

]
A(ξ, p)eiξxdξ

− µ

∫ ∞

0

[2ζγ3
{
A3(ζ, p)e

γ3x − A4(ζ, p)e
−γ3x

}
− (2ζ2 − k22)

{
A5(ζ, p)e

γ4x + A6(ζ, p)e
−γ4x

}
] sin(ζy)dζ. (3.28)

■ Formation of Dual Integral Equations

As a result of the boundary conditions (3.13) and (3.15), following dual integral

equations have been found

∫ ∞

−∞
B(ξ, p)eiξxdξ = 0, 1 ≤ x ≤ c, − b ≤ x ≤ −1. (3.29)∫ ∞

−∞
[ξ +H(ξ, p)]B(ξ, p)eiξxdξ = p0(x),−1 ≤ x ≤ 1, (3.30)

where B(ξ, p) =
iγ1k

2
2

ξ(2ξ2 + k22)
A(ξ, p), (3.31)

H(ξ, p) =
(2ξ2 + k22)

2 − 4ξ2γ3γ4
γ1k22

− ξ → 0 as ξ → ∞, (3.32)

and p0(x) =
τ0
µp

−
∫ ∞

0

[(2γ23 + k22){A3(ζ, p)e
γ3x + A4(ζ, p)e

−γ3x}

+ 2ζγ4{A5(ζ, p)e
γ4x − A6(ζ, p)e

−γ4x}]dζ. (3.33)
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Employing Fourier inverse transform approach and utilizing boundary conditions

(3.16), (3.17), (3.18), and (3.19), following system of equations of the unknowns

A3(ζ, p), A4(ζ, p), A5(ζ, p) and A6(ζ, p) are obtained

− 2ζγ3{A3(ζ, p)e
−γ3c − A4(ζ, p)e

γ3c}+ (2ζ2 − k22){A5(ζ, p)e
−γ4c

+ A6(ζ, p)}eγ4c =
∫ ∞

−∞
S1(ζ, ξ)B(ξ, p)dξ, (3.34)

(2ζ2 − k22){A3(ζ, p)e
−γ3c + A4(ζ, p)e

γ3c} − 2ζγ4{A5(ζ, p)e
−γ4c

− A6(ζ, p)}eγ4c =
∫ ∞

−∞
S2(ζ, ξ)B(ξ, p)dξ, (3.35)

(2ζ2 − k22){A3(ζ, p)e
γ3b − A4(ζ, p)e

−γ3b}+ 2ζγ4{A5(ζ, p)e
γ4b

+ A6(ζ, p)}e−γ4b =

∫ ∞

−∞
S3(ζ, ξ)B(ξ, p)dξ, (3.36)

and

− 2ζγ3{A3(ζ, p)e
γ3b − A4(ζ, p)e

−γ3b}+ (2ζ2 − k22){A5(ζ, p)e
γ4b

+ A6(ζ, p)}e−γ4b =

∫ ∞

−∞
S4(ζ, ξ)B(ξ, p)dξ, (3.37)

where

S1(ζ, ξ) = −4i
π

[
1

ζ2+γ2
1
− 1

ζ2+γ2
2

]
ζξ(2ξ2+k22)

k22
e−iξc,

S2(ζ, ξ) = − 2
π

[
2γ2

3+k22
ζ2+γ2

1
− 4ξγ2

2

(2ξ2+k22)(ζ
2+γ2

2)

]
ξ(2ξ2+k22)

k22
e−iξc,

S3(ζ, ξ) = − 2
π

[
2γ2

3+k22
ζ2+γ2

1
− 4ξγ2

2

(2ξ2+k22)(ζ
2+γ2

2)

]
ξ(2ξ2+k22)

k22
eiξb,
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S4(ζ, ξ) = −4i
π

[
1

ζ2+γ2
1
− 1

ζ2+γ2
2

]
ζξ(2ξ2+k22)

k22
eiξb.

By Cramer’s rule, expressions of A′
is are calculated as follows

Ai(ζ, p) =
4∑

j=1

δij(ζ, p)

∫ ∞

−∞
Sj(ζ, ξ)B(ξ, p)dξ, i = 3, 4, 5, 6, (3.38)

where δ31(ζ, p) =
H31(ζ,p)
∆(ζ,p)

, δ32(ζ, p) =
H32(ζ,p)
∆(ζ,p)

, δ33(ζ, p) =
H33(ζ,p)
∆(ζ,p)

, δ34(ζ, p) =
H34(ζ,p)
∆(ζ,p)

,

δ41(ζ, p) =
H41(ζ,p)
∆(ζ,p)

, δ42(ζ, p) =
H42(ζ,p)
∆(ζ,p)

, δ43(ζ, p) =
H43(ζ,p)
∆(ζ,p)

, δ44(ζ, p) =
H44(ζ,p)
∆(ζ,p)

,

δ51(ζ, p) =
H51(ζ,p)
∆(ζ,p)

, δ52(ζ, p) =
H52(ζ,p)
∆(ζ,p)

, δ53(ζ, p) =
H53(ζ,p)
∆(ζ,p)

, δ54(ζ, p) =
H54(ζ,p)
∆(ζ,p)

,

δ61(ζ, p) =
H61(ζ,p)
∆(ζ,p)

, δ62(ζ, p) =
H62(ζ,p)
∆(ζ,p)

, δ63(ζ, p) =
H63(ζ,p)
∆(ζ,p)

, δ64(ζ, p) =
H64(ζ,p)
∆(ζ,p)

,

and H31(ζ, p) = −4ζγ4e
γ3c(2ζ2 − k22)

2 + 2ζγ4(2ζ
2

−k22)e−γ3b cosh{γ4(b+ c)} − 8ζ3γ3γ4e
−γ3b sinh{γ4(b+ c)},

H32(ζ, p) = −4ζ2γ3γ4e
−γ3b(2ζ2 − k22) cosh{γ4(b+ c)}

+8ζ2γ3γ4(2ζ
2 − k22)e

γ3c − (2ζ2 − k22)
3e−γ3b sinh{γ4(b+ c)},

H33(ζ, p) = −4ζ2γ3γ4e
γ3c(2ζ2 − k22) cosh{γ4(b+ c)}

+8ζ2γ3γ4(2ζ
2 − k22)e

−γ3b + (2ζ2 − k22)
3eγ3c sinh{γ4(b+ c)},

H34(ζ, p) = 2ζγ4e
γ3c(2ζ2 − k22) cosh{γ4(b+ c)}

−4ζγ4(2ζ
2 − k22)e

−γ3b − 8ζ3γ3γ
2
4e

γ3c sinh{γ4(b+ c)},
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H41(ζ, p) = −2ζγ4e
γ3b(2ζ2 − k22)

2 cosh{γ4(b+ c)}

−4ζγ4(2ζ
2 − k22)

2e−γ3c − 8ζ3γ3γ
2
4e

γ3b sinh{γ4(b+ c)},

H42(ζ, p) = −2ζ2γ3γ4e
γ3b(2ζ2 − k22) cosh{γ4(b+ c)}

+4ζ2γ3γ4(2ζ
2 − k22)e

−γ3c + (2ζ2 − k22)
3eγ3b sinh{γ4(b+ c)},

H43(ζ, p) = −4ζ2γ3γ4e
−γ3c(2ζ2 − k22) cosh{γ4(b+ c)}

−8ζ2γ3γ4(2ζ
2 − k22)e

γ3b − (2ζ2 − k22)
3e−γ3c sinh{γ4(b+ c)},

H44(ζ, p) = −2ζγ4e
−γ3c(2ζ2 − k22) cosh{γ4(b+ c)}

−2ζγ4(2ζ
2 − k22)e

−γ3c − 8ζ3γ3γ
2
4e

−γ3c sinh{γ4(b+ c)},

H51(ζ, p) = −4ζ2γ3γ4e
−γ4b(2ζ2 − k22) cosh{γ3(b+ c)}

+8ζ2γ3γ4(2ζ
2 − k22)e

γ4c − (2ζ2 − k22)
3e−γ4b sinh{γ3(b+ c)},

H52(ζ, p) = 2ζγ3e
−γ4b(2ζ2 − k22)

2 cosh{γ3(b+ c)}

−4ζγ3(2ζ
2 − k22)

2eγ4c + 8ζ3γ23γ4e
−γ4b sinh{γ3(b+ c)},

H53(ζ, p) = 2ζγ3e
γ4c(2ζ2 − k22)

2 cosh{γ3(b+ c)}

−4ζγ3(2ζ
2 − k22)

2e−γ4b − 8ζ3γ23γ4e
−γ4b sinh{γ3(b+ c)},
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H54(ζ, p) = −eγ4c(2ζ2 − k22)
3 sinh{γ3(b+ c)}+ 8ζ2γ3γ4(2ζ

2

−k22)e−γ4b − 4ζ2γ3γ4(2ζ
2 − k22)e

γ4c cosh{γ3(b+ c)},

H61(ζ, p) = −4ζ2γ3γ4e
γ4b(2ζ2 − k22) cosh{γ3(b+ c)}

+8ζ2γ3γ4(2ζ
2 − k22)e

−γ4c + (2ζ2 − k22)
3eγ4b sinh{γ3(b+ c)},

H62(ζ, p) = −2ζγ − 3eγ4b(2ζ2 − k22)
2 cosh{γ3(b+ c)}

+4ζγ3(2ζ
2 − k22)

2e−γ4c + 8ζ3γ23γ4e
γ4b sinh{γ3(b+ c)},

H63(ζ, p) = −2ζγ3e
−γ4c(2ζ2 − k22) cosh{γ3(b+ c)}

+4ζγ3(2ζ
2 − k22)

2eγ4b − 8ζ3γ23γ4e
−γ4c sinh{γ3(b+ c)},

H64(ζ, p) = −4ζ2γ3γ4e
−γ4c(2ζ2 − k22) cosh{γ3(b+ c)}

+8ζ2γ3γ4(2ζ
2 − k22)e

γ4b − (2ζ2 − k22)
3e−γ4c sinh{γ3(b+ c)},

∆(ζ, p) =

−2ζγ3 {e−γ3cM1(ζ, p) + eγ3cM2(ζ, p)}+ (2ζ2 − k22) {e−γ4cM3(ζ, p)− eγ4cM4(ζ, p)},

M1(ζ, p) = −4ζγ4(2ζ
2k22)

2eγ3c +
[
2ζγ4(2ζ

2 − k22)
2−

− 8ζ3γ3γ
2
4

]
e−γ3b−γ4b−γ4c −

[
2ζγ4(2ζ

2 − k22)
2 + 8ζ3γ3γ

2
4

]
e−γ3b+γ4b+γ4c,

M2(ζ, p) = −4ζγ4(2ζ
2 − k22)

2e−γ3c +
[
2ζγ4(2ζ

2 − k22)
2

+ 8ζ3γ3γ
2
4

]
eγ3b−γ4b−γ4c +

[
2ζγ4(2ζ

2 − k22)
2 − 8ζ3γ3γ

2
4

]
eγ3b+γ4b+γ4c,
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M3(ζ, p) = −8ζ2γ3γ4(2ζ
2 − k22)e

γ4c +
[
(2ζ2 − k22)

3

− 4ζ2γ3γ4(2ζ
2 − k22)

]
e−γ3b−γ4b−γ3c

−
[
(2ζ2 − k22)

3 + 4ζ2γ3γ4(2ζ
2 − k22)

]
eγ3b−γ4b+γ3c,

M4(ζ, p) = −8ζ2γ3γ4(2ζ
2 − k22)e

−γ4c +
[
(2ζ2 − k22)

3

+ 4ζ2γ3γ4(2ζ
2 − k22)

]
e−γ3b+γ4b−γ3c

−
[
(2ζ2 − k22)

3 − 4ζ2γ3γ4(2ζ
2 − k22)

]
eγ3b+γ4b+γ3c.

■ Solution of the Pair of Integral Equations

For the solution of the integral equations given by (3.29) and (3.30), we assume

the following trial solution

B(ξ, p) =
τ0
2µp

∫ 1

0

sg(s, p)J0(ξs)ds, (3.39)

where g(s, p) is an unknown function. The integral equation (3.29) is automatically

satisfied with the help of the relation from Abramowitz and Stegun (1965)∫ ∞

0

cos(ξx)J0(ξs)dξ = 0, |x| > |s|.

Equation (3.30) can be expressed as

g(s, p) +

∫ 1

0

ug(u, p)du

∫ ∞

0

H(ξ, p)J0(ξs)J0(ξu)dξ =
µp

πτ0

∫ s

0

p0(x)√
s2 − x2

dx. (3.40)

Using (3.39), (3.38) can be expressed as

Ai(ζ, p) =
τ0
µp

∫ 1

0

sg(s, p)Gi(ζ, s)ds, (3.41)
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where Gi(ζ, s) =
∑4

j=1 δijQi(ζ, s), i = 3, 4, 5, 6 and

Q3(ζ, s) = D1(ζ, p)e
−γ3bI0(γ3s)−D2(ζ, p)e

−γ4bI0(γ4s),

Q4(ζ, s) = D3(ζ, p)e
−γ3bI0(γ3s)−D4(ζ, p)e

−γ4bI0(γ4s),

Q5(ζ, s) = D1(ζ, p)e
−γ3cI0(γ3s)−D2(ζ, p)e

−γ4cI0(γ4s),

Q4(ζ, s) = D3(ζ, p)e
−γ3cI0(γ3s)−D4(ζ, p)e

−γ4cI0(γ4s),

D1(ζ, p) =
ζ
k22
(2γ24 − k22), D2(ζ, p) =

ζ
k22
(2γ23 − k21),

D3(ζ, p) =
1

γ3k22
(2γ24 − k22)(2γ

2
3 − k22), D4(ζ, p) =

ζ2γ3
k22

.

Using (3.33), (3.38) and (3.39) the term µp
πτ0

∫ s

0
p0(x)√
s2−x2dx can be expressed as

µp

πτ0

∫ s

0

p0(x)√
s2 − x2

dx = 1− µp

τ0

∫ ∞

0

[
(2γ23 + k22){R1(ζ.s)A3(ζ, p)

+R2(ζ, s)A4(ζ, p)} − 2ζγ4{R3(ζ, s)A5(ζ, p)−R4(ζ, s)A6(ζ, p)}
]
dζ,

(3.42)

where

R1(ζ, s) = I0(γ3s) + L0(γ3s), R2(ζ, s) = I0(γ3s)− L0(γ3s),

R3(ζ, s) = I0(γ4s) + L0(γ4s), R4(ζ, s) = I0(γ4s)− L0(γ4s).

Using (3.41) and (3.42), from (3.40) we get

g(s, p) +

∫ 1

0

ug(u, p)L(u, s)du = 1, (3.43)

where

L(u, s) = L1(u, s) + L2(u, s), (3.44)

L1(u, s) =

∫ ∞

0

H(ξ, p)J0(ξs)J0(ξu)dξ, (3.45)

L2(u, s) =

∫ ∞

0

[(2γ23 + k22){R1(ζ, s)G3(ξ, p) +R2(ζ, s)G4(ξ, p)}

−2ζγ4{R3(ζ, s)G5(ξ, p)−R4(ζ, s)G6(ξ, p)}]dξ.
(3.46)
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The improper integral given by equation (3.45) can be transformed into a proper

integral by employing Contour integration (Mal (1970)) as

L1(u, s) = −
∫ k2

0

(−2ξ2 + k22)
2 − 4ξ2α1α2

α1k22
J0(iξu)H

(1)
0 (iξs)dξ

−i
∫ k1

k2

(−2ξ2 + k22)
2

α1k22
J0(iξu)H

(1)
0 (iξs)dξ, (3.47)

where α1 =
√
k21 − ξ2 and α2 =

√
k22 − ξ2.

■ Singular Stress Field

The normal stress τ ∗yy in the neighbourhood of the crack can be calculated by

the following equation

τ ∗yy(x, 0, p) = −iµ
∫ ∞

−∞

[
2ξ2 + k22

ξ
− 4ξγ1γ2

2ξ2 + k22

]
A(ξ, p)eiξxdξ

− µ

∫ ∞

0

[
(
2γ23 + k22){A3(ζ, p)e

γ3x + A4(ζ, p)e
−γ3x

}
− 2ζγ4

{
A5(ζ, p)e

γ4x − A6(ζ, p)e
−γ4x

}
]dζ. (3.48)

Substituting the values of A′
is from (3.38) and using (3.39), the expression of the

stress on the Laplace transform plane can be found as

τ ∗yy(x, 0, p) =
xτ0g(1, p)

p
√
x2 − 1

+O(1). (3.49)

The stress intensity factor at the the crack vicinity is defined as

K∗
1(p) = lim

x→1+

√
x− 1τ ∗yy(x, 0, p) =

τ0√
2

g(1, p)

p
. (3.50)
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With the aid of Laplace inverse, the stress intensity factor K1(t) in terms of t is

calculated as

K1(t) =
τ0

2
√
2πi

∫
Br

eptg(1, p)

p
dp, (3.51)

where Br denotes the Bromwich path of integration.

■ Numerical and Graphical Demonstration

The integration given by (3.46) was calculated with the help of Gauess quadrature

formula. A numerical solution for the Fredholm integral equation (3.43) has been

obtained by using the Fox and Goodwin (1953) method. The integral equation

(3.43) has been converted to set of simultaneous linear equations of the desired

function g(s, p) as unknowns. First-order approximations of the pivotal values of

g(s, p) are obtained by solving the linear algebraic equations and the derived solution

was modified by difference correction approach. After getting the numeric values of

g(1, p), stress intensity factorK1(p) is obtained. Using a numerical Laplace inversion

scheme by Zakian algorithm Rice and Duong (1995), the stress intensity factor K1(t)

has been obtained in terms of time and displayed graphically for the following elastic

materials.

Type-1 Material (Aluminum):

ρ = 2700 kgm−3, λ = 51.08GPa , µ = 26.32 GPa.

Type-2 Material (Steel):

ρ = 7800 kgm−3, λ = 112.40 GPa, µ = 162.79 GPa.
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Fig.3.2 SIF vs Time for Type-1 Material.

Fig.3.3 SIF vs Time for Type-1 Material.
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Fig.3.4 SIF vs Time for Type-2 Material.

Fig.3.5 SIF vs Time for Type-2 Material.

To show the effects of sudden load on cracked elastic strip, normalized stress

intensity factor K1(t)
τ0

has been plotted graphically against time for different values

of the strip lengths (b and c) for two different isotropic materials.
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In Fig.3.2 and Fig.3.4, K1(t)
τ0

has been plotted against time t for Type 1 and

Type 2 materials for b = 1.0, c = 2.0, c = 2.5, c = 3.0. Fig.3.3 and Fig.3.5 represent

the same for b = 1.5, c = 2.0, c = 2.5, c = 3.0.

From the Fig.3.2 - Fig.3.5, it is clear that the normalized SIF increases first and

reaches to a maximum value then follows wave like nature with dumped oscillations

after that it decreases with the increasing value of time and ultimately tends to zero

for both the materials. The maximum value of the stress intensity factors for each

of the cases is different. Therefore, it can be concluded that the utmost values of the

SIFs and their position depend on the physical parameters of the materials, strip

length and crack position.

■ Conclusions

The analysis of diffraction phenomenon of P-wave over the surface of a crack

situated asymmetrically in an isotropic strip under the effect of impact load is the

main concern of the present work. Stress intensity factor near the crack vicinity

has been obtained and displayed graphically with respect to time. The amount

of stress is high near the crack tip with disruptive nature. The graphs of stress

intensity factor indicate that SIF increases first and reaches to a higher value then

it started decreasing with the nature of damped oscillation for both the materials.

As stress intensity factors tend to zero whenever time increases, therefore it has

been concluded that the crack propagation is affected by impact load and singular

stress can be controlled by maintaining the load capacity within certain limits of

time. Also it has been shown that the strip width, material properties play vital

role to resist the growth of crack propagation. The present approach can be used

to consolidate a material and to create new materials by considering suitable elastic

parameters.
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Chapter 4

Coupling Effects of Magnetic Field and

Elastic Media on Cracked Elastic Medium

4.1 Shear Wave Interaction of two Collinear Fi-

nite Cracks in an Infinite Magnetoelastic Or-

thotropic Media

■ Introduction

In solid structures, the distraught effect such as cracks or voids exist in elastic

material which may be caused by material processing, manufacturing irregularities,

uncertainties in loadings etc. The presence of such defects may significantly affect

the stiffness and integrity of the material. To understand the failure mechanism

of materials, analysis of stress and displacement field around the crack vicinities is

necessary. The stress field helps to predict the expected crack growth rate, failure
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assessment, and fracture behavior of materials and the displacement field measures

the fracture toughness of the material. Many elastic materials frequently exhibit

strong orthotropy, so the study of wave propagation by cracks in an orthotropic

medium is of great importance for fracture analysis of the material. Researcher

Sneddon (1961) discussed various crack problems in his technical report mathemat-

ical theory of elasticity. Robertson (1967) and Mal (1970) analyzed the diffraction

of elastic waves by a circular crack in an infinitely extended elastic medium. Jain

and Kanwal (1972) derived singular stress for the problem of the dispersion of elastic

waves by two Griffith cracks in an infinite isotropic medium. Interaction of antiplane

transverse waves by the influence of two collinear finite cracks in an infinite medium

has been investigated by Itou (1980). Itou (1989) also solved the problem of two

co-planar finite cracks in an orthotropic layer sandwich between two elastic half

planes. Problems of the interaction of longitudinal waves by Griffith cracks in an

orthotropic plate have been made by Mandal and Ghosh (1994), Sarkar et al. (1995).

Mechanics of magneto-elastic solids have gained significant interest in recent years

due to the extensive application of magnetic reinforced materials in aerospace engi-

neering, automotive industries, acoustics, optimal design, signal processing, etc. The

coupled properties of magnetic field and elastic media offer great opportunities for

engineers to create flawless constructions and devices that are capable of answering

to internal and(or) external changes. Therefore, the study of magnetoelastic inter-

action is the focus of many research scholars in the field of fracture mechanics. The

basic equations of magnetoelastic deformation theory have been derived by Dunkin

and Eringen (1963). The theory of magnetoelasticity was developed by Knopoff

(1955) and Chadwick (1957) which was later extended by Kaliski and Petykiewicz

(1959). Verma (1986) has investigated magneto-elastic transverse waves in a self

reinforced elastic body. Chattopadhyay and Maugin (1985) analyzed the magnetoe-

lastic response of rigid strips in an infinite plate. The propagation of magnetoelastic
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transverse waves in an infinite self-reinforced lamina has been investigated by Chat-

topadhyay and Choudhury (1995). Marin (1997a,b) investigated the influence of

the thermoelastic effect on the body with voids. Acharya et al. (2009) analyzed the

dispersion of interface waves by the impact of magnetic field and initial tension in

a transversely isotropic plate. The problems of the interaction of magneto-elastic

shear waves by a Griffith crack have been solved by Panja and Mandal (2021b,c).

Earth is believed to be surrounded by its own magnetic field dispersing from

its center. Therefore, it is very much crucial to consider the effect of magnetic field

in a cracked elastic media. To the best of the authors knowledge, no attempt has

been made till now to analyse the stress field of an orthotropic elastic material con-

taining two cracks by the impact of magnetic field. Therefore the goal of this paper

is to illustrate the shear wave interaction by two collinear finite cracks in an infinite

orthotropic plate under the influence of magnetic field. The physical phenomena

of wave interaction are formulated as an MBVP. The MBVP has been transformed

into a pair of integral equations by introducing Abel’s transform, which has further

been simplified by using the perturbation method for low frequency. The solution of

the simplified integral equations has been derived by Hilbert transformation Srivas-

tava and Lowengrub (1970). The analytic expansions of SIFs and COD have been

computed and demonstrated graphically.

■ Problem Synthesis

Let us consider two Griffith cracks situated at b ≤| X |≤ a, −∞ < Y < ∞,

Z = 0 referred to the rectangular frame of reference (X, Y, Z) in a magnetized

orthotropic medium. Normalizing all the lengths with respect to a and putting

X
a

= x, Y
a
= y, Z

a
= z and b

a
= h, the new crack location becomes h ≤| x |≤ 1,

−∞ < y < ∞, z = 0 (Fig.4.1.1). Let us assume that there is a time harmonic

anti-plane shear wave h0e
−iωt in the positive direction of the z-axis, where ho is the
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antiplane shear traction acting on the crack periphery in the positive direction of

the z-axis. The periodic term e−iωt is present in all field variables which is being

omitted throughout the analysis.

Fig.4.1.1 Geometry of the problem.

Since shear waves propagate in the z direction, so the displacement field can be taken

as (0, Uy(x, z), 0). Field equation (Chattopadhyay and Singh (2014)) for perfectly

conducting orthotropic elastic media is

∂σxy
∂x

+
∂σyz
∂z

+ (J⃗× B⃗)y + k2Uy = 0, (4.1.1)

where k2 = ρω2 and (J⃗× B⃗)y is the y-component of the Lorentz force (J⃗ and B⃗ are

the electric current density and the magnetic flux density vector).

The non vanishing stresses are given by

σxy = 2C66Exy = C66
∂Uy

∂x

and σyz = 2C44Eyz = C44
∂Uy

∂z
,

(4.1.2)

where C66 and C44 are orthotropic elastic constants.

The well known Maxwell’s equations (Chattopadhyay and Singh (2014), Panja and
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Mandal (2021c)) for the governing electromagnetic field are

div B⃗ = 0, curl E⃗ = −∂B⃗
∂t
, B⃗ = µeH⃗,

J⃗ = σ

(
E⃗ +

∂U⃗

∂t
× B⃗

)
and curl H⃗ = J⃗,

(4.1.3)

where E⃗ is the strength of the electric field, H⃗ is the intensity of the magnetic

field, µe is the induced permeability and σ is the conductivity coefficient of electric

current.

The expression of Maxwell’s stress tensor
(
σ0
ij

)Mx
is given by(

σ0
ij

)Mx
= µe(H

(1i)βj +H(1j)βi −H(1k)βkδij),

where H⃗ =
(
H(1x), H(1y), H(1z)

)
and β⃗ = (βx, βy, βz), βx, βy and βz are the

disturbances in the induced magnetic field.

Ignoring the displacement current vector, from equations (4.1.3) we derive

∇2H⃗ = µeσ

[
∂H⃗

∂t
− ∇⃗ ×

(
∂U⃗

∂t
× H⃗

)]
. (4.1.4)

From the vector equation (4.1.4), we get

∂H(1x)

∂t
=

1

µeσ
∇2H(1x),

∂H(1z)

∂t
=

1

µeσ
∇2H(1z),

∂H(1y)

∂t
=

1

µeσ
∇2H(1y) +

∂
(
H(1x) ∂Uy

∂t

)
∂x

+
∂
(
H(1z) ∂Uy

∂t

)
∂z

.

(4.1.5)

For perfectly electric conductivity (σ → ∞), equations (4.1.5) reduce to

∂H(1x)

∂t
= 0 =

∂H(1z)

∂t
(4.1.6)
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and

∂H(1y)

∂t
=
∂
(
H(1x) ∂Uy

∂t

)
∂x

+
∂
(
H(1z) ∂Uy

∂t

)
∂z

. (4.1.7)

According to the equation (4.1.6), we can conclude that there is no magnetic

perturbation in the x-component and z-component of H⃗, nevertheless the equation

(4.1.7) shows that there may exist magnetic perturbation in the y-component of H⃗.

Therefore we may consider the magnetic field as
(
H(0x), H(0y) + β0, H

(0z)
)
, where

β0 is the small amount of magnetic perturbation in H(1y) and
(
H(0x), H(0y), H(0z)

)
are three components of magnetic field H⃗0 in the initial state.

Let ψ be the angle at which the wave crosses the magnetic field and let H(0) =| H⃗0 |,

therefore the initial state of magnetic field can be expressed as

H⃗0 = (H(0) cosψ, 0, H(0) sinψ) and finally we have

H⃗ =
(
H(0) cosψ, β0, H

(0) sinψ
)
. (4.1.8)

Putting the value of H⃗ in (4.1.7), we derive

∂β0
∂t

=
∂
(
H(0) cosψ ∂Uy

∂t

)
∂x

+
∂
(
H(0) sinψ ∂Uy

∂t

)
∂z

. (4.1.9)

Integrating (4.1.9) with respect to t, we get

β0 = H(0) cosψ
∂Uy

∂x
+H(0) sinψ

∂Uy

∂z
. (4.1.10)

With the help of ∇⃗(H
2

2
) = (H⃗.∇⃗)H⃗ − (curl H⃗)× H⃗, we obtain

(J⃗× B⃗)y = µe

[ (
H(0)

)2
cos2 ψ

∂2Uy

∂x2
+
(
H(0)

)2
sin 2ψ

∂2Uy

∂x∂z
+

(
H(0)

)2
sin2 ψ

∂2Uy

∂z2

]
. (4.1.11)
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Utilizing (4.1.2) and (4.1.11), the equation (4.1.1) reduces to

A
∂2Uy

∂x2
+B

∂2Uy

∂z2
+ C

∂2Uy

∂x∂z
+ k2Uy = 0, (4.1.12)

where

A = C66 + µe

(
H(0)

)2
cos2 ψ,

B = C44 + µe

(
H(0)

)2
sin2 ψ,

C = µe

(
H(0)

)2
sin 2ψ.

(4.1.13)

Since the crack geometry is symmetric, we will consider the upper half plane (z ≥ 0)

only. The equation (4.1.12) is to be solved subject to the following mixed boundary

conditions

σyz(x, 0) = −h0, h ≤| x |≤ 1 (4.1.14)

and

Uy(x, 0) = 0, | x |> 1, | x |< h. (4.1.15)

The general solution of the field equation (4.1.12) can be considered as

Uy(x, z) =

∫ ∞

−∞
F(ζ)e−mzeiζxdζ, z > 0, (4.1.16)

where m = iζC
2B

+ ζ

√
1
B

(
A− k2

ζ2

)
−
(

C
2B

)2
and F(ζ) is an unknown function. The

non vanishing stress component is found as

σyz(x, z) = −C44

∫ ∞

−∞
mF(ζ)e−mzeiζxdζ. (4.1.17)

The expression of F(ζ) is to be calculated utilizing the boundary conditions.
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■ Derivation and Solution of Integral Equations

Using the boundary conditions (4.1.14) and (4.1.15), we derive the following integral

equations ∫ ∞

−∞
mF(ζ)eiζxdζ =

h0
C44

, h ≤| x |≤ 1 (4.1.18)

and ∫ ∞

−∞
F(ζ)eiζxdζ = 0, | x |> 1, | x |< h. (4.1.19)

Equation (4.1.18) can be expressed as

∫ ∞

−∞
ζ [1 +R1(ζ)]F(ζ)e

iζxdζ =
h0
ϑC44

, h ≤| x |≤ 1, (4.1.20)

where

R1(ζ) =
R(ζ)

ϑ
− 1, R(ζ) =

iC +

√
4B
(
A− k2

ζ2

)
− C2

2B
,

ϑ =
iC +

√
4AB − C2

2B
and R1(ζ) → 0 as ζ → ∞.

(4.1.21)

For the solution of (4.1.18) and (4.1.19), we consider the following trial solution

F(ζ) =
1

ζ

∫ 1

h

ϕ(q2) sin(ζq)dq, (4.1.22)

where ϕ(q2) is an unknown function which is to be computed with the help of integral

transforms.

Using (4.1.22) and

∫ ∞

0

sin ζq cos ζx

ζ
dζ =


π
2
, q > x

0, q < x

in the equation (4.1.19), it is

found that ϕ(q2) satisfy the equation

∫ 1

h

ϕ(q2)dq = 0. (4.1.23)
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Again using the result

∫ ∞

0

sin ζq sin ζx

ζ
dζ =

1

2
log

∣∣∣∣q + x

q − x

∣∣∣∣ from Abramowitz and

Stegun (1965) and the expression of F(ζ) given by the equation (4.1.22), from the

equation (4.1.20) we get

d

dx

∫ 1

h

ϕ(q2) log

∣∣∣∣q + x

q − x

∣∣∣∣ dq = 2

[
h0
ϑC44

−

d

dx

∫ 1

h

ϕ(q2)dq

∫ ∞

0

ζR1(ζ)
sin ζq sin ζx

ζ2
dζ

]
. (4.1.24)

Utilizing the result
sin ζq sin ζx

ζ2
=

∫ x

0

∫ q

0

mnJ0(ζm)J0(ζn)√
x2 −m2

√
q2 − n2

dmdn, the equation

(4.1.24) becomes

∫ 1

h

qϕ(q2)

q2 − x2
dq =

h0
ϑC44

−

d

dx

∫ 1

h

ϕ(q2)dq

∫ x

0

∫ q

0

mn dm dn
√
x2 −m2

√
q2 − n2

∫ ∞

0

ζR1(ζ)J0(ζm)J0(ζn)dζ

=
h0
ϑC44

− d

dx

∫ 1

h

ϕ(q2)dq

∫ x

0

∫ q

0

mnκ(n,m) dm dn
√
x2 −m2

√
q2 − n2

, (4.1.25)

where

κ(n,m) =

∫ ∞

0

ζR1(ζ)J0(ζm)J0(ζn)dζ. (4.1.26)

The integrand of the integration (4.1.26) has a branch point at ζ = k√
A
.

Employing the contour integration technique (Mal (1970)), the improper integral

(4.1.26) has therefore been converted to the following finite integral

κ(n,m) = −ιk
2

2

∫ 1√
A

0

ζ

√
4B
(

1
ζ2

− A
)
+ C2

Bϑ
J0(kζm)H

(1)
0 (kζn)dζ, n > m. (4.1.27)
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With the help of the asymptotic series expansion of J0 and H
(1)
0 , J0(kζm)H

(1)
0 (kζn)

can be written as

J0(kζm)H
(1)
0 (kζn) =

2ι

π
log k +

[
1 +

2ι

π

(
m+ log

(
ζn

2

))]
. (4.1.28)

Using (4.1.28), (4.1.27) becomes

κ(n,m) =
1

π
k2G log k + O(k2), (4.1.29)

where

G =

∫ 1√
A

0

ζ

Bϑ

√
4B

(
1

ζ2
− A

)
+ C2dζ. (4.1.30)

Let us take the iterative form of ϕ(q2) as follows

ϕ(q2) = ϕ0(q
2) + k2 log kϕ1(q

2) + O(k2). (4.1.31)

Using the above expression of ϕ(q2) and the expression of κ(n,m) given by the

equation (4.1.29) in (4.1.25) and equating the coefficients of similar powers of k

from both sides of the reduced equation, we derive

∫ 1

h

qϕ0(q
2)

q2 − x2
dq =

h0
ϑC44

, h ≤| x |≤ 1 (4.1.32)

and ∫ 1

h

qϕ1(q
2)

q2 − x2
dq = −G

π

∫ 1

h

qϕ0(q
2)dq, h ≤| x |≤ 1. (4.1.33)

Applying Hilbert transformation, from (4.1.32) we get

ϕ0(q
2) =

2h0
πϑC44

√
q2 − h2

1− q2
+

α1√
(q2 − h2)(1− q2)

(4.1.34)
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and from (4.1.33) using (4.1.34) we have

ϕ1(q
2) = −G

(
h0(1− h2)

π2ϑC44

+
α1

π

)√
q2 − h2

1− q2
+

α2√
(q2 − h2)(1− q2)

, (4.1.35)

where α1 and α2 are constants to be computed with the help of the following con-

ditions ∫ 1

h

ϕ0(q
2)dq = 0 (4.1.36)

and ∫ 1

h

ϕ1(q
2)dq = 0. (4.1.37)

Using (4.1.36) and (4.1.37) we found the values of α1 and α2 as follows

α1 =
2h0
πϑC44

h2F1 − E1

F1

(4.1.38)

and

α2 =
Gh0

π2ϑC44

(h2F1 − 2E1 + F1)(E1 − h2F1)

F 2
1

, (4.1.39)

where E1 = E
(
π
2
,
√
1− h2

)
and F1 = F

(
π
2
,
√
1− h2

)
.

Putting the values of the constants α1 and α2 given by the expressions (4.1.38) and

(4.1.39) in (4.1.34) and (4.1.35), we obtain

ϕ0(q
2) =

2h0
πϑC44

q2F1 − E1

F1

√
(q2 − h2)(1− q2)

(4.1.40)

and

ϕ1(q
2) =

Gh0
π2ϑC44

(h2F1 − 2E1 + F1)(E1 − h2F1)

F 2
1

√
(q2 − h2)(1− q2)

. (4.1.41)
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■ Physical Parameters

Stress Intensity Factors:

The non vanishing shear stress outside the crack can be calculated as

σyz(x, 0) =


−h0

[
1− G

2πk
2 log(k)

(
1− 2E1

F1
+ h2

)] [
1−

x2−E1
F1√

(1−x2)(h2−x2)

]
, 0 ≤ x ≤ h

−h0

[
1− G

2πk
2 log(k)

(
1− 2E1

F1
+ h2

)] [
1 +

x2−E1
F1√

(x2−1)(x2−h2)

]
, x > 1.

(4.1.42)

The SIFs Kh and K1 at the crack vicinities (x = h and x = 1) are computed as

Kh = Ltx→ h−
(h−x)

1
2 σyz(x,0)

h0

=
h2−E1

F1√
2h(1−h2)

[
1− G

2π
k2 log k

(
1− 2E1

F1
+ h2

)]
+ O(k2) (4.1.43)

and

K1 = Ltx→ 1+
(x−1)

1
2 σyz(x,0)

h0

=
E1
F1

−1√
2(1−h2)

[
1− G

2π
k2 log k

(
1− 2E1

F1
+ h2

)]
+ O(k2). (4.1.44)

Crack Opening Displacement:

Another physical quantity COD (Magnitude of the distance between two faces of

the crack) is given by

δW (x) =| Uy(x, 0
+)− Uy(x, 0

−) |= 2

∫ 1

x

ϕ(q2)dq

=
4h0
πϑC44

[
1− G

π
k2 log k

(
1− 2E1

F1

+ h2
)][

E2 −
E1F2

F1

]
, (4.1.45)
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where E2 = E
(
sin−1

√
1−x2

1−h2 ,
√
1− h2

)
, F2 = F

(
sin−1

√
1−x2

1−h2 ,
√
1− h2

)
.

■ Numerical and Graphical Demonstration

From the expansions of SIFs and COD given by (4.1.43), (4.1.44), and (4.1.45),

it is obvious that these physical parameters depend on the values of material pa-

rameters and magnetic field. For orthotropic elastic medium, we take the following

data (Panja and Mandal (2022))

ρ = 2.7 g/m3, C44 = 5.3Gpa, C66 = 6.47GPa and ψ = 10.

To display the impact of magnetic field, we plot the graphs of SIF vs frequency and

COD vs crack width in the presence and absence of magnetic field. For the presence

of magnetic field we consider

ϵ1 =
µe(H(0))2

C66
= 0.30 and ϵ2 =

µe(H(0))2

C44
= 0.37

and the corresponding graph is represented by dash line. In the absence of magnetic

field, we assume

ϵ1 = 0 and ϵ2 = 0

and the graph is represented by solid line.

Firstly the variations of SIF Kh at the inner vicinity of the crack with h =

0.5, 0.6, 0.7 are shown in Fig.4.1,2, secondly the variations of SIF at the outer

vicinity of the crack are shown in Fig.4.1.3. From both the graphs it is obvious that

SIF has a slower decreasing rate up to a certain value of frequency and then the rate

of decreasing become high and finally tends to zero. Comparing both the Fig.4.1.2



4.1 Shear Wave Interaction of Two Cracks in a Magnetoelastic Media 79

and Fig.4.1.3 it is identified that SIF at the outer tip has a higher rate of decreasing

as compared to the SIF at the inner tip and SIFs decrease with the increase of the

values of h. It has also been observed that the variations of SIFs are not significant

in both the cases for the presence and absence of the magnetic field.
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Fig.4.1.2 SIF Kh with respect to frequency (k).
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Fig.4.1.3 SIF K1 with respect to frequency (k).

The nature of the Fig.4.1.2 and Fig.4.1.3 is quite same as the work discussed

by Sarkar et al. (1995) in the absence of magnetic field. Fig.4.1.4 represents the

graph of COD vs crack width due to the presence and absence of magnetic field. It

is notable that the COD achieves its highest value at the point x = 0.6 and reaches
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zero at the tips of the cracks, so the fracture toughness is high at the point x = 0.6.

Also, COD increases slightly in the presence of magnetic field as compared to the

absence of magnetic field for low frequency k.
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Fig.4.1.4 COD δW (x)
h0

against the crack width x.

■ Comparison of Results

If we take h = 0, then two cracks coincide with a single crack and Fig.4.1.5

represents the graph of SIF for the case of the single crack. If we take C44 = C66 →

µ, then the medium will tend to be isotropic medium and we have the following

expressions

A→ µ+ µe(H
(0))2 cos2 ψ,

B → µ+ µe(H
(0))2 sin2 ψ,

C = µe(H
(0))2 sin 2ψ.
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We obtain SIF in the following form

K1 =
E1

F1
− 1

√
2

[
1− G

2π
k2 log k

(
1− 2E1

F1

)]
. (4.1.46)

After some numerical manipulation, the approximate expression for SIF given

by (4.1.46) has been derived from the expression of SIF given by Panja and Mandal

(2021c) et al. This comparison ensures the validation of the result obtained in this

problem.
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Fig.4.1.5 SIF with respect to frequency (k).

■ Conclusion

In the present study, the analytic expressions for SIFs and COD subjected to the

magnetic field in an infinite elastic medium have been obtained. The main advantage

of the analytical method is that we can plot physical parameters accurately while in

the numerical procedure discrete data is used to plot the parameters. The variations

of the mechanical parameters SIFs and COD due to the presence and absence of

magnetic field have been represented graphically. Graphical results indicate that the
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propagation of the crack in the magneto-elastic medium is more pronounced compare

to the non magneto-elastic medium for small frequency. Around the vicinity of the

crack, state of stress is disruptive in nature and loses its toughness far away from

the crack. From the figures it is seen that the SIFs and COD decrease as frequency

and crack width increases which are physically persistent with the problem. It

can be concluded that the material parameters play a major role in the case of

fracture. Therefore we can settle the rate of crack growth and fracture toughness by

considering a particular range of frequency and manipulating the magneto-elastic

parameters. The analysis of the stress field in the proposed model may help to

find the significant applications for the assessment of the toughness of structures

containing multiple cracks. Furthermore, the proposed analysis may significantly

give an idea to find the implementations of engineering materials which bring some

extraordinary impact on the analysis and the design of sustainable materials used in

high rising buildings, constructions of bridges, airplane industries, and many more

identical types of reinforced constructions.
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4.2 Dispersion of Longitudinal Waves by Three

Co-linear Griffith Cracks in a Magnetized Elas-

tic Medium

■ Introduction

Magnetized composite materials have broad implementations, on account of

their enumerable number of practical applications in miscellaneous domains such as

aerospace engineering, geophysics, optics, cell phone industries, kitchen appliances,

acoustics and so on. Due to the interaction of electromagnetic field with cracked elas-

tic media, elastic stress-strain relation gets improved with consideration of Lorentz’s

force as body force and modifying Ohm’s law permeated by an initial magnetic field.

The coupled properties of magnetic field and elastic media provide great opportu-

nities for researchers to construct flawless constructions and devices that are able

to respond internal and external changes. However, deficiencies or cracks in such

materials are usually inevitable which impact the completion and reliability of the

products. Adequate failure in structural components may arises due to the presence

of such pre-existing cracks or inclusions. To recognize the fracture of materials, it is

necessary to know stress field in the neighbourhood of the crack tip which manages

the behaviour of the cracks. The impact of this stress field is quantified by means of

the so-called stress intensity factor near crack tips. Another fundamental physical

parameter COD provides fracture toughness for crack propagation processes. The

problem of dispersion of longitudinal waves by cracks of finite length in isotropic

medium had been solved by numerous researchers over the years. Some elastody-

namic problems of stationary cracks and dynamics aspects of crack propagation had

been solved by Sih (1968). Mal (1970) solved the problem of diffraction of normally

incident longitudinal and antiplane shear waves by a Griffith crack. Lowengrub and
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Srivastava (1968) published a research note on two collinear Griffith cracks in an in-

finitely extended elastic media. Considering a time-harmonic antiplane shear wave,

Itou (1980) inspected the scattering effects of two coplanar Griffith cracks embedded

in an infinite elastic medium. Interaction of elastic waves with Griffith crack located

in an infinitely long strip was investigated by Srivastava et al. (1981). Jain and

Kanwal (1972) had solved the problem of diffraction of elastic waves by two parallel

and coplanar Griffith cracks in an infinite homogeneous isotropic elastic medium.

A few of researchers solved the elastodynamic problems considering the impact of

magnetic field. Wave propagation in an electrifying conducting elastic solid by the

influence of an uniform magnetic field was discussed by Knopoff (1955). Chadwick

(1957) developed the concept regarding elastic waves propagation in a magnetic field.

Linear and nonlinear wave motion in magnetizable distort-able solids was explained

by Maugin (1981). Yih-Hsing and Chau-Shioung (1973) presented a linearize theory

for soft ferromagnetic elastic solids. Shindo (1977, 1980) also introduced some linear

magnetoelastic problem concerning a soft ferromagnetic material consists of a Grif-

fith crack and derived singular stresses at the tip of cracks in a soft ferromagnetic

cracked elastic material. Scattering of P-waves by a finite crack under the influence

of magnetic field and an applied impact load was analysed by Panja and Mandal

(2021a).

Most of the above mentioned researchers had considered the cracked elas-

tic media to analyse normally incident time harmonic waves but not discussed the

magneto-elastic coupling effects on the propagation of waves in an isotropic elastic

medium. Therefore, this monograph analyses the dispersion of longitudinal waves

by three co-linear cracks in an infinite isotropic medium upon magnetization. The

dispersion effects of three co-linear Griffith cracks located in an homogeneous in-

finite isotropic medium due to the influence of magnetic field be formulated as a

MBVP. The MBVP have been converted to a set of integral equations with the
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help of Abel’s transform which have been further simplified by using perturbation

method for low frequency by concerning the iterative expansions of Bessel’s and

Hankel’s function. The converted integral equations have been solved by Hilbert

transformation and the results of Cooke (1970). The semi-analytical expressions of

crack opening displacement and stress intensity factors have been derived for low

frequency vibration. Numerical results of crack opening displacement and stress

intensity factors for several crack lengths with the presence of magnetic field have

been computed and presented graphically to exhibit the influence of magnetization.

■ Formulation of the Problem

Consider three coplanar Griffith cracks embedded in an infinite magnetoelastic

medium. The crack faces are loaded by a normally incident wave σ̄0e
−ιωt in the

positive direction of y−axis, where ω is the frequency of the incident wave and σ̄0

is the crack surface traction. Let the cracks are situated at |x′| ≤ m1, m2 ≤ x′ ≤

m3, −∞ < z′ < ∞, y′ = 0. For Normalization of all the lengths, we substitute

x′

m3
= x, y′

m3
= y, z′

m3
= z, m1

m3
= m, m2

m3
= n. After normalization, the new location

of the cracks are found to be |x| ≤ m, n ≤ |x| ≤ 1, −∞ < z < ∞, y = 0, m < n

(Fig.4.2.1).

Fig.4.2.1 Geometry of the cracks.
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Let H⃗ =
(
0, 0,H(z)

)
be the magnetic field intensity acting on the crack surface

in the direction of z-axis, E⃗ is the induced electric field intensity and h⃗ =
(
0, 0, h(z)

)
is the induced magnetic field.

The Maxwell’s equation for electromagnetic waves are follows

J⃗ = ∆⃗× h⃗− ϵ0
∂2E⃗

∂t2
, ∆⃗× E⃗ = −µ0

∂2h⃗

∂t2
,

E⃗ = −µ0

(
∂2U⃗

∂t2
× H⃗

)
, ∆⃗ · h⃗ = 0,

(4.2.1)

where µ0 is the magnetic permeability, J⃗ is the electric current density, U⃗ is the

displacement field and ϵ0 is the electric permittivity.

The displacement equations in terms of Lorentz force and Hooke’s law due to the

influence of electromagnetic field are

ρ
∂2Ui

∂t2
= τij,j + µ0(J⃗× H⃗)i (4.2.2)

and

τij = 2µeij + 2λeδij, (4.2.3)

where λ and µ are Lame’s constants, e is the dilatation, ρ is the electric current

density, δij is the Kronecker delta, eij are the strain components and τij are the

stress components.

Since P-waves propagate in z = 0 plane, so the displacement field can be taken as

U⃗ = (Ux(x, y, t), Uy(x, y, t), 0).

The strain components eij and the dialatation e in terms of displacement components
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are

exy =
1

2

(
∂Ux

∂y
+
∂Uy

∂x

)
, exx =

∂Ux

∂x
, eyy =

∂Uy

∂y
,

exz = eyz = 0, e =
∂Ux

∂x
+
∂Uy

∂y
.

(4.2.4)

Using the results (4.2.1), (4.2.3) and (4.2.4) in (4.2.2), we derive the displacement

equations as

(
λ+ µ+ µ0H

2
(z)

)(∂2Ux

∂x2
+
∂2Uy

∂x∂y

)
+ µ

(
∂2Ux

∂x2
+
∂2Ux

∂2y

)
=
(
ρ+ µ2

0ϵ0H
2
(z)

) ∂2Ux

∂2t
(4.2.5)

and

(
λ+ µ+ µ0H

2
(z)

)( ∂2Ux

∂x∂y
+
∂2Uy

∂2y

)
+ µ

(
∂2Uy

∂x2
+
∂2Uy

∂2y

)
=
(
ρ+ µ2

0ϵ0H
2
(z)

) ∂2Uy

∂2t
(4.2.6)

On introduction of wave potential functions ϕ̄1 and ψ̄1, displacement components

can be written as

Ux =
∂ϕ̄1

∂x
− ∂ψ̄1

∂y
, Uy =

∂ψ̄1

∂x
+
∂ϕ̄1

∂y
. (4.2.7)

Using (4.2.7), equations (4.2.5) and (4.2.6) transform into

∂2ϕ̄1

∂x2
+
∂2ϕ̄1

∂y2
= ρ21

∂2ϕ̄1

∂t2
(4.2.8)

and

∂2ψ̄1

∂x2
+
∂2ψ̄1

∂y2
= ρ22

∂2ϕ̄1

∂t2
, (4.2.9)

where ρ21 =
ρ+µ2

0ϵ0H
2
(z)

λ+2µ+µ0H
2
(z)

and ρ22 =
ρ+µ2

0ϵ0H
2
(z)

µ
.
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The considered problem is symmetric about y-axis, so the problem can be solved

subjected to the following boundary conditions

τyy(x, 0, t) = −σ̄0e−iωt, 0 ≤ x ≤ m, n ≤ x ≤ 1 (4.2.10)

τxy(x, 0, t) = 0, |x| <∞ (4.2.11)

Uy(x, 0, t) = 0, m ≤ x ≤ n, 1 ≤ x <∞. (4.2.12)

Substituting ϕ̄1(x, y, t) = ϕ̄(x, y)e−iωt and ψ̄1(x, y, t) = ψ̄(x, y)e−iωt in the equations

(4.2.8) and (4.2.9), we have

∂2ϕ̄

∂x2
+
∂2ϕ̄

∂y2
= k21ϕ̄ (4.2.13)

∂2ψ̄

∂x2
+
∂2ψ̄

∂y2
= k22ψ̄, (4.2.14)

where k21 = ω2ρ21 and k22 = ω2ρ22.

The modified boundary conditions are

τyy(x, 0) = −σ̄0, 0 ≤ x ≤ m, n ≤ x ≤ 1 (4.2.15)

τxy(x, 0) = 0, |x| <∞ (4.2.16)

Uy(x, 0) = 0, m ≤ x ≤ n, 1 ≤ x <∞. (4.2.17)

The solutions of (4.2.13) and (4.2.14) can be considered as

ϕ̄(x, y) =

∫ ∞

0

A1(ζ)e
−β1y cos(ζx)dζ (4.2.18)

and

ψ̄(x, y) =

∫ ∞

0

A2(ζ)e
−β2y cos(ζx)dζ, (4.2.19)
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where β2
1 = ζ2 − k21 and β2

2 = ζ2 − k22.

Using (4.2.18) and (4.2.19), we have the displacement components as follows

Ux(x, y) = −
∫ ∞

0

A1(ζ)e
−β1yζ sin(ζx)dζ +

∫ ∞

0

A2(ζ)e
−β2yβ2 sin(ζx)dζ (4.2.20)

and

Uy(x, y) = −
∫ ∞

0

A1(ζ)e
−β1yβ1 cos(ζx)dζ +

∫ ∞

0

A2(ζ)e
−β2yζ cos(ζx)dζ. (4.2.21)

Applying boundary condition (4.2.16), we obtain

A2(ζ) = α1A1(ζ), (4.2.22)

where α1 =
2ζβ1

2ζ2−k22
.

Using the boundary conditions (4.2.15) and (4.2.17), we derive the following dual

integral equations

∫ ∞

0

B(ζ) cos ζxdζ = 0, m ≤ x ≤ n, 1 ≤ x <∞ (4.2.23)

and ∫ ∞

0

D(ζ)B(ζ) cos ζxdζ = −σ̄0, 0 ≤ x ≤ m,n ≤ x ≤ 1. (4.2.24)

Equation (4.2.24) can be written as

∫ ∞

0

ζ[1 +D1(ζ)]B(ζ) cos ζxdζ = p0, 0 <≤ x ≤ m, n ≤ x ≤ 1, (4.2.25)

where

D1(ζ) =
D(ζ)

ζν
− 1, p0 = − σ̄0

ν
, D(ζ) =

2µβ2
1 + λ(β2

1 − ζ2)− 2µζβ2α1

α1ζ − β1
,

ν = −2(λ+ µ)k21
k22

and D1(ζ) → 0 as ζ → ∞.

(4.2.26)
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■ Derivation of Integral Equation

Let us take the trial solution of equations (4.2.23) and (4.2.24) in the form

B(ζ) =
1

ζ

∫ m

0

f1(r)sin(ζr)dr +
1

ζ

∫ 1

n

f2(s
2)sin(ζs)ds, (4.2.27)

where f1(r) and f2(s
2) are the unknown functions to be determined with the help

of integral transforms.

Using (4.2.27) and

∫ ∞

0

sin ζr cos ζx

ζ
dζ =


π
2

r > x

0 r < x

in the equation (4.2.23), it is

seen that f2(s
2) satisfy the equation

∫ 1

n

f2(s
2)ds = 0. (4.2.28)

Again using the result

∫ ∞

0

sin ζr sin ζx

ζ
dζ =

1

2
log

∣∣∣∣r + x

r − x

∣∣∣∣ and B(ζ) from equation

(4.2.27), we get from the equation (4.2.25)

d

dx

∫ m

0

f1(r) log

∣∣∣∣r + x

r − x

∣∣∣∣ dr + d

dx

∫ 1

n

f2(s
2) log

∣∣∣∣s+ x

s− x

∣∣∣∣ ds =
2p0 − 2

d

dx

∫ m

0

f1(r)dr

∫ ∞

0

D1(ζ)
sin ζr sin ζx

ζ
dζ

−2
d

dx

∫ 1

n

f2(s
2)ds

∫ ∞

0

D1(ζ)
sin ζs sin ζx

ζ
dζ, 0 ≤ x ≤ m, n ≤ x ≤ 1.

(4.2.29)

Utilizing the result
sin ζx sin ζr

ζ2
=

∫ x

0

∫ r

0

vwJ0(ζv)J0(ζw)√
x2 − v2

√
r2 − w2

dvdw, the equation

(4.2.29) becomes

d

dx

∫ m

0

f1(r) log

∣∣∣∣r + x

r − x

∣∣∣∣ dr + d

dx

∫ 1

n

f2(s
2) log

∣∣∣∣s+ x

s− x

∣∣∣∣ ds =
2p0 − 2

d

dx

∫ m

0

f1(r)dr

∫ x

0

∫ r

0

vwL(v, w)√
x2 − w2

√
r2 − v2

dvdw

−2
d

dx

∫ 1

n

f2(s
2)ds

∫ x

0

∫ s

0

vwL(v, w)√
x2 − w2

√
s2 − v2

dvdw,

(4.2.30)
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where

L(v, w) =

∫ ∞

0

ζD1(ζ)J0(ζv)J0(ζw)dζ. (4.2.31)

The integrand of the equation (4.2.31) is a multi-valued function, has branch points

at ζ = k1 and ζ = k2. Following contour integration technique, the infinite integral

has been transformed into the finite integral as

L(v, w) =
ik22
ν

∫ ϵ

0

2µ(ϵ2−ξ2)−λϵ2+4µξ2
√

(ϵ2−ξ2)(1−ξ2)√
ϵ2−ξ2

J0(k2ξv)H
(1)
0 (k2ξw)dξ

+
4ik22
ν

∫ 1

ϵ
ξ2
√
1− ξ2J0(k2ξv)H

(1)
0 (k2ξw)dξ, w > v, (4.2.32)

where k1
k2

= ϵ. The expression of L(v, w) for w < v is calculated by interchanging v

and w in (4.2.32).

Applying the iterative series expansions for the Bessel function and the Hankel

function, we have

J0(k2vξ)H
(1)
0 (k2wξ) =

2ι

π
log k2 +

[
1 +

2ι

π

(
v + log

wξ

2

)]
(4.2.33)

and (4.2.32) becomes

L(v, w) =
2

π
k22I log k2 + O(k22), (4.2.34)

where

I = −1

ν

∫ ϵ

0

2µ(ϵ2 − ξ2)− λϵ2 + 4µξ2
√

(ϵ2 − ξ2)(1− ξ2)√
ϵ2 − ξ2

dξ

−4

ν

∫ 1

ϵ

ξ2
√
1− ξ2dξ. (4.2.35)

■ Solution of the Integral Equations

Let us assume the iterative form of f1(r) and f2(s
2) as follows

f1(r) = f10(r) + (k22 log k2)f11(r) + O(k22) (4.2.36)
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and

f2(s
2) = f20(s

2) + (k22 log k2)f21(s
2) + O(k22). (4.2.37)

Substituting the expressions of f1(r) and f2(s
2) from (4.2.36) and (4.2.37) and the

value of L(v, w) given by (4.2.34) in the equations (4.2.28) and (4.2.30) and equating

the coefficient of equal power of k2, we derived the following equations

d

dx

∫ m

0

f10(r) log

∣∣∣∣r + x

r − x

∣∣∣∣ dr + 2

∫ 1

n

sf20(s
2)

s2 − x2
ds = 2p0, (4.2.38)

d

dx

∫ m

0

f11(r) log

∣∣∣∣r + x

r − x

∣∣∣∣ dr + 2

∫ 1

n

sf21(s
2)

s2 − x2
ds

= −4I

π

[∫ m

0

rf10(r)dr +

∫ 1

n

sf20(s
2)ds

]
(4.2.39)

and

∫ 1

n

f20(s
2)ds = 0,

∫ 1

n

f21(s
2)ds = 0. (4.2.40)

Rewrite the equation (4.2.38) as follows

d

dx

∫ m

0

f10(r) log

∣∣∣∣r + x

r − x

∣∣∣∣ dr = πF ′
1(x), (4.2.41)

where F1(x) = − 2

π

∫ x

0

[
σ̄0
ν

+

∫ 1

n

sf20(s
2)

s2 − η2
ds

]
dη.

Applying Hilbert transform technique, we have the solution of the integral equation

(4.2.41) as follows

f10(r) = − 2

π

r√
m2 − r2

∫ m

0

√
m2 − x2

x2 − r2
F ′
1(x)dx+

2

π

F1(x)

r
√
m2 − r2

. (4.2.42)
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Using Cook’s result, the equation (4.2.42) can be expressed as

f10(r) = − 2

π

σ̄0
ν

r√
m2 − r2

− 2

π

r√
m2 − r2

∫ 1

n

√
s2 −m2

s2 − r2
f20(s

2)ds. (4.2.43)

Substituting the value of f10(r) from (4.2.43) in the equation (4.2.38), the following

integral equation has been obtained

∫ 1

n

√
s2 −m2

s2 − x2
f20(s

2)ds = − σ̄0
ν

(4.2.44)

and the solution of which is

f20(s
2) = − 2

π

σ̄0
ν

√
s2(s2 − n2)

(s2 −m2)(1− s2)
+

sδ1√
(s2 −m2)(s2 − n2)(1− s2)

, (4.2.45)

where δ1 is unknown, to be determined with the help of the condition (4.2.40). Now

substituting the value of f20(s
2) from (4.2.45) in (4.2.43) and using some integral

formulas from Abramowitz et al. (1988), we derived the expression of f10(r) in the

following form

f10(r) = − 2

π

σ̄0
ν

r√
m2 − r2

√
n2 − r2

1− r2
− δ1

r√
m2 − r2

1√
(n2 − r2)(1− r2)

. (4.2.46)

We express the term

∫ m

0

rf10(r)dr +

∫ 1

n

sf20(s
2)ds as follows

∫ m

0

rf10(r)dr +

∫ 1

n

sf20(s
2)ds = − 2

π

σ̄0
ν
[Gm

0 +G1
n] + δ1[T

m
0 − T 1

n ] = C, (4.2.47)

whereGj
i =

∫ j

i

√
s4(s2 − n2)

(s2 −m2)(1− s2)
ds and T j

i =

∫ j

i

s2√
(s2 −m2)(s2 − n2)(1− s2)

ds.

Using the value from (4.2.47), equation (4.2.39) can be expressed as

d

dx

∫ m

0

f11(r) log

∣∣∣∣r + x

r − x

∣∣∣∣ dr = πF ′
2(x), (4.2.48)
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where F2(x) =

∫ x

0

[
−4IC

π2
− 2

π

∫ 1

n

sf21(s
2)

s2 − η2
ds

]
dη.

By similar procedure as above, we finally obtain

f21(s
2) = −4IC

π2

√
s2(s2 − n2)

(s2 −m2)(1− s2)
+

sδ2√
(s2 −m2)(s2 − n2)(1− s2)

(4.2.49)

and

f11(r) = −4IC

π2

r√
m2 − r2

1√
(n2 − r2)(1− r2)

−δ2
r√

m2 − r2
1√

(n2 − r2)(1− r2)
, (4.2.50)

where δ2 is to be determined with the help of the condition (4.2.40). Substituting

the values of f20(s
2) and f21(s

2) from (4.2.45) and (4.2.49) in (4.2.40), we attained

the values of δ1 and δ2 as follows

δ1 =
2

π

σ̄0
ν

[
(1−m2)

E

F
+ (m2 − n2)

]
and δ2 =

4IC

π2

[
(1−m2)

E

F
+ (m2 − n2)

]
,

(4.2.51)

where E = E
(

π
2
,
√

1−n2

1−m2

)
and F = F

(
π
2
,
√

1−n2

1−m2

)
.

Substituting the values of δ1 and δ2 given by (4.2.51) in the equations (4.2.45),

(4.2.46), (4.2.49) and (4.2.50), we obtain

f2l(s
2) =Ml

s
[
s2 − E

F
+m2

(
E
F
− 1
)]√

(s2 −m2)(s2 − n2)(1− s2)
, (4.2.52)

f1l(r) =Ml

r
[
E
F
− r2 +m2

(
1− E

F

)]√
(m2 − r2)(n2 − r2)(1− r2)

, (4.2.53)

where M0 = −2σ̄0

πν
and M1 = −4IC

π2 , l = 0, 1.
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■ Quantity of Physical Interest

Stress Intensity Factor:

The normal stress τyy(x, 0) is given by

τyy(x, 0) = ν

∫ m

0

rf10(r)

r2 − x2
dr + (νk22 log k2)

∫ m

0

rf11(r)

r2 − x2
dr

+ν

∫ 1

n

sf20(s
2)

s2 − x2
ds+ (νk22 log k2)

∫ 1

n

sf21(s
2)

s2 − x2
ds

(4.2.54)

Substituting the values of f10(r), f11(r), f20(s
2) and f21(s

2) given by (4.2.52) and

(4.2.53) in the equation (4.2.54), the expressions of stress intensity factors κm, κn

and κ1 at the vicinity of cracks at the points x = m, x = n and x = 1 respectively

are found to be

κm = Ltx→m+

∣∣∣∣τyy(x, 0)√x−m

σ̄0

∣∣∣∣ , m ≤ x ≤ n

=

√
m

2

√
1−m2

n2 −m2

[
1−Nk22 log k2

] E
F

+ O(k22),

(4.2.55)

κn = Ltx→n−

∣∣∣∣τyy(x, 0)√n− x

σ̄0

∣∣∣∣ , m ≤ x ≤ n

=

√
n

2

√
1

(1−m2)(1− n2)

[
1−Nk22 log k2

]
[
E

F
− n2 −m2

(
E

F
− 1

)]
+ O(k22)

(4.2.56)

and

κ1 = Ltx→1+

∣∣∣∣τyy(x, 0)√x− 1

σ̄0

∣∣∣∣ , x ≥ 1

=

√
1

2

√
1−m2

1− n2

[
1−Nk22 log k2

] [
1− E

F

]
+ O(k22),

(4.2.57)
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where N = 4I
π2

[
Gm

0 +G1
n +

(
E
F
− n2 −m2(E

F
− 1)

)
(Tm

0 − T 1
n)
]
.

Crack Opening Displacement:

The crack opening displacement is given by

δUy(x, 0) = |Uy(x, 0
+)− Uy(x, 0

−)| = 2

∫ m

x

f1(r)dr, 0 ≤ x ≤ m

= 2

∫ 1

x

f2(s
2)ds, n ≤ x ≤ 1.

(4.2.58)

Putting the values of f10(r), f11(r), f20(s
2) and f21(s

2) given by (4.2.52) and (4.2.53)

in the equation (4.2.58), expression (4.2.58) becomes

δUy(x, 0) =
4σ̄0
πν

[
1−Nk22 log k2

]
[√

(1− x2)(m2 − x2)

n2 − x2
+
√
1−m2F (Λ,Υ)

(
E

F
− E(Λ,Υ)

F (Λ,Υ)

)]
+ O(k22), 0 ≤ x ≤ m (4.2.59)

and

δUy(x, 0) =
4σ̄0
πν

[
1−Nk22 log k2

] [√
1−m2F (Λ,Υ)

(
E

F
− E(Ω,Υ)

F (Ω,Υ)

)]
+O(k22), n ≤ x ≤ 1,

(4.2.60)

where sinΛ =

√
m2 − x2

n2 − x2
, sinΩ =

√
1− x2

1−m2
and Υ =

√
1− n2

1−m2
.

■ Numerical and Graphical Discussions

Semi-analytical expressions for Stress Intensity factors and COD given by the

equations (4.2.55) - (4.2.57), (4.2.59) and (4.2.60) have been obtained for low fre-

quency. We notice that material constants and magnetic field parameters are present

in the expressions of SIFs and COD. To plot SIFs and COD for the homogeneous

isotropic material, we consider the following data (Panja and Mandal (2021a))
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λ = 51.06GPa, µ = 26.32GPa and ρ = 2700 kg/m3.

In Fig.4.2.2, Fig.4.2.3 and Fig.4.2.4, keeping the length of the central crack

as m = 0.2, SIFs at the vicinity of the central crack and the vicinities of the outer

cracks have been plotted against frequency for different length of the outer crack (

0.5, 0, 3, 0.1).

For the coupling effect of elastic media and magnetic field, we consider the values of

magnetoelastic parameters as follows

H(z) = 5 , ϵ0 = 0.3 and µ0 = 1.7.

and the graphs are represented by solid line. If we take H(z) = 0, then the effect

of magnetic field is neglected and the corresponding graphs are represented by dash

line.
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Fig.4.2.2 SIF κm against dimensionless frequency (k2).
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Fig.4.2.3 SIF κn against dimensionless frequency (k2).
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Fig.4.2.4 SIF κ1 against dimensionless frequency (k2).

From the figures it is observed that SIFs κm, κn and κ1 decreases when fre-

quency and the length of the outer cracks increases due to the presence and absence

of magnetic field. Also, SIFs are slightly higher when the isotropic elastic material

is influenced by an external magnetic field for normally incidence wave. Therefore

the impact of magnetic field in not much functional.
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Fig.4.2.5: COD against crack width (x).

In Fig.4.2.5, COD has been plotted against crack width for the presence and

absence of magnetic field. It is seen from the graph Fig.4.2.5 that COD at the middle

position of the crack is higher and COD at the vicinity of the cracks is zero which

means fracture toughness at the middle position of cracks is high.

■ Special Case

When m → 0, then the considered elastodynamics problem converted to a

problem containing two cracks occupying the region n ≤ |x| ≤ 1, y = 0, |z| < ∞

and the corresponding stress intensity factors are found as

κn =

√
1

2n

√
1

1− n2

[
1−Nk22 log k2

] [E
F

− n2

]
+ O(k22) (4.2.61)

and

κ1 =

√
1

2

√
1

1− n2

[
1−Nk22 log k2

] [E
F

− 1

]
+ O(k22), (4.2.62)

where N = 4I
π2

[
G1

n −
(
E
F
− n2

)
T 1
n

]
.
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Fig.4.2.6: SIF κn against dimensionless frequency (k2).
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Fig.4.2.7: SIF κ1 against dimensionless frequency (k2).

Fig.4.2.6 and Fig.4.2.7 represent the graphs of SIF vs frequency for the problem of

two cracks. Further if we neglect the effect of magnetic field by considering H(z) = 0

and take n → 0, then three cracks coincide with one crack occupying |x| ≤ 1 and

the stress intensity factor is

κ1 = −
√

1

2

[
1−Nk22 log k2

]
+ O(k22), (4.2.63)

where N = 2I
π
. This result is the approximation of SIF obtained by Mal (1970).
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■ Conclusion

A semi-analytic viewpoint has been carried out in this monograph to exhibit

the coupling effect of magnetic field and isotropic elastic media containing three

cracks by determining the crack tip singular field. SIFs at the tip of interior and

exterior cracks and COD have been computed using iterative scheme for low fre-

quency distribution and presented graphically. The graphical results indicate that

the impact of interaction between interior crack and exterior cracks is a composition

of shielding and amplification or simply amplification depending on the length of the

cracks, material specifications and induced magnetic field. Based on the graphs it

can conclude that SIFs decreases smoothly and tend to zero when frequency and the

length of the exterior cracks increases. Also, variations of SIFs due to the presence

of magnetic field is slightly higher than those for the absence of magnetic field. So

the impact of induced magnetic field in not much functional. Therefore, when the

outer crack is smaller, there is a possibility of arrest the crack growth.

The stress-intensity factors and crack opening displacement evaluated herein

determine the stress field near the crack tips which is useful in correlating and pre-

dicting fatigue crack growth rates and in deciding fracture strength of a cracked

magnetize elastic solid.
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Chapter 5

Torsional Impact on a Penny-shaped Crack at the

Interface of a Semi-infinite Medium and a

Magnetoelastic Layer

■ Introduction

Composite materials have accomplished enormous growth since the introduc-

tion of the so-called ”advanced composites” in recent times. This growth has mainly

been the result of a desire to use high-strength, high stiffness and high-modulus but

lightweight materials in airplane industry, national defense, automobile industry, and

construction field etc. While developing new composite structure many calamities

could occurred because of material deficiencies, poor design that lead to failure (for

example cracks, inclusions) of the material. Also when an isolated impact load is

applied on the crack surface normal to its plane, crack will become unstable and may

grow catastrophically causing more fracture. Therefore, in order to overcome those

difficulties, researchers provide some mechanical tools to serve engineering demands

and to assess the material safety. This can be done by developing fracture criterion

by estimating the singular stress field close to the crack tip which optimizes compos-

ite materials in terms of physical parameters, crack length etc. The problem of two

103
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semi-infinite cracks occurring at the interface of two dissimilar elastic strips under

inplane deformations was done by Wu et al. (2003). Ueda et al. (1984) investigated

the influence of torsional shear on a circular-shaped crack situated in a semi infinite

layer which is embedded between two different isotropic half spaces. Mal (1970)

derived Fredhlom integral equation for the computation of stress intensity factor

and displacement for the elastic problem of a circular crack in an isotropic elastic

medium. Sih and Loeber (1968) analysed the singular stress field around the crack

periphery of a penny shaped crack in an infinite elastic medium under torsional load

acting on the crack surfaces. Embley and Sih (1971) analyzed the effect of impact

response on a circular crack in an infinite elastic plane. Selvadurai (2002) made a

detailed study of an axisymmetric problem of penny shaped crack located at a finite

depth of an isotropic elastic half space where a rigid circular disc is affixed to the

surface of the half-space. He reduced the physical phenomenon of crack-bonded disc

problem to a pair of Fredholm integral equations and solved them numerically. The

axially symmetric problem for a circular crack lying in an elastic layer bonded by two

isotropic half spaces was investigated by Arin and Erdogan (1971), they developed

the results for stress intensity factor in the close neighbourhood of crack tip at low

frequencies. Shul and Lee (2001) considered a physical problem of inter-facial crack

in a multilayered orthtropic half spaces under anti plane shear impact and solved

the problem numerically using Gauss Lagueere and Gauss Legendre approaches.

The problem of a penny shaped crack placed in the plane of the intersection of two

bonded dissimilar materials under uniform pressure has been studied by Kassir and

Bregman (1972) and they showed that the stresses around the crack periphery tend

to infinity and have square root singularity.

Many natural and artificial materials such as Zinc, Cadmium, Cobalt having

hexagonal symmetry exhibit transversely isotropy and this type of materials used as

a coatings or main component to construct layered composite structure. In recent
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times, researchers have established that magnetic effect can be used to develop sen-

sor technology for process control, monitoring, safety measurement, security reasons

etc. Whenever an external magnetic field is applied to an elastic material then the

magnetization effect can change the physical nature of the material and the material

can be considered as a magnetoelastic materials. Therefore, it is of need to inquire

the propagation nature of torsional waves through such magneto elastic material con-

taining cracks in order to upgrade their mechanical and magnetic performances. A

number of eminent researchers have studied crack problems in magnetoelastic mate-

rials because of their applications in engineering construction, optics, acoustics, and

geophysics. Considering an electrically conducted elastic solid under the influence of

an electromagnetic field, De and Sengupta (1972) investigated the dilatational waves

subjected to initial stress. A detail review of linear and nonlinear wave propagation

in magnetized distorted solid was published by Maugin (1981). Chattopadhyay and

Maugin (1985) analysed the diffraction effects of magnetoelastic shear wave by a

crack in an infinite medium made of a material of different physical and electro-

magnetic properties. The coupling effects of magnetic field and transverse isotropy

on the elastic waves in a perfectly conducting medium subjected to initial pressure

was interpreted by Acharya et al. (2009). Panja and Mandal (2021b) discussed the

elastic wave diffraction by a finite crack placed in an semi infinite magnetized elastic

strip.

It has been reported that a number of problems have been studied regarding the

propagation of elastic waves in a magnetizable elastic media. The problem concern-

ing two dissimilar composite layer structure where one layer is affected by a magnetic

field is still undiscovered. Therefore, the present article focuses to discuss the tor-

sional impact on a circular-shaped crack situated at the interface of an isotropic half

space and a transversely isotropic magnetoelastic layer. At first, the problem has
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been converted to a pair of dual integral equation with the aid of boundary condi-

tions and Hankel transform. A trial solution is considered to transform dual integral

equations into a second kind Fredholm integral equation and solve it numerically

by Fox and Goodwin (1953) method. Singular stress has been calculated around

the crack surface employing Rice and Duong (1995) Laplace inversion formula and

presented against time by means of graph for different parameters.

■ Problem Formulation

Assuming the impact response of torsional shear on a circular shaped crack of

radius ‘a’ situated at the interface of a transversely isotropic magnetoelastic layer of

thickness ‘h’ and a semi infinite isotropic half space regarding to the polar frame of

reference (r, θ, z) (Fig.5. 1).

Here the load is applied in the tangential direction, so uθ and τθz, τrθ are the only

non vanishing displacement and stress components.

Fig.5.1 Geometry of the Problem.
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Governing equation (Kumari et al. (2016)) for the transversely isotropic magnetoe-

lastic layer is

∂τ Irθ
∂r

+
∂τ Iθz
∂z

+ 2
τ Irθ
r

+ (J ×B)θ =
1

c21

∂2uIθ
∂t2

, (5.1)

where c21 = µ1

ρ1
(µ1, ρ1 are the shear modulus and material density) and (J⃗ × B⃗)θ is

the circumferential component of the Lourentz force (J⃗ and B⃗ represent the density

of electric current and the magnetic flux density vector respectively) and the prefix

′I ′ represents the transversely isotropic magnetoelastic layer.

The expressions of stress components are followed by

τ Irθ =
C11 − C12

2

(
∂uIθ
∂r

− uIθ
r

)
(5.2)

and

τ Iθz = C44
∂uIθ
∂z

, (5.3)

where C11, C12, and C44 are elastic moduli.

The Maxwell’s equations for the considered electromagnetism are

div B⃗ = 0, J⃗ = σ

(
E⃗ +

∂U⃗

∂t
× B⃗

)
,

curl E⃗ = −∂B⃗
∂t
, curl H⃗ = J⃗, B⃗ = µeH⃗,

(5.4)

where E⃗ represents the strength of the electric field, H⃗ represents the magnetic

intensity, µe is the permeability for the magnetic effect and σ represents the conduc-

tivity of electric current. The Maxwell’s stress tensor
(
τ 0ij
)Mr

for electromagnetism

is followed by

(
τ 0ij
)Mr

= µe(H(1i)βj +H(1j)βi −H(1k)βkδij),

where H⃗ = (Hr, Hθ, Hz) and β⃗ = (βr, βθ, βz), βr, βθ and βz indicate the distur-

bances induced by magnetic field.
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Equations (5.4) can be simplified to the following form by neglecting the displace-

ment current

∇2H⃗ = µeσ

[
∂H⃗

∂t
− ∇⃗ ×

(
∂U⃗

∂t
× H⃗

)]
, (5.5)

which can be written component wise as

∂Hr

∂t
=

1

µeσ
∇2Hr,

∂Hz

∂t
=

1

µeσ
∇2Hz,

and
∂Hθ

∂t
=

1

µeσ
∇2Hθ +

∂
(
Hr

∂uI
θ

∂t

)
∂r

+
∂
(
Hz

∂uI
θ

∂t

)
∂z

.

(5.6)

For absolutely electric conductivity (σ → ∞), equations (5.6) are transformed to

∂Hr

∂t
= 0 =

∂Hz

∂t
(5.7)

and

∂Hθ

∂t
=
∂
(
Hr

∂uI
θ

∂t

)
∂r

+
∂
(
Hz

∂uI
θ

∂t

)
∂z

(5.8)

Equation (5.7) ensures that the magnetic disturbances in r-component and z- com-

ponent of H⃗ are zero, although the equation (5.8) exhibits that there exists magnetic

disturbances in θ-component of H⃗. Therefore we can consider the magnetic field as

(H0r, H0θ + β0, H0z), where β0 is the small disturbances of magnetic perturbation

in circumferential direction and H⃗0 = (H0r, H0θ, H0z) is the initial magnetic field.

Let the magnetic field and wave oscillation intersect at an angle ψ and letH0 =| H⃗0 |.

So, initially magnetic field can be taken as H⃗0 = (0, 0, H0 sinψ) and finally we have

H⃗ = (0, β0, H0 sinψ) . (5.9)
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Substituting the value of H⃗ in (5.8), we derive

∂β0
∂t

=
∂
(
H0 sinψ

∂uI
θ

∂t

)
∂z

. (5.10)

Integrating equation (5.10) with respect to the variable t, we derive

β0 = H0 sinψ
∂uIθ
∂z

. (5.11)

Using the relation ∇⃗(H
2

2
) = (H⃗.∇⃗)H⃗ − curl H⃗ × H⃗ from vector calculus, we obtain

(J⃗× B⃗)θ = µe (H0)
2 sin2 ψ

∂2uIθ
∂z2

. (5.12)

Using (5.2), (5.3), (5.12), equation (5.1) can be rewritten as

a1

(
∂2uIθ
∂r2

+
1

r

∂uIθ
∂r

− uIθ
r2

)
+ a2

∂2uIθ
∂z2

=
1

c12
∂2uIθ
∂t2

, (5.13)

where a1 =
C11−C12

2
and a2 = C44 + (H0)

2 sin2 ψ.

Also, the governing equation for the considered isotropic half space is

∂τ IIrθ
∂r

+
∂τ IIθz
∂z

+ 2
τ IIrθ
r

=
1

c22

∂2uIIθ
∂t2

, (5.14)

where c2 =
(

µ2

ρ2

) 1
2
represents the wave velocity and ρ2, µ2 are the density and shear

modulus of the material and the prefix ′II ′ represents the isotropic half space.

The non vanishing stress components for the case of isotropic medium are

τ IIrθ = µ2

(
∂uIIθ
∂r

− uIIθ
r

)
(5.15)

and

τ IIθz = µ2
∂uIIθ
∂z

. (5.16)
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Using (5.15) and (5.16), equation (5.14) reduces to

∂2uIIθ
∂r2

+
1

r

∂uIIθ
∂r

− uIIθ
r2

+
∂2uIIθ
∂z2

=
1

c22
∂2uIIθ
∂t2

. (5.17)

The equations (5.13) and (5.17) are to be solved with the help the following boundary

conditions

τ Iθz(r, 0, t) = τ IIθz (r, 0, t) = τ0

(r
a

)
H(t), r ∈ [0, a], (5.18)

uIθ(r, 0, t) = uIIθ (r, 0, t), r ∈ (a, ∞), (5.19)

τ Iθz(r,−h, t) = 0, (5.20)

where H(t) represents the Heaviside step function and τ0 is the loading constant.

The time variable will be transformed to a parameter by adopting the Laplace

Transform, defined as

L∗(p) =

∫ ∞

0

l(t)e−ptdt

and

l(t) = 1
2πi

∫
Br

L∗(p)eptdp,

where Br represents the Bromwich curve of integration.

After the application of the Laplace Transform, equations (5.13) and (5.17) become

a1

(
∂2u∗θ

I

∂r2
+

1

r

∂u∗θ
I

∂r
− u∗θ

I

r2

)
+ a2

∂2u∗θ
I

∂z2
=

p2

c12
u∗θ

I , (5.21)

∂2u∗θ
II

∂r2
+

1

r

∂u∗θ
II

∂r
− u∗θ

II

r2
+
∂2u∗θ

II

∂z2
=

p2

c22
u∗θ

II (5.22)

and the boundary conditions (5.18) - (5.20) are expressed as

τ ∗θz
I(r, 0, p) = τ ∗θz

II(r, 0, p) =
τ0
p

(r
a

)
, r ∈ [0, a], (5.23)
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u∗θ
I(r, 0, p) = u∗θ

II(r, 0, p), r ∈ (a, ∞), (5.24)

τ ∗θz
I(r,−h, p) = 0. (5.25)

Using Hankel Transform, the solutions of the equation (5.21) and (5.22) are com-

puted as follows

u∗θ
I(r, z, p) =

∫ ∞

0

[
M1(s, p)e

−γ1z +M2(s, p)e
γ1z
]
J1(sr)ds (5.26)

and

u∗θ
II(r, z, p) =

∫ ∞

0

M3(s, p)e
−γ2zJ1(sr)ds, (5.27)

where γ21 = (a1
a2
s2 + k21), γ

2
2 = (s2 + k22), k

2
1 =

ρ21p
2

a2
, and k22 =

ρ22p
2

µ2
.

M1,M2 and M3 in equation (5.26) and (5.27) are unknown functions and we have

to evaluate them with the help of boundary conditions and integral transform.

Using equations (5.26) and (5.27), stress components τ ∗θz
I and τ ∗θz

II are found as

τ ∗θz
I = −C44

∫ ∞

0

[
γ1M1(s, p)e

−γ1z − γ1M2(s, p)e
γ1z
]
J1(sr)ds (5.28)

and

τ ∗θz
II = −µ2

∫ ∞

0

γ2M3(s, p)e
−γ2zJ1(sr)ds. (5.29)

Using (5.28) and (5.29), the boundary conditions (5.23) and (5.25) yield

C44

∫ ∞

0

γ1[M1(s, p)−M2(s, p)]J1(s, r)ds = µ2

∫ ∞

0

γ2M3(s, p)J1(s, r)ds (5.30)

and ∫ ∞

0

[M1(s, p)e
γ1h −M2(s, p)e

−γ1h]J1(sr)ds = 0. (5.31)
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Hankel inversion on (5.30) and (5.31) leads to following two equations

γ1[M1(s, p)−M2(s, p)] =
µ2

C44

γ2M3(s, p), (5.32)

M1(s, p)e
γ1h −M2(s, p)e

−γ1h = 0. (5.33)

After solving (5.32) and (5.33), we can express M2(s, p) and M3(s, p) in terms of

M1(s, p) as

M2(s, p) =M1(s, p)e
2γ1h (5.34)

and

M3(s, p) =
C44γ1(1− e2γ1h)

µ2γ2
M1(s, p). (5.35)

■ Derivation of the Integral Equation

Using (5.26) − (5.29), the boundary conditions (5.23) and (5.24) yield the

following dual integral equations

∫ ∞

0

α∗(s, p)J1(sr)ds = 0, r ∈ (a, ∞), (5.36)

∫ ∞

0

sP ∗(s, p)α∗(s, p)J1(sr)ds = − τ0r

pµ1a
, r ∈ [0, a], (5.37)

with

α∗(s, p) =
µ2γ2

(
1 + e2γ1h

)
− C44γ1

(
1− e2γ1h

)
µ2γ2

F1(s, p) (5.38)

and

P ∗(s, p) =
µ2γ1γ2

(
1− e2γ1h

)
s
{
µ2γ2

(
1 + e2γ1h

)
− C44γ1

(
1− e2γ1h

)} . (5.39)
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■ Solution of the Dual Integral Equations

Dual integral equations (5.36) and (5.37) can be transformed to a Fredholm

integral equation by taking the form of α∗(s, p) as

α∗(s, p) =
4τ0a

5
2

3C44p
√
2π

√
s

∫ 1

0

√
ζΓ∗

I(ζ, p)J3/2(saζ)dζ, (5.40)

where Γ∗
I(ζ, p) is a desired function to be found.

With the aid of the formula

J3/2(z1ζ) = −
√
ζ

z1

d

dζ
{ζ−1/2J1/2(z1ζ)}, (5.41)

α∗(s, p) can be rewritten as

α∗
(z1
a
, p
)
=

4τ0a
2

3C44p
√
2πz1

[∫ ∞

0

Γ∗
II(ζ, p)J1/2(z1ζ)dζ − Γ∗

I(1, p)J1/2(z1)

]
(5.42)

where, z1 = sa and

Γ∗
II(ζ, p) =

1√
ζ

d

dζ
{ζΓ∗

I(ζ, p)}. (5.43)

The expression P ∗( z1
a
, p) → − 1

Q∗
1
whenever z1 → ∞, therefore 1 + Q∗

1P
∗( z1

a
, p) → 0

as z1 → ∞ where, 1
Q∗

1
=

µ2
√
a2+C44

√
a1

a
3
2
1

.

Now, equation (5.37) can be transformed in terms of dimensionless quantities as

follows

∫ ∞

0

z1α
∗
(z1
a
, p
)
J1(βz1)dz1 =

τ0a
2Q∗

1β

ρC44

+

∫ ∞

0

z1

[
1 +Q∗

1P
∗
(z1
a
, p
)]

α∗
(z1
a
, p
)
J1(βz1)dz1

(
β =

r

a
and β ∈ (1, ∞)

)
. (5.44)

Using equation (5.42) and the result (Abramowitz et al. (1988))

∫ ∞

0

x1/2J1(cx)J1/2(dx)dx = 0, 0 < c < d,
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=

√
2

π

√
d

c
√
d2 − c2

, 0 < d < c,

equation (5.44) reduces to

√
2

π

∫ β

0

√
ζ√

β2 − ζ2
Γ∗
II(ζ, p)dζ =

3πQ∗
1β

2

4
+
π

2
β

∫ 1

0

√
ζΓ∗

I(ζ, p)dζ∫ ∞

0

z
3/2
1 N1

(z1
a
, p
)
J1(βz1)J3/2(ζz1)dz1 = E∗(β), (5.45)

where, N1(
z1
a
, p) = 1 +Q∗

1P
∗( z1

a
, p) and

E∗(β) =
3πQ∗

1β
2

4
+

√
π

2
β

∫ 1

0

√
ζΓ∗

I(ζ, p)dζ

∫ ∞

0

z
3/2
1

N1

(z1
a
, p
)
J1(βz1)J3/2(ζz1)dz1. (5.46)

Employing Abel’s integral technique to (5.45), we get

√
ζΓ∗

II(ζ, p) =
2

π

d

dζ

∫ ζ

0

βE∗(β)√
ζ2 − β2

dβ.

Now, using equation (5.43), equation (5.45) can be expressed as

ζΓ∗
II(ζ, p) =

2

π

∫ ζ

0

β2√
ζ2 − β2

[
3Q∗

1πβ

4
+
√
π/2

∫ 1

0

√
uΓ∗

I(u, p)du∫ ∞

0

z
3/2
1 N1(

z1
a
, p)J1(βz1)J3/2(uz1)dz1]dβ.

(5.47)

Using the result Abramowitz et al. (1988)

∫ 1

0
xm+1(1− x2)nJl(bx)dx = 2nΓ(n+ 1)l−(n+1)Jl+n+1(b)

and Hankel transformation, the equation (5.47) can be converted into a Fredholm

type integral equation as follows

Γ∗
I(ζ, p) =

∫ 1

0

Γ∗
I(u, p)L

∗(ζ, u, p)du+Q∗
1ζ

2, (5.48)
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where

L∗(ζ, u, p) = a2
√
ζu

∫ ∞

0

s [1 +Q∗
1P

∗(s, p)] J3/2(us)J3/2(ζs)ds. (5.49)

■ Quantity of Physical Interest

To compute stress intensity factor K1(t) in terms of t from K∗
1(p), the local

coordinates r1 and θ1 are used to get the expansion of stress components in the

matrix layer for small values of β. The relations between (r1, θ1) and (r, θ) are as

follows

r = a+ r1 cos θ1, z = r1 sin θ1 (5.50)

where x
r
= cos θ and y

r
= sin θ.

From equation (5.28), we get

τ ∗θz
I(r, 0, p) = −C44

∫ ∞

0

sP ∗(s, p)α∗(s, p)J1(sr)ds, r ∈ (a, ∞). (5.51)

For very large values of s, P ∗(s, p) → −1/Q∗
1 and equation (5.51) transformed to

τ ∗θz
I(r, 0, p) =

4τ0

3
√
2πp Q∗

1

[∫ 1

0

√
ζΓ∗

II(ζ, p)

β
√
β − ζ

√
β + ζ

dζ −
√

2

π

Γ∗
1(1, p)

β
√
β − 1

√
β + 1

]

= − 4τ0
3πpQ∗

1

Γ∗
I(1, p)

β
√
β − 1

√
β + 1

+O(1), β ∈ (1, ∞).

(5.52)

Putting r = aβ, equation (5.52) changes in the following form

τ ∗θz
I(r, 0, p) = − 4a2τ0

3πpQ∗
1

Γ∗
I(1, p)

(r
√
r − a

√
r + a)

, r ∈ (a, ∞). (5.53)

SIF in the Laplacian domain is defined as

K∗
1(p) = lim

r→a

∣∣τ ∗θzI(r, 0, p)∣∣ (r − a)
1
2 . (5.54)



5. Torsional Impact on an Interfacial Crack 116

With the help of (5.53), equation (5.54) becomes

K∗
1(p) =

2
√
2aτ0

3πQ∗
1

Γ∗
I(1, p)

p
. (5.55)

Applying Laplace inversion approach, the stress intensity factor K1(t) is computed

as

K1(t) =
2
√
2aτ0

3πQ∗
1

1

2πi

∫
Br

Γ∗
I(1, p)

p
eptdp (5.56)

where, Br represents the Bromwich curve.

■ Numerical Outcomes and Discussions

To determine the value of Γ∗
I(1, p) from the equation (5.48), the numerical

approach by Fox and Goodwin (1953) is adopted. The Zakian’s Algorithm (Rice

and Duong (1995)) has been utilized for Laplace inversion of equation (5.55) to

compute the stress intensity factor K1(t) in the neighbourhood of the tip of the

crack for different composite elastic materials and the considered magnetic field.

For the transversely isotropic layer affected by magnetic field we consider the the

values of parameters (Sharma et al. (2015)) as

H0 = 5, ψ = 10, C11 = 18.78× 1010Kgm−1s−2, C44 = 5.06× 1010Kgm−1s−2,

C12 = 8.76× 1010Kgm−1s−2.

For the Isotropic elastic half space we consider the values of elastic constants as

ρ2 = 2700Kgm−3, λ2 = 51.08GPa, µ2 = 26.32GPa.

For different values of the radius of crack ‘a’, thickness of the strip ‘h’ and magnetic

intensity H0, the time dependent SIF K1(t)
τ0

has been plotted with respect to t.
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Fig.5.2 Stress Intensity Factor (K1(t)
τ0

) against time

Fig.5.3 Stress Intensity Factor (K1(t)
τ0

) against time

Fig.5.4 Stress Intensity Factor (K1(t)
τ0

) against time
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Fig.5.5 Stress Intensity Factor (K1(t)
τ0

) against time

In Fig.5.2, SIF is plotted with respect to time for magnetic intensity H0 =

5, crack radius a = 2.0 and three different values of the width of the layer h =

1.5, 2.0, 2.5 and in Fig.5.4, the same has been plotted against time by neglecting

the magnetic field (H0 = 0).

In Fig.5.3, SIF is plotted with respect to time for magnetic intensity H0 = 5,

width of the layer h = 1.5 and three different values of the radius a = 1.5, 2.0, 2.5

and in Fig.5.5, the same thing has been plotted against time by neglecting the

magnetic field (H0 = 0).

In all of the figures (Fig.5.2, Fig.5.3, Fig.5.4, Fig.5.5) it can be seen that initially

the SIF increases and reaches maximum value near t = 1 that means the fracture

toughness is high at that point and then follows wave like nature and finally tends

to zero. The wave-like nature can result in changes in crack propagation rates and

direction, which can affect the overall structural integrity of the material. Therefore,

the material may experience increased crack growth rates, resulting in a reduction

of its fatigue life.

Fig.5.2 and Fig.5.3 demonstrate that the stress intensity factor (SIF) is elevated

when the magnetic field is present, as compared to its absence. Furthermore, it is

observed that the SIF takes a longer time to reach zero in the presence of a magnetic
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field. Therefore magnetic field generates residual stresses in the material, which

increase the stress concentration at the crack tip.

■ Validation and Comparison of Results

If we consider C11−C12

2
= C44 = µ1 and H0 = 0, then the transversely isotropic

magnetoelasic layer will be converted to a homogeneous isotropic half space and we

have following expressions

a1 = a2 = µ1, Q
∗
1 =

µ1

µ1+µ2
and

K1(t) =
2µ1

√
2aτ0

3π(µ1 + µ2)

1

2πi

∫
Br

Γ∗
I(1, p)

p
eptdp. (5.57)

To plot the graph we consider the the values of parameters for two different

isotropic mediums as µ1 = 28, ρ1 = 2.7, µ2 = 39, ρ2 = 8.4.

Fig.5.6 Stress Intensity Factor (K1(t)
τ0

) against time.

Fig.5.6 represents the graph of SIF verses time and the graph is similar in nature

with graphs presented by Ueda et al. (1984).
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■ Conclusions

An analytical approach has been conducted to examine the fracture behaviour of

a composite structure that contains a crack situated at the interface between a semi

infinite isotropic half space and a magnetoelastic layer. The singular stress has been

computed near the crack periphery. The figures indicate that the stress intensity

factor increases first and reaches its highest value then it decreases and finally tends

to zero. Highest value of SIF at t = 1 is an indication that the material is under

severe stress and is at risk of failure. Also, in the presence of magnetic field SIF is

elevated due to the residual stress generated by magnetostriction of the structure

that increases the likelihood of crack growth or failure of the material. The elevated

SIF indicates that the energy required to propagate a crack is higher in the presence

of a magnetic field, which means that the material may be more prone to cracking

or failure when subjected to a mechanical load. Therefore, it is important to reduce

the stress intensity factor by redesigning the structure or by applying stress-relieving

techniques such as heat treatment or shot peening or by magnetic field shielding to

improve the material’s resistance to cracking.
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Abstract
This monograph depicts the interaction of shear waves by two collinear finite cracks in an
infinite magnetoelastic orthotropic medium. The physical phenomena of wave interaction
have been formulated as a mixed boundary value problem (MBVP). The MBVP has been
transformed into a pair of integral equations by introducing Abel’s transform. The integral
equations have been simplified by the perturbation method for low frequency with the help
of the iterative expansion of Bessel’s and Hankel’s functions. The solution of the simplified
integral equations has been derived by Hilbert transformation. The analytic expression of
stress intensity factors (SIFs) and crack opening displacement (COD) have been computed
and demonstrated graphically to exhibit the effect of magnetization on elastic media.

Keywords Finite crack · Magnetoelasticity · Shear wave · SIF · COD

Introduction

In solid structures, the distraught effect such as cracks or voids exist in elastic material which
may be caused by material processing, manufacturing irregularities, uncertainties in load-
ings etc. The presence of such defects may significantly affect the stiffness and integrity of
the material. To understand the failure mechanism of materials, analysis of stress and dis-
placement field around the crack vicinities is necessary. The stress field helps to predict the
expected crack growth rate, failure assessment, and fracture behavior of materials and the
displacement fieldmeasures the fracture toughness of thematerial.Many elasticmaterials fre-
quently exhibit strong orthotropy, so the study ofwave propagation by cracks in an orthotropic
medium is of great importance for fracture analysis of the material. Researcher Sneddon [1]
discussed various crack problems in the mathematical theory of elasticity. Robertson [2] and
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Mal [3] analyzed the diffraction of elastic waves by a circular crack in an infinitely extended
elastic medium. Jain and Kanwal [4] derived singular stress for the problem of the dispersion
of elasticwaves by twoGriffith cracks in an infinite isotropicmedium. Interaction of antiplane
transverse waves by the influence of two collinear finite cracks in an infinite medium has been
investigated by Itou [5]. Itou [6] also solved the problem of two co-planar finite cracks in an
orthotropic layer sandwich between two elastic half planes. Problems of the interaction of
longitudinal waves by Griffith cracks in an orthotropic plate have been made byMandal et al.
([7, 8]). Mechanics of magneto-elastic solids have gained significant interest in recent years
due to the extensive application of magnetic reinforced materials in aerospace engineering,
automotive industries, acoustics, optimal design, signal processing, etc. The coupled prop-
erties of magnetic field and elastic media offer great opportunities for engineers to create
flawless constructions and devices that are capable of answering to internal and (or) external
changes. Therefore, the study of magnetoelastic interaction is the focus of many research
scholars in the field of fracture mechanics. The basic equations of magnetoelastic deforma-
tion theory have been derived by Dunkin and Eringen [9]. The theory of magnetoelasticity
was developed by Knopff [10] and Chadwick [11] which was later extended by Kalish and
Petykiewicz [12]. P. D. S. Verma [13] has investigated magneto-elastic transverse waves in
a self reinforced elastic body. Chattopadhyay and Maugin [14] analyzed the magnetoelastic
response of rigid strips in an infinite plate. The propagation of magnetoelastic transverse
waves in an infinite self-reinforced lamina has been investigated by Chattophadhyay and
Choudhury [15]. Marin ([16, 17]) investigated the influence of the thermoelastic effect on
the body with voids. Acharya et al. [18] analyzed the dispersion of interface waves by the
impact of magnetic field and initial tension in a transversely isotropic plate. The problems of
the interaction of magneto-elastic shear waves by a Griffith crack have been solved by Panja
and Mandal [19, 20].

Earth is believed to be surrounded by its own magnetic field dispersing from its center.
Therefore, it is very much crucial to consider the effect of magnetic field in a cracked elastic
media. To the best of the authors knowledge, no attempt has been made till now to analyse
the stress field of an orthotropic elastic material containing two cracks by the impact of
magnetic field. Therefore the goal of this paper is to illustrate the shear wave interaction by
two collinear finite cracks in an infinite orthotropic plate under the influence of magnetic
field. The physical phenomena of wave interaction are formulated as an MBVP. The MBVP
has been transformed into a pair of integral equations by introducing Abel’s transform, which
has further been simplified by using the perturbation method for low frequency. The solution
of the simplified integral equations has been derived by Hilbert transformation [21]. The
analytic expansions of SIFs and COD have been computed and demonstrated graphically.

Problem Synthesis

Let us consider two Griffith cracks situated at b ≤| X |≤ a, −∞ < Y < ∞, Z = 0
referred to the rectangular frame of reference (X, Y, Z) in a magnetized orthotropic medium.
Normalizing all the lengths with respect to a and putting X

a = X1, Y
a = Y1, Z

a = Z1 and
b
a = h, the new crack location becomes h ≤| X1 |≤ 1, −∞ < Y1 < ∞, Z1 = 0 (Fig. 1).
Let us assume that there is a time harmonic anti-plane shear wave h0e−iωt in the positive
direction of the Z -axis, where ho is the antiplane shear traction acting on the crack periphery
in the positive direction of the Z -axis. The periodic term e−iωt is present in all field variables
which is being omitted throughout the analysis.
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Fig. 1 Geometry of the problem

Since shear waves propagate in the Z direction, so the displacement field can be taken as
(0, Uy(x, z), 0). Field equation [22] for perfectly conducting orthotropic elastic media is

∂σxy

∂x
+ ∂σyz

∂z
+ ( �J × �B)y + k2Uy = 0, (1)

where k2 = ρω2 and ( �J × �B)y is the Y -component of the Lorentz force ( �J and �B are the
electric current density and the magnetic flux density vector).

The non vanishing stresses are given by

σxy = 2C66Exy = C66
∂Uy

∂x

and σyz = 2C44Eyz = C44
∂Uy

∂z
,

(2)

where C66 and C44 are orthotropic elastic constants.
The well known Maxwell’s equations ([19, 22]) for the governing electromagnetic field

are

div �B = 0, curl �E = −∂ �B
∂t

, �B = μe �H,

�J = σ

(
�E + ∂ �U

∂t
× �B

)
and curl �H = �J ,

(3)

where �E is the strength of the electric field, �H is the intensity of the magnetic field, μe is the
induced permeability and σ is the conductivity coefficient of electric current.

The expression of Maxwell’s stress tensor
(
σ 0
i j

)Mx
is given by(

σ 0
i j

)Mx = μe(H(1i)β j + H(1 j)βi − H(1k)βkδi j ),

where �H = (H(1x), H(1y), H(1z)
)
and �β = (βx , βy, βz), βx , βy and βz are the disturbances

in the induced magnetic field.
Ignoring the displacement current vector, from Eq. (3) we derive

∇2 �H = μeσ

[
∂ �H
∂t

− �∇ ×
(

∂ �U
∂t

× �H
)]

. (4)
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From the vector Eq. (4), we get

∂H(1x)

∂t
= 1

μeσ
∇2H(1x),

∂H(1z)

∂t
= 1

μeσ
∇2H(1z),

∂H(1y)

∂t
= 1

μeσ
∇2H(1y) +

∂
(
H(1x) ∂Uy

∂t

)
∂x

+
∂

(
H(1z) ∂Uy

∂t

)
∂z

.

(5)

For perfectly electric conductivity (σ → ∞), Eq. (5) reduce to

∂H(1x)

∂t
= 0 = ∂H(1z)

∂t
(6)

and

∂H(1y)

∂t
=

∂
(
H(1x) ∂Uy

∂t

)
∂x

+
∂

(
H(1z) ∂Uy

∂t

)
∂z

.
(7)

According to the Eq. (6), we can conclude that there is no magnetic perturbation in the
X -component and Z -component of �H, nevertheless the Eq. (7) shows that there may exist
magnetic perturbation in the Y -component of �H. Therefore we may consider the magnetic
field as

(H(0x), H(0y) + β0, H(0z)
)
, where β0 is the small amount of magnetic perturbation

inH(1y) and
(H(0x), H(0y), H(0z)

)
are three components of magnetic field �H0 in the initial

state.
Let ψ be the angle at which the wave crosses the magnetic field and let H(0) =| �H0 |,

therefore the initial state of magnetic field can be expressed as
�H0 = (H(0) cosψ, 0, H(0) sinψ) and finally we have

�H =
(
H(0) cosψ, β0, H(0) sinψ

)
. (8)

Putting the value of �H in (7), we derive

∂β0

∂t
=

∂
(
H(0) cosψ

∂Uy
∂t

)
∂x

+
∂

(
H(0) sinψ

∂Uy
∂t

)
∂z

.
(9)

Integrating (9) with respect to t , we get

β0 = H(0) cosψ
∂Uy

∂x
+ H(0) sinψ

∂Uy

∂z
. (10)

With the help of �∇(H
2

2 ) = ( �H. �∇) �H − (curl �H) × �H, we obtain

( �J × �B)y = μe

[(
H(0)

)2
cos2 ψ

∂2Uy

∂x2
+

(
H(0)

)2
sin 2ψ

∂2Uy

∂x∂z
+

(
H(0)

)2
sin2 ψ

∂2Uy

∂z2

]
.

(11)
Utilizing (2) and (9), the Eq. (1) reduces to

A
∂2Uy

∂x2
+ B

∂2Uy

∂z2
+ C

∂2Uy

∂x∂z
+ k2Uy = 0, (12)
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where

A = C66 + μe

(
H(0)

)2
cos2 ψ,

B = C44 + μe

(
H(0)

)2
sin2 ψ,

C = μe

(
H(0)

)2
sin 2ψ.

(13)

Since the crack geometry is symmetric, we will consider the upper half plane (Z ≥ 0) only.
The Eq. (12) is to be solved subject to the following mixed boundary conditions

σyz(x, 0) = −h0, h ≤| x |≤ 1 (14)

and
Uy(x, 0) = 0, | x |> 1, | x |< h. (15)

The general solution of the field Eq. (12) can be considered as

Uy(x, z) =
∫ ∞

−∞
F(ζ )e−mzeiζ xdζ, z > 0, (16)

where m = iζC
2B + ζ

√
1
B

(
A − k2

ζ 2

)
− ( C

2B

)2
and F(ζ ) is an unknown function. The non

vanishing stress component is found as

σyz(x, z) = −C44

∫ ∞

−∞
mF(ζ )e−mzeiζ xdζ. (17)

The expression of F(ζ ) is to be calculated utilizing the boundary conditions.

Derivation and Solution of Integral Equations

Using the boundary conditions (14) and (15), we derive the following integral equations∫ ∞

−∞
mF(ζ )eiζ xdζ = h0

C44
, h ≤| x |≤ 1 (18)

and ∫ ∞

−∞
F(ζ )eiζ xdζ = 0, | x |> 1, | x |< h. (19)

Equation (18) can be expressed as∫ ∞

−∞
ζ [1 + R1(ζ )]F(ζ )eiζ xdζ = h0

ϑC44
, h ≤| x |≤ 1, (20)

where

R1(ζ ) = R(ζ )

ϑ
− 1, R(ζ ) =

iC +
√
4B

(
A − k2

ζ 2

)
− C2

2B
,

ϑ = iC + √
4AB − C2

2B
and R1(ζ ) → 0 as ζ → ∞.

(21)

For the solution of (18) and (19), we consider the following trial solution

F(ζ ) = 1

ζ

∫ 1

h
φ(q2) sin(ζq)dq, (22)
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where φ(q2) is an unknown function which is to be computed with the help of integral
transforms.

Using (22) and
∫ ∞

0

sin ζq cos ζ x

ζ
dζ =

{
π
2 , q > x

0, q < x
in the Eq. (19), it is found that

φ(q2) satisfy the equation ∫ 1

h
φ(q2)dq = 0. (23)

Again using the result
∫ ∞

0

sin ζq sin ζ x

ζ
dζ = 1

2
log

∣∣∣∣q + x

q − x

∣∣∣∣ from [23] and the expression

of F(ζ ) given by the Eq. (22), from the Eq. (20) we get

d

dx

∫ 1

h
φ(q2) log

∣∣∣∣q + x

q − x

∣∣∣∣ dq = 2

[
h0

ϑC44
− d

dx

∫ 1

h
φ(q2)dq∫ ∞

0
ζ R1(ζ )

sin ζq sin ζ x

ζ 2 dζ

]
.

(24)

Utilizing the result
sin ζq sin ζ x

ζ 2 =
∫ x

0

∫ q

0

mnJ0(ζm)J0(ζn)√
x2 − m2

√
q2 − n2

dmdn, the Eq. (24)

becomes∫ 1

h

qφ(q2)

q2 − x2
dq = h0

ϑC44
− d

dx

∫ 1

h
φ(q2)dq

∫ ∞

0
ζ R1(ζ )

×
[∫ x

0

∫ q

0

mnJ0(ζm)J0(ζn)√
x2 − m2

√
q2 − n2

dmdn

]
dζ

= h0
ϑC44

− d

dx

∫ 1

h
φ(q2)dq

∫ x

0

∫ q

0

mn√
x2 − m2

√
q2 − n2

dmdn

×
∫ ∞

0
ζ R1(ζ )J0(ζm)J0(ζn)dζ

= h0
ϑC44

− d

dx

∫ 1

h
φ(q2)dq

∫ x

0

∫ q

0

mnκ(n,m)√
x2 − m2

√
q2 − n2

dndm,

(25)

where

κ(n,m) =
∫ ∞

0
ζ R1(ζ )J0(ζm)J0(ζn)dζ. (26)

The integrand of the integration (26) has a branch point at ζ = k√
A
. Employing the

contour integration technique [3], the improper integral (26) has therefore been converted to
the following finite integral

κ(n,m) = − ιk2

2

∫ 1√
A

0
ζ

√
4B

(
1
ζ 2

− A
)

+ C2

Bϑ
J0(kζm)H (1)

0 (kζn)dζ, n > m.
(27)

With the help of the asymptotic series expansion of J0 and H (1)
0 , J0(kζm)H (1)

0 (kζn) can be
written as

J0(kζm)H (1)
0 (kζn) = 2ι

π
log k +

[
1 + 2ι

π

(
m + log

(
ζn

2

))]
. (28)
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Using (28), (27) becomes

κ(n,m) = 1

π
k2G log k + O(k2), (29)

where

G =
∫ 1√

A

0

ζ

Bϑ

√
4B

(
1

ζ 2 − A

)
+ C2dζ. (30)

Let us take the iterative form of φ(q2) as follows

φ(q2) = φ0(q
2) + k2 log kφ1(q

2) + O(k2). (31)

Using the above expression of φ(q2) and the expression of κ(n,m) given by the Eq. (29)
in (25) and equating the coefficients of similar powers of k from both sides of the reduced
equation, we derive ∫ 1

h

qφ0(q2)

q2 − x2
dq = h0

ϑC44
, h ≤| x |≤ 1 (32)

and ∫ 1

h

qφ1(q2)

q2 − x2
dq = −G

π

∫ 1

h
qφ0(q

2)dq, h ≤| x |≤ 1. (33)

Applying Hilbert transformation [21], from (32) we get

φ0(q
2) = 2h0

πϑC44

√
q2 − h2

1 − q2
+ α1√

(q2 − h2)(1 − q2)
(34)

and from (33) using (34) we have

φ1(q
2) = −G

(
h0(1 − h2)

π2ϑC44
+ α1

π

) √
q2 − h2

1 − q2
+ α2√

(q2 − h2)(1 − q2)
, (35)

where α1 and α2 are constants to be computed with the help of the following conditions∫ 1

h
φ0(q

2)dq = 0 (36)

and ∫ 1

h
φ1(q

2)dq = 0. (37)

Using (36) and (37) we found the values of α1 and α2 as follows

α1 = 2h0
πϑC44

h2F1 − E1

F1
(38)

and

α2 = Gh0
π2ϑC44

(h2F1 − 2E1 + F1)(E1 − h2F1)

F2
1

, (39)

where E1 = E
(

π
2 ,

√
1 − h2

)
and F1 = F

(
π
2 ,

√
1 − h2

)
.

Putting the values of the constants α1 and α2 given by the expressions (38) and (39) in
(34) and (35), we obtain

φ0(q
2) = 2h0

πϑC44

q2F1 − E1

F1
√

(q2 − h2)(1 − q2)
(40)
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and

φ1(q
2) = Gh0

π2ϑC44

(h2F1 − 2E1 + F1)(E1 − h2F1)

F2
1

√
(q2 − h2)(1 − q2)

. (41)

Physical Parameters

Stress Intensity Factors

The non vanishing shear stress outside the crack can be calculated as

σyz(x, 0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−h0
[
1 − G

2π k
2 log(k)

(
1 − 2E1

F1
+ h2

)][
1 − x2− E1

F1√
(1−x2)(h2−x2)

]
, 0 ≤ x ≤ h

−h0
[
1 − G

2π k
2 log(k)

(
1 − 2E1

F1
+ h2

)][
1 + x2− E1

F1√
(x2−1)(x2−h2)

]
, x > 1.

(42)
The SIFs Kh and K1 at the crack vicinities (x = h and x = 1) are computed as

Kh = Ltx→ h−
(h − x)

1
2 σyz(x, 0)

h0

= h2 − E1
F1√

2h(1 − h2)

[
1 − G

2π
k2 log k

(
1 − 2E1

F1
+ h2

)]
+ O(k2)

(43)

and

K1 = Ltx→ 1+
(x − 1)

1
2 σyz(x, 0)

h0

=
E1
F1

− 1√
2(1 − h2)

[
1 − G

2π
k2 log k

(
1 − 2E1

F1
+ h2

)]
+ O(k2).

(44)

Crack Opening Displacement

Another physical quantity COD (Magnitude of the distance between two faces of the crack)
is given by

δW (x) =| Uy(x, 0+) −Uy(x, 0−) |= 2
∫ 1
x φ(q2)dq

= 4h0
πϑC44

[
1 − G

π
k2 log k

(
1 − 2E1

F1
+ h2

)] [
E2 − E1F2

F1

]
, (45)

where E2 = E
(
sin−1

√
1−x2

1−h2
,
√
1 − h2

)
and F2 = F

(
sin−1

√
1−x2

1−h2
,
√
1 − h2

)
.

Numerical and Graphical Demonstration

From the expansions of SIFs and COD given by (43), (44), and (45), it is obvious that these
physical parameters depend on the values of material parameters and magnetic field. For
orthotropic elastic medium, we take the following data [24]:

ρ = 2.7g/m3,C44 = 5.3Gpa,C66 = 6.47GPa and ψ = 10.
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Frequency (k)

0.1

0.15

0.2

0.25
S

IF
 (

K
h
) h=0.6

h=0.5

h=0,7

Fig. 2 SIF Kh with respect to frequency (k)

To display the impact of magnetic field, we plot the graphs of SIF versus frequency and COD
vs crack width in the presence and absence of magnetic field. For the presence of magnetic
field we consider

ε1 = μe(H(0))2

C66
= 0.30 and ε2 = μe(H(0))2

C44
= 0.37

and the corresponding graph is represented by dash line. In the absence of magnetic field,
we assume

ε1 = 0 and ε2 = 0

and the graph is represented by solid line.
Firstly the variations of SIF Kh at the inner vicinity of the crack with h = 0.5, 0.6, 0.7 are

shown in Fig. 2, secondly the variations of SIF at the outer vicinity of the crack are shown
in Fig. 3. From both the graphs it is obvious that SIF has a slower decreasing rate up to a
certain value of frequency and then the rate of decreasing become high and finally tends to
zero. Comparing both the Figs. 2 and 3 it is identified that SIF at the outer tip has a higher
rate of decreasing as compared to the SIF at the inner tip and SIFs decrease with the increase
of the values of h. It has also been observed that the variations of SIFs are not significant in
both the cases for the presence and absence of the magnetic field.

The nature of the Figs. 2 and 3 is quite same as the work discussed by Mandal and Sarkar
[8] in the absence of magnetic field. Fig. 4 represents the graph of COD versus crack width
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0.41
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0.44

0.45
S

IF
 (

K
1
)

h=0.7

h=0.6

h=0.5

Fig. 3 SIF K1 with respect to frequency (k)

due to the presence and absence of magnetic field. It is notable that the COD achieves its
highest value at the point x = 0.6 and reaches zero at the tips of the cracks, so the fracture
toughness is high at the point x = 0.6. Also, COD increases slightly in the presence of
magnetic field as compared to the absence of magnetic field for low frequency k.

Comparison of Results

If we take h = 0, then two cracks coincide with a single crack and Fig. 5 represents the graph
of SIF for the case of the single crack. If we take C44 = C66 → μ, then the medium will
tend to be isotropic medium and we have the following expressions

A → μ + μe(H(0))2 cos2 ψ,

B → μ + μe(H(0))2 sin2 ψ,

C = μe(H(0))2 sin 2ψ.

We obtain SIF in the following form

K1 =
E1
F1

− 1√
2

[
1 − G

2π
k2 log k

(
1 − 2E1

F1

)]
. (46)
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Fig. 4 COD δW (x)
h0

against the crack width x

After some numerical manipulation, the approximate expression for SIF given by (46) has
been derived from the expression of SIF given by Panja [19] et al. This comparison ensures
the validation of the result obtained in this problem.

Conclusion

In the present study, the analytic expressions for SIFs and COD subjected to the magnetic
field in an infinite elastic medium have been obtained. The main advantage of the analytical
method is that we can plot physical parameters accurately while in the numerical procedure
discrete data is used to plot the parameters. The variations of the mechanical parameters SIFs
andCODdue to the presence and absence ofmagnetic field have been represented graphically.
Graphical results indicate that the propagation of the crack in the magneto-elastic medium is
more pronounced compare to the non magneto-elastic medium for small frequency. Around
the vicinity of the crack, state of stress is disruptive in nature and loses its toughness far away
from the crack. From the figures it is seen that the SIFs and COD decrease as frequency and
crack width increases which are physically persistent with the problem. It can be concluded
that the material parameters play a major role in the case of fracture. Therefore we can
settle the rate of crack growth and fracture toughness by considering a particular range of
frequency and manipulating the magneto-elastic parameters. The analysis of the stress field
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Fig. 5 SIF with respect to frequency (k)

in the proposed model may help to find the significant applications for the assessment of the
toughness of structures containing multiple cracks. Furthermore, the proposed analysis may
significantly give an idea to find the implementations of engineering materials which bring
some extraordinary impact on the analysis and the design of sustainable materials used in
high rising buildings, constructions of bridges, airplane industries, and many more identical
types of reinforced constructions.

Appendix A

For large value of ζ , the non vanishing stress component at z = 0 is given by

σyz(x, 0) = −ϑC44

∫ ∞

−∞
ζF(ζ )eiζ xdζ = −ϑC44

∫ 1

h

qφ(q2)

q2 − x2
dq [using (22)]

= −ϑC44

∫ 1

h

qφ0(q2)

q2 − x2
dq − ϑC44k

2log(k)
∫ 1

h

qφ1(q2)

q2 − x2
dq.

(47)
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Now,

∫ 1

h

qφ0(q2)

q2 − x2
dq = 2h0

πϑC44

∫ 1

h

qdq√
(q2 − h2)(1 − q2)

− 2h0
πϑC44

(
x2 − E1

F1

)

×
∫ 1

h

qdq

(q2 − x2)
√

(q2 − h2)(1 − q2)
.

(48)

For 0 ≤ x ≤ h,∫ 1

h

qdq

(q2 − x2)
√

(q2 − h2)(1 − q2)
= 1√

(1 − x2)(h2 − x2)

π

2
. (49)

For x > 1, ∫ 1

h

qdq

(q2 − x2)
√

(q2 − h2)(1 − q2)
= − 1√

(x2 − 1)(x2 − h2)

π

2
(50)

and ∫ 1

h

qdq√
(q2 − h2)(1 − q2)

= π

2
. (51)

Finally

∫ 1

h

qφ0(q2)

q2 − x2
dq =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h0
ϑC44

[
1 − x2− E1

F1√
(1−x2)(h2−x2)

]
, 0 ≤ x ≤ h

h0
ϑC44

[
1 + x2− E1

F1√
(x2−1)(x2−h2)

]
, x > 1.

(52)

Similarly we have

∫ 1

h

qφ1(q2)

q2 − x2
dq =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− Gh0
2πϑC44

(
1 − 2E1

F1
+ h2

)[
1 − x2− E1

F1√
(1−x2)(h2−x2)

]
, 0 ≤ x ≤ h

− Gh0
2πϑC44

(
1 − 2E1

F1
+ h2

)[
1 + x2− E1

F1√
(x2−1)(x2−h2)

]
, x > 1.

(53)
From (47) we have

σyz(x, 0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−h0
[
1 − G

2π k
2 log(k)

(
1 − 2E1

F1
+ h2

)][
1 − x2− E1

F1√
(1−x2)(h2−x2)

]
, 0 ≤ x ≤ h

−h0
[
1 − G

2π k
2 log(k)

(
1 − 2E1

F1
+ h2

)][
1 + x2− E1

F1√
(x2−1)(x2−h2)

]
, x > 1.

(54)

Appendix B

Displacement and the the magnetic field can be written as in the following vector form

�U = Uy(x, z) ĵ , �H = H(1x) î + H(1y) ĵ + H(1z)k̂. (55)

Then
∂ �U
∂t

× �H =
(
H(1z) ∂Uy

∂t

)
î −

(
H(1x) ∂Uy

∂t

)
k̂. (56)
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Now,

�∇ ×
(

∂ �U
∂t

× �H
)

= − ∂

∂ y

(
H(1x) ∂Uy

∂t

)
î + ∂

∂x

(
H(1x) ∂Uy

∂t

)
ĵ + ∂

∂z

(
H(1z) ∂Uy

∂t

)
ĵ

− ∂

∂ y

(
H(1z) ∂Uy

∂t

)
k̂

= ∂

∂x

(
H(1x) ∂Uy

∂t

)
ĵ + ∂

∂z

(
H(1z) ∂Uy

∂t

)
ĵ .

(57)
We know

∇2 �H = μeσ

[
∂ �H
∂t

− �∇ ×
(

∂ �U
∂t

× �H
)]

. (58)

Using (55) (56) and (57), from (58) equating the coefficients of î ĵ and k̂ we have

∂H(1x)

∂t
= 1

μeσ
∇2H(1x),

∂H(1z)

∂t
= 1

μeσ
∇2H(1z)

and
∂H(1y)

∂t
= 1

μeσ
∇2H(1y) +

∂
(
H(1x) ∂Uy

∂t

)
∂x

+
∂

(
H(1z) ∂Uy

∂t

)
∂z

.

(59)

For σ → ∞, 1
σ

→ 0. Equations given by (59) reduce to

∂H(1x)

∂t
= 0 = ∂H(1z)

∂t
(60)

and

∂H(1y)

∂t
=

∂
(
H(1x) ∂Uy

∂t

)
∂x

+
∂

(
H(1z) ∂Uy

∂t

)
∂z

. (61)
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