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1
Introduction

1.1 Socio-ecological-economic interactions

The intricate linkages and interdependencies between social, ecological, and economic sys-
tems are called socio-ecological-economic interactions [1]. These interactions recognize that
humans, societies, and the economy are inextricably linked to the natural environment in which
they live [2]. Understanding and controlling these connections is critical for long-term growth
and the well-being of people and the environment.

Understanding socio-ecological-economic interconnections is essential for developing com-
prehensive and sustainable policies that balance human demands and economic growth with
environmental and ecological system maintenance. It necessitates multidisciplinary methods
and collaborative efforts from various stakeholders, including governments, corporations, non-
governmental organisations, and communities.

1.2 Fishery: A sustainable livelihood

The fishery is a socio-ecological interaction where human interacts with nonhuman species.
Global fishing significantly contributes towards the sustainable development goals (SDG), which
the United Nations are accomplishing [3, 4]. In particular, the inclusion of global fisheries ser-
vices can help to meet the Sustainable Development Goals of eradicating extreme poorness
(SDG 1), no appetite (SDG 2), pure water and sanitation (SDG 6), sustainable consumption
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2 Chapter 1. Introduction

and production (SDG 12), and life on land (SDG 15). Millions of people living along coast-
lines rely on the world’s fisheries for a living and supporting national economies [5]. They
also serve as a safety net for some of the world’s poorest people, supplying them with food
and cash revenue, particularly during times of crisis. Sustainable fisheries contribute to a coun-
try’s prosperity by providing jobs in the fishing, processing, and related service industries and
subsistence-based activities at grassroots levels [6].

Another fascinating part of aquaculture that enhances a nation’s socio-ecological-economic
culture is recreational fishing. Recreational fishing or "anglin” is the term used to describe
fishing when the main goal is not to provide sustenance or make money via the sale or trade
of fishing products but to engage in the activity for leisure, relaxation, and enjoyment [7].
Recreational fishing has the potential to play an important role in ecotourism, as it offers a
sustainable and nature-focused activity that draws tourists to explore and appreciate the natural
environment [8]. Ecotourism contributes to recreational fishing in the following ways: catch
and release fishing tours, watching with fishing, conservation-oriented fishing tours, fishing ex-
peditions in protected areas, educational fishing tours, fishing in national parks and reserves,
fishing for invasive species management, photography and observational fishing [9]. Such a
recreational fishing industry can contribute significantly to revenue generation, benefiting lo-
cal economies, businesses, and conservation efforts. Although revenue generation related to
recreational fishing is well understood in developed countries, it is significantly less under-
stood in developing nations. Due to its dualist economy, which combines elements of both the
developed and developing worlds, South Africa is a useful microcosm for applying economic
evaluation frameworks Potts et al. [10]. The first stage in using recreational fishing as a tool for
economic growth is comprehending participation rates and duality’s role in related economic
activity. A total of 1320 face-to-face and online surveys were utilised to estimate the annual
monetary expenditure by recreational anglers, and Social Accounting Matrix analysis was per-
formed to simulate the economic activity connected with this spend. An estimated 1,327,633
people participated in recreational fishing, which supported 94,070 full-time jobs and gener-
ated US$2.2 billion in economic activity annually [10]. However, less than 10% of economic
activity benefited lower-income households, indicating a divide between the top two sectors in
this dualist economy.

1.3 Overexploitation in fisheries

Overfishing is the main factor contributing to the global loss of numerous fish and other aquatic
resources [11]. Pollution, habitat loss, and environmental change can also impact these re-
sources, but drastic fishing frequently has an equal or even higher impact [12]. Overexploita-
tion, explained as fishing at a pace larger than the species can replace itself via growth and
reproduction [13], is a fundamental issue that fishery managers have battled to regulate for
many years. If the mismatch continues long enough, population decline is unavoidable. Sev-
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eral instances of decline illustrate this phenomenon, including the collapse of northern cod
stock in eastern Canada, the devastation of certain rockfish and groundfish populations on the
US west coast, the North Sea’s collapse of cod, whiting, and haddock stocks, and the prolonged
decline and recent partial recovery of cod, haddock, and flounder stocks in New England [14].

Many aquatic species go extinct due to over-harvesting, and many more are currently in
threat [15, 16, 17]. According to Polidoro et al. [18], in the last five decades, two marine
mammals, namely the Japanese Sea Lion (Zalophus japonicus) and the Caribbean Monk Seal
(Monachus tropicalis), have become extinct primarily due to drastic harvesting activities. Many
scientists today claim that overfishing is the immediate cause of the loss of the white abalone,
a completely oceanic species [19]. Using COSEWIC’s (Committee on the Status of Endan-
gered Wildlife in Canada) classifications for threatened species, Venter et al. [20] quantified
threats facing 488 species in Canada. Overexploitation is to blame for the demise of 32% of
those species. As a result of Mijkherjee et al. [21]’s identification, 39 regional fish species
would disappear from West Bengal’s natural environment that includes Butterfish or pabda fish
Ompok pabo, Kuria labeo Labeo gonius, & tire track eel Mastocembelus armatus. Fisheries
collapse can also have traumatic socio-economic effects. In Canada, the cod fishery collapse
caused drastic changes in the social dynamics of remote areas [22, 23] resulting in the mass
layoff of over ten thousand fishery-related individuals [24]. The energy flow of the food chain
may change as fish species gradually disappear. The majority of fish taken are ambidextrous
predators. They eat zooplankton, but bigger fish eat them. As a result of overfishing, which
has lowered ecosystem services, top-down and bottom-up cascading impacts have been seen
[25, 26].

1.3.1 Is overfishing inescapable?

The problem of overfishing can be successfully tackled through collaborative efforts aimed at
its proper management [27]. When Fish and other aquatic animals are captured from oceans or
lakes at a rate that surpasses their ability to reproduce and grow, this leads to overfishing. This
can lead to a decrease in the number of fish, causing problems for the balance of underwater
habitats and affecting the people who depend on fishing for their livelihood. The issue of
overfishing is prevalent in numerous locations, yet feasible solutions can be discovered. Here
are a couple of key elements to reflect upon:

(i) Sustainable harvesting strategies [28]: A paramount aspect in ensuring fish’s long-term
health and reproductive viability is the strict enforcement of rules designed for their pro-
tection. This means making rules about how much fish can be caught, what kind of
equipment and methods can be used for fishing, how big the fish should be before they
can be caught, and creating protected areas in the ocean where fish can have babies and
increase their population.
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(ii) Superior governance of fisheries [29]: Proper fishery management is necessary to pre-
vent the depletion of fish populations. This means gathering and studying information
about fish in the water, keeping track of fishing, and changing the rules and limits on
fishing based on what we know. Governments, scientists, and fishing communities must
work together to create good plans for managing fishing. Policy and regulations should
be used to bring fishing capacity to sustainable levels, including the wise use of subsidies
and the eradication of illicit, unreported, and unregulated (IUU) fishing. The regulatory
authority should implement the proper strategies to minimise the harvesting effort and
its effects on ecosystem services. Taxing landed fish [30], fishing vessels [31], setting a
fishing quota [32], and fishing days [33] are some common and effective ways to lessen
harvesting pressure. In this thesis, the sole controlling factor we consider is the tax on
landed fish.

(iii) Collaboration on a global scale [34]: Lots of fish move from one place to another and
go across country borders, so countries need to work together to take care of and control
the fishing activities. International agreements and organisations can work together to
ensure that countries that share fish care for them well.

(iv) Cognition and responsible decision-making [35]: Teaching people about the value of
fishing in a way that doesn’t harm the environment, and encouraging them to choose
seafood that is responsibly caught, can make a big difference. Supporting fishing prac-
tices that are certified as sustainable and avoiding catching too many of certain species
can create economic incentives for fisheries to adopt sustainable practices.

(v) Innovation and technological support [36]: Improved technology can aid in the improve-
ment of fishing techniques and reduce the unintentional capture of unintended marine
species. Introducing innovative concepts such as specialised fishing equipment, real-time
data monitoring, and improved tracking systems can play a vital role in minimising the
environmental damage caused by fishing.

Although overfishing is still a big problem, some fishing areas have recovered by using sustain-
able methods of managing fish populations. By putting these actions into practice and working
together, we can reduce and possibly even undo the harm caused by overfishing. This will help
ensure that marine resources can thrive in the long run.

1.4 Disease dynamics in fishery

The health of aquatic animals received very little attention in epidemiological studies until re-
cently, which concentrated on human and terrestrial animal systems. In the waters, for instance,
viruses are the most prevalent type of life. Based on approximations, every millilitre of ma-
rine water contains an abundance of virus-like particles [37] and 1023 viral infections occur
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in the marine environment per second [38]. Researching diseases in marine species is crucial
to safeguard a priceless nutrition and recreational resource because of the relationship between
peoples and the marine environment [39].

Table 1.1: Symptoms and causes of some fish infections.

Disease Symptoms Cause
Pinky white open wounds with a white Polluted water or an abnormally high pH

Ulcers [40] margin that are occasionally secondary level. In unfavourable circumstances, minor
infected by fungus and other bacteria. scratches may become infected.
Whole surface or lens of the eye becomes Water contamination, vitamin deficiency.

Cloudy eyes clouded and opaque. The mucus may Digenetic flukes, such as Diplostomum,
[41] accumulate on the skin’s surface. might create problems on rare instances.

Small white patches on the skin, fins, It’s stress-related. bad or inappropriate
White spots and gills, roughly the size of a salt grain. water conditions, shifting temperature, and

[41] overall bad husbandry are usually to blame.
Freshwater fish are affected by fuzzy These are usually secondary infections that

Fungus [42] growths on their skin and fins. attack wounds left by ulcers and parasites,
with white spots being the most common.

Fins that are deteriorated with a pale Most fish contains bacteria, frequently
pinky-white margin and blood in the fin activated by stress from unfavorable water

Fin rot [43] tissue. conditions. If the water is dirty, nipped fins
may develop secondary infections, and fungus,
that may also infect certain wounds.

Fish find it challenging to swim to the Occasionally brought on by bad water
Swim bladder surface or to the deeper parts of the water. quality. Selected breeding has a genetic

[44] problem.
On the skin and fins, the virus causes Stress, unscientific regulating, or subpar water
crusty, grey-white lumps to appear. They can all cause the condition, which is crucial.

Lymphocystis sometimes take on the colour of the basal While not displaying any symptoms, some fish
[45] skin and may affect freshwater or marine may still contain the virus.

fish. Clusters of swollen cells make up
these masses.
Sores on the head. Small holes found along Cichlids, like oscars and discus, are more likely

Hole in the the line that goes around the jaw and eyes. to get this fish disease. The parasite Hexamita
head [46] Fish can become lighter and lose their natural sp. often causes it. Hexamitosis is another

color. Can become tired or lacking in energy. name for this condition.
Tiny dark oval lice around the pectoral fins. Argulus spp. cause direct harm to their host’s

Argulus Fish might rub against things to try to integument through their connection and
(Fish lice) get rid of the parasite on their body. Red, nourishing instruments. This harm can result

[47] irritated spots where the lice have attached. from either dopey activities or chemical emit.
Blushing around the gills. Angle may pant Gill bugs are ectoparasites meaning they live

Gill mites [48] for discuss at the surface. Open gill covers. on the outside surface of their have. The bugs
Angle may scratch against objects. are undetectable to the bare eye and nourish

on the blood and tissue of the fish’s gills.

The utilization of exotic species has been pivotal in the advancement of aquaculture [49],
such as in the aquatic culture of Atlantic salmon in Chile and the land-based systems for tilapia
and sea bass in the UK. New cultural systems and practises have emerged due to the diversity
and quantity of species being generated, and these practises have the potential to impact the
establishment and spread of pathogens as well as the occurrence of disease [50]. For instance,
polyculture, which involves maintaining multiple species on the same property, creates the pos-
sibility of disease transfer between species [51]. Fish raised in farms may come into contact
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with viruses from wild aquatic species that they wouldn’t ordinarily encounter. Aquaculture
could introduce unknown pathogens to wild fish populations. Tuna farming in southern Aus-
tralia serves as an illustration for both situations. When juvenile tuna are harvested in the open
access fisheries and brought ashore, they come into touch with parasites to which they are typ-
ically not exposed or only minimally exposed, which causes the disease to appear [52, 53, 54].
Additionally, imported frozen fish is used as feed for tuna, which is highly likely how the
pilchard herpes virus, which caused outbreaks in fish populations, was introduced [55]. The
movement of live fish for aquaculture, food, and ornamental purposes, along with the influ-
ence of climate change, has played a significant role in broadening the geographic distribution
of various aquatic animal species and their infections [56]. Additionally, climate change has
made it easier for diseases to emerge by promoting host-switching [57].

The expansion of the aquaculture industry coincides with an increase in disease outbreaks,
which has a detrimental impact on the yield, financial success, and long-term viability of the
aquaculture sector globally. To fulfil rising demand, farming practises have been transformed
from vast to super-intensive, resulting in abrupt disease epidemics [58]. Other significant fac-
tors of growing aquatic fish disease include global warming, climate change, and industrial
contaminants [59, 60]. Bacterial infections in aquaculture have been shown to impact eco-
nomic and social growth in several nations [61]. A sound infection control plan can drastically
cut down on financial loss. Table 1.1 lists some of the most destructive diseases in fisheries and
their symptoms and causes. An illustration of those diseases is shown in Fig. 1.1.

Figure 1.1: The most common fish diseases. Picture courtesy: simplyaquarium.com.

https://simplyaquarium.com/fish-diseases/
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1.5 Bioeconomics

Bioeconomics is a field that combines economics, ecology, and natural resource regulation to
study how the economy and the environment interact with each other [62]. The basic idea of
bioeconomics is that the economy is part of the earth’s natural environment and depends on it
for resources and facilitation [63]. Essential ideas and principles in bioeconomics include care-
fully using resources, understanding the value of nature’s benefits, managing natural resources,
dealing with problems caused by businesses, and working together across different fields [64].

Bioeconomics is vital for managing and conserving fisheries. Fishery bioeconomics looks
at how to fish in a profitable way and preserves fish populations for the future [65]. It considers
the relationship between the environment and the fishing industry. A fishery can be defined as
a stock or stocks of fish and businesses that can exploit them [66]. A fleet of similar boats from
a single port can exploit a single fish stock in a relatively simple system. It can also be more
sophisticated with ships from different ports harvesting fish from several populations that are
environmentally connected [67]. The following are some critical features of bioeconomics in
fishery management:

(i) Acquire the optimal path [68]: Bioeconomics supports figuring out the best way to catch
fish by considering how fast they grow and reproduce and how much it costs to fish in
different ways. This means deciding between making money now and taking care of the
environment for the future to get the most value from fish resources.

(ii) Sustainable fishing strategies [69]: This analysis helps in creating superior harvesting
strategies for fishing, like catch limits and specific times for fishing. This is done by
studying how different ways of managing fisheries affect the environment and economy.
It seeks to stop catching too many fish and ensure there are enough for the future while
also thinking about the money and jobs for fishing communities.

(iii) Commercial rationale [70]: Bioeconomics studies how money and financial rewards
can affect the way people fish. This study examines how fishing subsidies, taxes, and
market systems affect how much money fishing can make and how well fish resources
are protected. By making sure that making money and being sustainable go hand in hand,
bioeconomics can promote responsible ways of fishing.

(iv) Model formulation & simulation [71]: Scientists and government officials often use com-
puter models to study and predict how fish populations and fishing will change over time.
These models use information about living things, money, and ways of managing things
to see how different choices affect things and help people make decisions.

(v) Socio-economic interactions [72]: In bioeconomics, it is recognized that fishing has ef-
fects on the environment and other people who are not fishing. Examples include catch-
ing unwanted fish, harming habitats, and affecting people not directly involved in fishing.
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It aims to have these extra costs and benefits when making decisions, ensuring that fishing
policies consider wider environmental and social impacts.

(vi) Resource evaluation [73]: Bioeconomics too includes the valuation of fishery assets and
the biological system administrations they give. Financial valuation procedures, such
as cost-benefit investigation and market-based approaches, offer assistance in evaluat-
ing the financial worth of fisheries and their commitments to neighbourhood economies,
nourishment security, and social values. This data is vital in decision-making forms and
fishery administration.

By and large, bioeconomics gives an intriguing approach that combines biological and financial
viewpoints to address the challenges of fishery administration.

1.5.1 Maximum sustainable yield (MSY)

Fisheries managers use the term maximum sustainable yield (MSY) to refer to the maximum
level of fishing that can be absorbed over the long run without jeopardizing the ability of the
fish population to populate itself [74]. It is the biggest capture that can be taken from a stock of
fish or other marine species over an uncertain period without draining the stock [75]. The pop-
ulation can maintain itself indefinitely by somatic growth, spawning, and recruitment, making
it the biggest catch that still enables this. The purpose of managing a fishery to realize MSY
is to strike an adjustment between optimizing the fishery’s efficiency and guaranteeing the fish
populace’s long-term supportability [76]. It points to supplying the most extreme benefits from
the fishery while anticipating overfishing and keeping up the environmental keenness of the
marine environment. Accomplishing MSY includes deciding the ideal level of fishing effort or
catch that permits the fish populace to develop and replicate at its greatest rate [77].

Discussions of the connections between effort, harvest, and stock size are made possible
by the biological study. However, it is vital to comprehend the degree of effort produced un-
der specific conditions to understand how a commercial fishery operates [78]. This is what a
bioeconomic model is meant to do. Most people who engage in commercial fishing do so for
financial gain. It is feasible to create a model that can aid in forecasting anticipated levels of
effort and output by including information on prices, costs, and how the profit level will fluc-
tuate with output. The one presented in this thesis is relatively straightforward and is based on
the sustainable yield curve. Even though it is straightforward, it can be used to introduce the
fundamentals of fisheries bioeconomics.

1.5.2 Maximum economic yield (MEY)

Maximising a fishery’s sustainable catch, or maximum sustainable yield (MSY), has been a
frequent objective in global fishery management. While this goal maximizes a fishery’s gross
value of production, it does not guarantee that the fishery is maximizing financial gains. MEY,
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a point associated with a jointly occurring level of sustainable catch, fishing effort, and stock
biomass that maximises the economic yield of a harvested stock in a fishery, is used to deter-
mine the optimum rate of exploitation if the management goal is to maximise the economic
benefit from the fishery. In 1911, Warming [79] (followed by Gordon [80], Scott [81], Ander-
sen [82]) introduced this idea. By creating steady-state formulae for dynamic problem formu-
lations, several study [83, 84] made a substantial contribution to the continued development of
the notion.

MEY indicates that it goes beyond an anticipated catch level, unlike its name. In order
to maximize earnings, the fishery must effectively utilize boat capital and other resources in
combinations that minimize harvest costs at the MEY catch level [85]. To minimize the fishing
cost, boat must utilize the ideal equipment, engine power, gasoline, hull size, and manpower.
In other words, the fishery cannot be over-capitalized [86]. Therefore, in this case, managing
a fishery at MEY has the potential to achieve "fishery-level productivity”, but achieving such
productivity also demand “vessel-level productivity” (vessels generate in a way that maximizes
profit) and “administration efficiency” [87].

1.5.3 Societal revenue

The term "Societal revenue" has garnered considerable attention among researchers, particu-
larly in the context of the fishery [88, 89, 90, 91]. It serves as a crucial indicator, representing
the total accumulation of revenue generated from all fishing-related activities. This includes
not only the income earned by fishers but also the revenue obtained by regulatory agencies
involved in managing and overseeing fishing practices, as well as the income derived from
recreational fishing. This comprehensive measure takes into account the financial gains origi-
nating from various aspects of the fishing industry, working together to contribute significantly
to the overall economic impact on society. As a result, it provides valuable insights into the
broader implications of fishing-related economic activities and their effects on the well-being
of communities and society as a whole.

1.5.4 Profit at equilibrium

A business is in an equilibrium state when it earns its maximum profit, which is typically
denoted by Π. The difference between total cost (TC) and total revenue (TR) is the profit. As
a result, it can be expressed as Π = TR − TC.

Both stock size and effort can be used to characterise the fishery’s equilibrium profitability.
In this context, when profits at equilibrium are represented as a function of the stock, the total
revenue (TR) is determined by the product of price and the equilibrium harvest, while the total
cost (TC) is calculated as the product of the unit cost of harvest and the equilibrium harvested
stock. Notably, the unit cost of harvest exhibits a decline with increasing catchability and
stock size. On the other hand, when equilibrium profits are expressed as a function of effort,
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TR is the result of the product between price and the equilibrium harvested stock, and TC
is determined by the product of imposed effort and the unit cost per unit of effort, which is
considered constant.

1.5.5 Demand-supply phenomenon

Due to the strong demand for fishery goods, the employment of sophisticated fishing gear and
vessel technology, and expanding trade across the oceans, the world’s fisheries have risen sig-
nificantly during the past fifty years [92]. From 89.6 million tonnes in 2016 [93] to the largest
amount ever, 96.4 million tonnes in 2018 [94], worldwide fish production (inland plus ma-
rine) has significantly risen. Modern fishery management faces complex problems as a result
of this high demand. For instance, they aim to maintain the health of the aquatic ecosystem
while planning for long-term sustainable fish production. On the other hand, arrangements are
made to collect enough fish biomass to satisfy market demand. The objective is to increase fish
consumption to 21.4 kg by 2030, up from 9.9 kg per person in the 1960s, according to Food
and Agriculture Organization [95]. The current over-harvesting issues in fisheries and aqua-
culture are predicted to get worse as a result of the demand for fish to feed the world’s rising
population’s needs for protein and amino acids. Monitoring demand for fisheries products and
adjusting production targets poses a new challenge for fishery management strategy. It is diffi-
cult for the management authorities to keep the cost of fish and fisheries products reasonable.
To maintain the stock availability, price regulation is even more important in developing and
impoverished nations. According to many research [96, 97], there is an inverse relationship
between fish price and accessible fish stocks. Surprisingly, the price of high-valued fish in the
UK market changes greatly depending on how much fish is landed [98]. Due to variations in
the fish’s availability, there is a large disparity in the market price of the in-demand Hilsa fish
(it Tenualosa ilisha) across South Asian nations. For the betterment of society, dynamic price
regulation based on the current demand and supply for fish may therefore offer insights.

According to classical economic theory [99], an essential commercial factor in any bioe-
conomic study is maintaining the balance between the landed biomass (or supply quota) and
market demand. Fig. 1.2 shows how the interactions of demand (red curve), and supply (black
curve) determine the price. First, we define the equilibrium price, referring to the price, where
the quantity demanded is equal to the quantity supplied. The market equilibrium position is
represented by the point (PE ,QE) in Fig. 1.2, where PE and QE stand for the equilibrium price
and quantity, respectively. At this moment the quantity demanded is equals the quantity sup-
plied. The question then arises, why is this the equilibrium price? Because a price that is
higher or lower than equilibrium price is subjected to the forces that will push it towards the
equilibrium price. Similar to a ball in a bowl, the ball always returns to its stable position. The
stability in price is found solely at the equilibrium price, where buyers compete against other
buyers, and sellers compete against other sellers. In a simplified manner, this can be compared
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Figure 1.2: This figure shows how the intricacy between demand and supply determine the
market equilibrium.

to an auction, where the highest bidder acquires the item, and the seller who sets the lowest
price makes the sale. For instance, if the current price (P1) is above the equilibrium price (PE),
there will be a surplus, with quantity supplied (Q1S) exceeding quantity demanded (Q1D). This
surplus prompts sellers to lower their prices, to outperform competitors and increase sales. The
price will continue to decline until reaching equilibrium. Conversely, if the price (P2) is below
the equilibrium (PE), a shortage occurs, as quantity demanded (Q2D) surpasses quantity sup-
plied (Q2S). This scarcity leads buyers to bid up the price, and sellers, finding ready buyers, are
incentivized to raise prices. The price will continue to rise until equilibrium is restored. Thus,
any price other than the equilibrium price will be influenced by buyer and seller incentives,
eventually driving the price towards equilibrium. Thus, only the equilibrium price is stable.

1.6 Ecotourism

Securing a steady stream of funding to meet maintenance expenditures is always a crucial issue
for the effectiveness of biodiversity preservation and ecosystem stewardship [100]. Although
there may be numerous issues, ecotourism is a promising way to do this [101]. Ecotourism
is defined as leisure travel that introduces visitors to complex and fascinating ecosystems and
the cultures and customs that go along with them [102]. Initially developed in the late 1980s,
ecotourism gained prominence in 2002 as part of the UN’s "International Year of Ecotourism”
[103]. Ecotourist visits the location to take in the local biodiversity, historical context, and
cultural activities [104]. Ecotourism can also boost local economies by generating revenue and
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employment, inspiring residents to care for the environment towards sustainable development
[105]. Sustainable tourism encompasses various eco-friendly activities like boating, whale and
dolphin watching, snorkelling, scuba diving, fishing, and more, all designed to minimize nega-
tive impacts on the environment [106]. Therefore, theoretical investigation of the foundations
of effective ecotourism is an essential research issue since it is one of the key ways the native
people can achieve sustainable prosperity and preserve biodiversity and the natural ecology.

Tourism as a whole is one of the modern world’s fastest-growing businesses, and it is be-
coming increasingly crucial to economies all over the world [107, 108]. According to Ceballos-
Lascurain et al. [109] & Lee and Iwasa [110], ecotourism is one form of travel that emphasizes a
location’s natural history, biodiversity, ecosystems, and geography as well as its cultural assets.
Due to the growing popularity of ecotourism, the obligations of local communities to operate
tourist attractions in a sustainable and environmentally responsible manner has come under
increased scrutiny [104, 111]. Fishery-based ecotourism has increasingly gained attention in
recent years. For example, marine mammal watching in Australia [112]. Boat-based dolphin
watching at Chilika Lake, Odisha, India [113]. Recreational fishing has become a significant
source of income for the coastal people in countries like Greece [114] Taiwan [115].

1.7 Mathematical modelling

Mathematical modeling is a process by which a real-world problem can be described in the
language of mathematics. The concept of modeling is used in all fields such as engineering,
economics, physics, chemistry, environmental science, etc. In this thesis, we apply mathemat-
ical modelling to understand the (i) socio-ecological-economic interaction of aquatic species
(in particular fish), (ii) transmission of aquatic disease dynamics, (iii) the relationship between
fish and fishers, (iv) demand-supply dynamics of open market, (v) some suitable policies that
can help to maintain the overexploitation, (vi) a sustainable method to find maximum revenue,
and (vii) the effect of ecotourism in aquatic socio-economic and environmental sustainability.

In general, there are two categories of mathematical models used in socio-ecological-economic
system: (1) deterministic models that take into account non-random rate flows in a population
or any system variable; and (2) stochastic models that take into account probabilities in the
movements between the compartments of the model, such as the probability of a susceptible
fish becoming infected, the probability of catching mature fish, or the probability of a harvested
stock becoming vulnerable [116]. Each of this category mainly focused on the biological inter-
action between fish species, and the sustainable harvesting strategies. This thesis is based on a
deterministic socio-ecological-economic system.
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1.8 Basic mathematical tools

In this section, we present some basic definitions, theorems and mathematical tools that
have been used throughout this thesis.

Definition 1.1. (Dynamical system [117]) A dynamical system is characterized as a set of states

(the phase space) whose trajectory is determined by an evolution rule, where the trajectory is

a function of a single parameter, typically represented as time.

Definition 1.2. (Deterministic system [117]) A dynamical system is classified as deterministic

when every state within the phase space corresponds to a unique subsequent state, meaning

that the evolution rule of the system is a well-defined function, mapping each state to a unique

succeeding state.

In deterministic systems, for each time t, the evolution rule is a mapping from the phase

space to the phase space given by

ψ(p, t)≡ ψt(p) : U −→U,

where t ∈ R is the continuous time variable, U is the phase space, p(t) = ψt(p0) denotes the

position of the system at time t that started at p0. Moreover, we assume that t ≥ 0 and at t = 0,

ψt(x0) = p0.

Definition 1.3. (Orbits or trajectories [117]) An orbit or trajectory refers to the sequence of

states that follows from or leads to a specific initial state. The positive or forward orbit, in

particular, is defined as the following set of subsequent states

Γ
+
p ≡ {ψt(p) : t ≥ 0}.

Likewise, the negative or backward orbit consists of sequences of states that, as per the evolu-

tion rule, lead back to the initial state. If the function ψt is injective, the negative orbit can be

represented by the following set

Γ
−
p ≡ {ψt(p) : t ≤ 0}.

Alternatively, there may be situations where multiple prior points could result in the same p.

Summing up, the full orbit of a point p is given by Γp = Γ+
p ∪Γ−

p .

Definition 1.4. (Invariant set [118]) A set Θ is said to be invariant under an evolution rule ψt

if

ψt(Θ) = Θ, for all t.

Consequently, for every p belonging to the invariant set Θ, ψt(p) also lies within Θ for any t.

Hence, the entire orbit of any point p within the set Θ will remain within Θ. Furthermore, a set

Θ is termed forward invariant if φt(Θ)⊂ Θ for all t > 0.
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Definition 1.5. (Autonomous system of differential equations [119]) A set of differential equa-

tions of the form

ṗ = f (p)

where p ∈ Rn and vector field f : E(⊂ Rn) −→ Rn is said to be autonomous if f does not

depend on t explicitly. Unless stated otherwise, we will assume

f ∈C1(E) = {Set of all continuously differentiable functions on E}.

Definition 1.6. (Initial value problem [118]) An autonomous system of differential equations

is referred to as an initial value problem (IVP) when it meets the initial condition

p(t0) = p0.

Therefore, an IVP for an autonomous system of differential equations is expressed by{
ṗ = f (p),

p(t0) = p0.
(1.1)

Definition 1.7. (Lipschitz function [118]) Suppose G is an open subset of Rn. A function

f : G → Rn is considered Lipschitz if, for all p, q ∈ G, there exists a positive real constant M

satisfying the following condition

| f (p)− f (q)| ≤ M|p−q|.

Theorem 1.8. (Picard-Lindelöf existence and uniqueness [118]) Suppose that for p0 ∈ Rn

there is real number b > 0 such that there is a closed ball Bb(p0) and f : Bb(p0) → Rn is

Lipschitz with constant M. Then the IVP (1.1) has a unique solution p(t) for t ∈ [t0 −a, t0 +a]

whenever the condition

a =
b
K
, where K = max

p∈Bb(p0)
| f (p)|

satisfied.

Definition 1.9. (Equilibrium solutions [117]) An equilibrium solution (also known as a steady

state solution, fixed point, or critical point) of the system (1.1) is a constant solution p̄ that

fulfills the condition

f (p̄) = 0.

Definition 1.10. (Linearization [117]) For the system (1.1), we assume f ∈C1(E) and p̄ is an

equilibrium point. Then the linearization of ṗ = f (p) at the equilibrium p̄ ∈ E is the system of

differential equations

q̇ = D f (p̄)q,



1.8. Basic mathematical tools 15

where

q(t) = p(t)− p̄ and D f (p̄) =



∂ f1
∂ p1

∂ f1
∂ p2

... ∂ f1
∂ pn

∂ f2
∂ p1

∂ f2
∂ p2

... ∂ f2
∂ pn

. . . .

. . . .

. . . .
∂ fn
∂ p1

∂ fn
∂ p2

... ∂ fn
∂ pn


p=p̄

.

The matrix D f (p̄) is called the Jacobian matrix or variational matrix of f at p̄.

Definition 1.11. (Generalized eigenspaces [118]) The equilibrium solutions of system (1.1)

are classified by their generalized eigenspaces according to the sign of the real part of the

eigenvalues of the variational matrix D f (p̄). Let, σn, n ∈N be the eigenvalues associated with

the equilibrium p̄ of the system (1.1). Then

• Eu = Unstable eigenspace spanned by the eigenvectors of the eigenvalues σn with

Re(σn)> 0.

• Ec = Center eigenspace spanned by the eigenvectors of the eigenvalues σn with

Re(σn) = 0.

• Es = Stable eigenspace spanned by the eigenvectors of the eigenvalues σn with

Re(σn)< 0.

Therefore, the complete eigenspace E with respect to the equilibrium p̄ is given by the following

direct sum:

E = Eu ⊕Ec ⊕Es.

Definition 1.12. (Hyperbolic equilibrium [117]) An equilibrium p̄ of system (1.1) is hyperbolic

if none of the eigenvalues of D f (p̄) is zero or purely imaginary. In this case Ec is empty.

Hyperbolic equilibrium can be categorized into following three classes.

1. Sink: An equilibrium p̄ of system (1.1) is a sink if all of the eigenvalues of D f (p̄) have

negative real parts. In this case, E = Es and the equilibrium is called stable. Sink can be

classified as stable node or stable focus.

• Stable node: If the eigenvalues are negative real then the sink is called a stable

node.

• Stable focus: If the eigenvalues are complex conjugates with negative real part then

it is called a stable focus.
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2. Source: An equilibrium p̄ of system (1.1) is a source if all of the eigenvalues of D f (p̄)

have positive real parts. In this case, E = Eu and the equilibrium is called unstable.

Source can be classified as unstable node or unstable focus.

• Unstable node: If the eigenvalues are real and positive then a source is called an

unstable node.

• Unstable focus: If the eigenvalues are complex conjugates with positive real part

then it is called an unstable focus.

3. Saddle: An equilibrium p̄ of system (1.1) is saddle if it is hyperbolic but not a sink or a

source. Here, E = Es ⊕Eu. A saddle point is also an unstable equilibrium.

Definition 1.13. (Non-hyperbolic equilibrium [120]) An equilibrium p̄ of system (1.1) is non

hyperbolic or degenerate if at least one of the eigenvalues of D f (p̄) have zero real part. In this

case Ec is non empty.

• Center: It is a non hyperbolic equilibrium where eigenvalues are complex conjugates

with zero real part.

Definition 1.14. (Local stability [120]) An equilibrium solution p̄ of (1.1) is termed locally

stable if for each positive ε there exists a positive δ such that every solution p(t) of (1.1) with

initial condition p(t0) = p0 and ||p0 − p̄|| < δ ⇒ ||p(t)− p̄|| < ε for all t ≥ t0, where ||.||
is the Euclidean norm. An equilibrium solution that fails to be locally stable is referred to as

unstable.

Definition 1.15. (Local asymptotic stability [120]) An equilibrium solution p̄ of (1.1) is said

to be locally asymptotically stable if it is locally stable and if there exists a σ > 0 such that

||p0 − p̄||< σ ⇒ limt→∞ ||p(t)− p̄||= 0.

Definition 1.16. (Instability [120]) An equilibrium solution p̄ of (1.1) is called unstable if it is

not stable.

Theorem 1.17. (Hartman-Grobman theorem [119] ) If p̄ is a hyperbolic equilibrium point of

the system (1.1), then there is a homeomorphism h (i.e., h is a continuous, injective mapping

with a continuous inverse) defined on some neighborhood Ωp̄ in Rn, locally taking orbits of the

nonlinear system ṗ = f (p), p ∈ Rn to those of the linear system q̇ = D f (p̄)q, q ∈ Rn, where

q = p− p̄. The mapping h maintains the direction of orbits and can be selected to maintain the

time parameterization as well. Additionally, if the mapping h is a homeomorphism, then the

stability (or instability) of the linear system implies local asymptotic stability (or lack thereof)

of the nonlinear system.

Theorem 1.18. (Routh-Hurwitz criteria [120]) Given the polynomial,

P(σ) = σ
n +a1σ

n−1 + ...+an−1σ +an, (1.2)
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where the coefficients ai are real constants, i = 1,2, ...,n. n Hurwitz matrices are defined by

using the coefficients of P(σ) as

Hk =



a1 1 0 0 ... 0
a3 a2 a1 1 ... 0
a5 a4 a3 a2 ... 0
. . . . ... .

. . . . ... .

. . . . ... .

0 0 0 0 ... ak


, k = 1,2, ...,n,

where ak = 0 if k > n. All the roots of the polynomial P(σ) will have negative real part if and

only if the determinants of all k Hurwitz matrices are positive, i.e., det(Hk)> 0, k = 1,2, ...,n.
Following are the Routh-Hurwitz criteria for n = 2 and 3.

• n = 2 : a1 > 0, a2 > 0.

• n = 3 : a1 > 0, a3 > 0, a1a2 −a3 > 0.

• n = 4 : a1 > 0, a3 > 0, a4 > 0, a1a2a3 > a2
3 +a2

1a4.

Theorem 1.19. (Local stability using Routh-Hurwitz criteria [120]) Suppose p̄ is an equilib-

rium of the system (1.1), and the characteristic equation of the variational matrix D f (p̄), as

given by (1.2), satisfies the Routh-Hurwitz criteria, meaning det(Hk)> 0 for k = 1,2, ...,n. In

such a case, the equilibrium p̄ is considered locally asymptotically stable.

Definition 1.20. (Global asymptotic stability [120]) An equilibrium solution p̄ of (1.1) is said

to be globally asymptotically stable if it is locally asymptotically stable and if ||p0 − p̄|| < ∞

implies limt→∞ ||p(t)− p̄||= 0.

Definition 1.21. (Positive definite function [120]) Consider an open subset G of Rn that con-

tains the equilibrium p̄ of system (1.1). A real-valued C1(G) function W, given by W : G → R,

is labeled positive definite [120] within the set G if the following two conditions are satisfied:

(i) W (p̄) = 0,

(ii) W (p)> 0 for all p ∈ G with p ̸= p̄.

If the function W satisfies the condition that −W is positive definite, then W is termed negative

definite.

Theorem 1.22. (Lyapunov stability theorem [120]) Consider an equilibrium p̄ of the system

(1.1), and let W be a positive definite C1 function defined as W : G → R, where G is an open

subset of Rn containing the equilibrium p̄.
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1. If dW
dt ≤ 0 for all p ∈ G\{p̄} then p̄ is said to be locally stable. W, in this case, is called

a “weak Lyapunov function”.

2. If dW
dt < 0 for all p ∈ G \ {p̄} then p̄ is said to be locally asymptotically stable. In this

case, W is called a “strict Lyapunov function”.

3. If dW
dt > 0 for all p ∈ G\{p̄} then p̄ is unstable.

Theorem 1.23. (LaSalle’s invariance principle [121]) Let p̄ be an equilibrium of system (1.1)

and L be a weak Lyapunov function given by L : E →R, where E is an open, forward invariant

subset of Rn containing the equilibrium p̄. Also consider that L is non-decreasing in Z ={
p ∈ E : dL

dt = 0
}

. Suppose p̄ represents the largest forward invariant subset of Z. In this

case, p̄ attracts every point in E and eventually achieves global stability within E.

Definition 1.24. (Periodic solution) A solution ψ(p, t) of (1.1) is called a periodic solution if

there exists T > 0 such that

ψ(p0, t +T ) = ψ(p0, t) for all t and

ψ(p0, t + s) ̸= ψ(p0, t) for all 0 < s < T.

It is obvious that if ψ(p0, t) has a period T then such solutions has period 2T, 3T, ... If T

is the smallest, we call this solution ψ(p, t) as T− periodic.

Theorem 1.25. (Bendixson’s criteria [120]) Consider the system (1.1) in R2. Suppose D is

a simply connected open subset of R2. If divergence of f , ∇. f = Σ2
n=1

∂ fn
∂ pn

is non-zero and

maintains a constant sign in D, then there are no periodic orbits of the autonomous system

(1.1) within the region D.

Theorem 1.26. (Dulac’s criteria [120]) Consider the system (1.1) in R2. Suppose D is a simply

connected open subset of R2 and B(p,q) is a real valued C1 function in D. If divergence of B f ,

∇.(B f ) = Σ2
n=1

∂ (B fn)
∂ pn

is non-zero and remains constant in sign within the region D, then there

are no periodic orbits of the autonomous system (1.1) within D.

Theorem 1.27. (Bifurcation theorem [120]) Consider an autonomous system of ordinary dif-

ferential equations

ṗ = f (p,ξ ), p ∈ Rn, ξ ∈ R, and f is continuously differentiable. (1.3)

• Hopf bifurcation theorem [120]: Suppose, the system (1.3) has an equilibrium p̄(ξ ).

Moreover, the Jacobian matrix D f (p̄(ξ ),ξ ) has one pair of complex eigenvalues

σ1,2(ξ ) = A(ξ )± iB(ξ )
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such that for some ξ = ξ ∗ it becomes purely imaginary, i.e.,

A(ξ ∗) = 0 and B(ξ ∗) ̸= 0.

Then the eigenvalues will cross the imaginary axis with nonzero speed if (transversality

condition)
dA(ξ )

dξ

∣∣∣∣
ξ=ξ ∗

̸= 0.

The system of differential equations (1.3) will undergo a Hopf bifurcation around p̄(ξ )

for ξ = ξ ∗ and will possess a periodic solution with approximate period T = 2π

B(ξ ∗) as ξ

crosses ξ ∗.

• Saddle-node bifurcation theorem [119]: Consider that f (p0,ξ0) = 0. Then the Jaco-

bian of f at p0 can be represented by the n× n matrix B ≡ D f (p0). Suppose that B

has a simple eigenvalue λ = 0 with eigenvector v, and the transpose of B, (BT ) has an

eigenvector w corresponding to the simple eigenvalue λ = 0. In addition, assuming that

B has k eigenvalues with negative real parts and (n− k− 1) eigenvalues with positive

real parts and that the aforementioned criteria are met.

wT fξ (p0,ξ0) ̸= 0, wT D2 fξ (p0,ξ0)(v,v) ̸= 0. (1.4)

The equilibrium points of (1.3) in Rn ×R then form a smooth curve that passes through

(p0,ξ0) and is tangent to the hyperplane Rn ×ξ0. There are either no equilibrium points

of (1.3) near p0 when ξ < ξ0 (or when ξ > ξ0) or two equilibrium points of (1.3) near

p0 when ξ > ξ0 (or when ξ < ξ0), depending on the signs of the expressions in (1.4).
The system (1.3) experiences a saddle-node bifurcation at the equilibrium point x0 as the

parameter ξ passes through the bifurcation value ξ = ξ0. The two equilibrium points

of (1.3) near p0 are hyperbolic and have stable manifolds of dimensions k and k + 1,

respectively. The open, dense subset in the Banach space of all C∞, one-parameter

vector fields with an equilibrium point at p0 and a simple zero eigenvalue make up the

set of C∞−vector fields satisfying the aforementioned criterion.

• Transcritical bifurcation theorem [119]: Whenever the relations given in Eq. (1.4) are

transformed into

wT fξ (p0,ξ0) = 0,

wT D fξ (p0,ξ0)v ̸= 0, and (1.5)

wT D2 fξ (p0,ξ0)(v,v) ̸= 0,

then the system (1.3) undergoes a transcritical bifurcation at the critical point p0 as the
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bifurcating parameter ξ passes through the critical value ξ = ξ0.

1.9 The optimal control theory

Optimal control (OC) involves the process of determining control and state trajectories for a
dynamic system over a specific time frame, with the goal of optimizing an objective functional,
cost functional, or performance index [122]. For instance, the dynamic system might represent
a spacecraft with control inputs linked to rocket thrusters, aiming to minimize fuel usage while
reaching the moon; alternatively, it could signify a nation’s economy, seeking to minimize
unemployment through fiscal and monetary policies. Another example could be optimizing the
percentage of vaccinated individuals over time in an epidemic model to minimize infections
and vaccination costs.

The ability to manipulate controls in a system allows one to pursue specific objectives, with
the underlying system encompassing various forms, such as ordinary differential equations,
partial differential equations, discrete equations, stochastic differential equations, integro-difference
equations, and combinations of discrete and continuous systems. In this study, we focus on ap-
plying the OC theory to ordinary differential equations with a fixed time.

1.10 Basic mathematical tools for optimal control problem

In a general optimal control problem, there is an objective functional or cost functional, denoted
as J(x(t),u(t)), associated with a set of state variables (x(t) ∈ X) and a set of control variables
(u(t)∈U), within a given time interval t0 ≤ t ≤ t f . The primary aim is to determine a piecewise
continuous control u(t) and the corresponding piecewise differentiable state variable x(t) that
maximizes the given objective function. Prior to defining the fundamental optimal control
problem, we will establish some necessary definitions.

Definition 1.28. (Piecewise continuous [118]) Consider an interval I ⊆ R, whether finite or

infinite. A function k : I →R is considered piecewise continuous if it is continuous at each t ∈ I,

except for a finite number of points, if any, and at every t ∈ I, k is equal to either its left or right

limit.

Definition 1.29. (Piecewise differentiable [118]) Consider an interval I ⊆R, whether finite or

infinite. Let k : I →R be a finite-valued function that is continuous on I and differentiable at all

but a finite number of points within I. Moreover, if k′, the derivative of k is continuous wherever

it is defined, then k qualifies as a piecewise differentiable function.

Definition 1.30. (Continuously differentiable [118]) Let I ⊆ R be an interval, whether finite

or infinite. A finite-valued function k : I → R is said to be continuously differentiable if its

derivative k′ exists and is continuous on the entire interval I.
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Definition 1.31. (Concave [118]) let J = [l1, l2]⊆ R be an closed and bounded interval. Then

a real-valued function M : J → R is called concave on J if

βM(t1)+(1−β )M(t2)≤ M(β t1 +(1−β )t2)

for all 0 ≤ β ≤ 1 and for any l1 ≤ t1, t2 ≤ l2.

A function M is considered convex on the interval [l1, l2] if it fulfills the reverse inequality
or, equivalently, if −M is concave.

Definition 1.32. (Optimal control problem [123]) Let us consider a piecewise continuous con-

trol function h(t) and the corresponding continuous and piecewise differentiable state function

x(t), defined on a bounded time interval [t0, t f ]. Let that function solves the state equation

dx
dt

= g(t,x(t),u(t)), (1.6)

with the initial condition x(t0) = x0, the ultimate objective is to determine the value of the

control variable h(t) that maximizes the objective functional:

Π(u∗) = max
u

J(x(t),u(t)) = max
u

∫ t f

t0
f (t,x(t),u(t))dt (1.7)

subject to

ẋ(t) = g(t,x(t),u(t)),

x(t0) = x0,

and x(t f ) could be free, which means that the value of x(t f ) is unrestricted.

The functions f and g are always assumed to be continuously differentiable in all three
cases. We also assume that the control set U consists of Lebesgue measurable functions. Con-
sequently, as the control(s) will always be piecewise continuous, the corresponding states will
also be piecewise continuous.

Our primary focus is to find the maximum of a function. However, we can effortlessly
switch between maximization and minimization by merely negating the cost functional:

min{J}=−max{−J}.

1.10.1 Pontryagin’s maximum principle

Pontryagin and his colleagues created the first-order criteria required to determine the optimal
control. This result is regarded as one of the most significant mathematical results of the twen-
tieth century. Pontryagin proposed using adjoint functions to add the differential equation to
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the objective functional. Adjoint functions serve a similar role in multivariate calculus as La-
grange multipliers, which attach restrictions to the function of many variables to be maximised
or minimised.

Here’s a step-by-step description of how to solve optimum control problems using Pontrya-
gin’s Maximum Principle [124, 125]:

(i) Defining the problem: Start by proposing the optimal control problem. This includes de-
scribing the state variables, control variables, objective function (the cost to be minimised
or maximised), and any system and control constraints.

(ii) Hamiltonian construction: Build the Hamiltonian function, denoted by H. This function
defined as the sum of the objective function (cost function) and the inner product of
the adjoint variables (also called costate variables or Lagrange multipliers) and the state
equations of the system. Thus the Hamiltonian is calculated as follows

H(x,u,λ ) = L(x,u)+λ
T f (x,u),

where x,u and λ are the state vector, the control vector, and the adjoint (costate) vector
respectively. The functions L(x,u) and f (x,u) are respectively indicates the objective
function or the Lagrange function, and the state equations.

(iii) Obtaining the adjoint equation: Determine the adjoint differential equation, which fig-
ures out the development of the adjoint variables. The adjoint equation is derived from
the Hamiltonian’s maximisation condition with regard to the adjoint variables and is pre-
sented by

λ̇ =−∂H
∂x

=−∂L
∂x

−λ
T ∂ f

∂x
.

(iv) Creating transversality condition: Employ a transversality boundary condition to limit
the adjoint variables at the final time. This condition ensures that the costate variables
are consistent with the terminal constraints.

(v) Employing optimality condition: Apply the optimality condition, which is derived by
maximizing the Hamiltonian with respect to the control variables, to solve for the optimal
control. The optimality condition is given by ∂H

∂u = 0.

(vi) Obtaining the adjoint variables: Remove the control variable from the state equation
using the optimal control equations obtained from the optimality condition. Then, solve
the resulting differential equations for the state and adjoint variables, subject to their
respective initial conditions and the transversality boundary condition.

(vii) Find optimal control: Obtain the optimal state and adjoint variables. Then, substitute the
values into the optimal control expression obtained from the optimality condition to find
the optimal control u∗.
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Following these procedures yields the optimum state trajectory, adjoint trajectory, and optimal
control for the specified optimal control problem. The Pontryagin’s Maximum Principle is a
strong tool for systematically determining the essential criteria for optimality. However, for
increasingly complex systems and cost functions, numerical techniques may be necessary to
solve the optimal control problem [126].

1.10.2 The optimal control theory towards sustainable fishery

For sustainable development, optimal control theory can be applied to a variety of fishery mod-
els. Marine protected zones and seasonal fisheries, for example, are natural outcomes of op-
timal control. Obtaining an optimal system for a food chain model might also be useful in
optimal control problems. The most common use of OCT in fishery models is to calculate
the maximum economic yield (MEY). This can be accomplished by varying several control
parameters, such as a harvesting control parameter (e.g., fishing effort) or a regulatory pa-
rameter (e.g. fishing tax). It should be noted that control parameters might be either bounded
or unbounded. Fishing effort and fishing tax are taken as the main controlling parameters in
this thesis, and the parameters are also bounded to make the system more realistic. We will
now present the solution methods linked with the optimal control problem in order to achieve
sustainable fisheries.

1.10.3 Solution methodology

Optimal control with bounded control: We here consider a simple fishery harvesting prob-
lem. More particularly, let X(t) with t ∈ [0,L], be the biomass fish population at ant time t.
Then the dynamic equation of the population can be given by

dX
dt

= G(X(t))−h(t), t ∈ (0,L) (1.8)

where G represents the growth function and h(t) is the rate of fishing. Considering the logistic
growth rate one must have

G(X) = rX
(

1− X
K

)
.

Here, r and K respectively denotes the intrinsic growth rate and environmental carrying capac-
ity. Now consider the harvesting rate is proportion to the population level, then one can write
h(t) = E(t)X(t), where E(t) is the imposed harvesting effort. We want to maximize the net
revenue (Π) which is defined as the difference between total revenue and total cost. The total
revenue can be obtained as TR= ph, where p > 0 is the market price of per unit harvested
biomass, and total cost (TC)= cE, where c > 0 is the cost per unit of fishing effort. Note that
total cost is proportional to the fishing effort.
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Then the associate optimal control problem can be written in the form

maxΦ(E) =
∫ L

0
e−δ t (pEXE − cE

)
dt (1.9)

subject to

E ∈ M =
{

w ∈ L2(0,L);0 ≤ w(t)≤ Ē a.e. & t ∈ (0,L)
}
, Ē > 0,

where XE is the solution of the problem:

Ẋ = G(X(t))−E(t)X(t), t ∈ (0,L)

X(0) = X0 > 0. (1.10)

The control restriction means that the effort is bounded and δ is the annual discount rate.
Now the Hamiltonian of the system can be given by

H(t,X(t),E(t),λ (t)) = e−δ t (pEXE − cE
)
+λ (t)(G(X(t))−E(t)X(t)) , (1.11)

where λ (t) is the adjoint variable. To solve the optimal control problems with bounds on
the control, the following necessary condition must be arisen.

Proposition 1.33. (necessary conditions) Suppose E∗ and X∗ represent the optimal levels for

problem (1.9). In such a case, there exists a piecewise differentiable adjoint variable λ (t) so

that

H(t,X∗(t),E(t),λ (t))≤ H(t,X∗(t),E∗(t),λ (t))

for all controls E at each time t, where

λ
′(t) =−∂H(t,X∗(t),E∗(t),λ (t))

∂X
(adjoint condition),

λ (L) = 0 (transversality condition).

By an adaptation of the Pontryagin Maximum Principle, the optimal control must satisfy (opti-

mality condition):

E∗ =



a if
∂H
∂E

< 0,

a ≤ Ẽ ≤ b if
∂H
∂E

= 0,

b if
∂H
∂E

> 0,

(1.12)

i.e., the maximization is over all admissible controls, and Ẽ is obtained by the expression ∂H
∂E =

0. In particular, the optimal control E∗ maximizes H pointwise with respect to a ≤ E(t)≤ b.

Proof. The proof of this result can be found in [123].
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It is important to acknowledge that in this context, we are demonstrating the profit maxi-
mization technique. However, if we were dealing with a cost minimization problem, the value
E∗ would be chosen to minimize H pointwise. Consequently, this reversal would lead to a
change in the signs < and > in the first and third lines of the optimality condition (1.12).

Remark 1.34. To numerically address a problem incorporating control bounds, we can express

the optimal control Ẽ obtained without truncation in a concise manner, constrained within the

limits of a and b:

E∗(t) = min(a,max(b, Ẽ)).

Not all optimal control problems can be solved analytically. Most harvesting problem are
complicated to solve analytically, so it is necessary to employ numerical methods. There are
many numerical methods to solve optimal control problems, some of which are the Shooting
method and Multiple shooting method (can be found in [127]). In addition, a very well-known
method, the forward-backwards sweep method, can be found in the book by Lenhart and Work-
man [126].

1.11 Literature review and motivations

World fisheries have increased tremendously in the last fifty years due to the high demand for
fishery products, the use of sophisticated fishing gear & vessel technology, and growing trade
[92]. Global fish production (inland plus marine) has increased from 89.6 million tonnes in
2016 [93] to the highest ever, 96.4 million tonnes in 2018 [94]. Overexploitation has led many
fisheries under stress, or its extinction [128, 129]. Different policies have been implemented
regionally, nationally, and globally to protect world fisheries and promote sustainable develop-
ment. To this effect, FAO (Food and Agriculture Organization) introduced the Code of Conduct
for Responsible Fisheries (CCRF) in 1995 [130]. CCRF was further intensified in 2015 by im-
plementing Sustainable Development Goal (SDG) 14 to conserve, protect, and sustainably use
the oceans, seas, and marine resources [3, 4].

A regime shift is an essential phenomenon in many ecological and physical systems. A
regime shift is a change in the average value of a particular data series within a year to a
decadal scale [131]. A more recent definition of regime shift is defined as a large, abrupt,
and persistent change in the system behaviour that causes significant impacts on human well-
being [132, 133]. In the case of fisheries, regime shift means a change in the harvested species
due to a change in the non-harvested species or other factors [134]. For example, different
driving forces, like eutrophication, pollution, climate change, etc., may alter the distribution of
biotic and abiotic factors, which may cause a difference in the spatial distribution of planktonic
invertebrates. Therefore, a regime shift due to the change in plankton distribution may occur
in the economic species [134]. Intensive harvesting is the primary reason for a regime shift
in the fishery [135, 136]. Climate change is closely associated with it [137, 138]. Due to a
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regime shift, a fishery may abruptly shift from a harvesting state to a non-harvesting state.
The above studies acknowledge regime shifts in marine environments but often neglect the
interconnectedness between fish ecology and market demand-supply of fish and associated
products. On the other hand, many studies [139, 140, 141, 142] recognize this mutual impact
yet fail to detect regime shifts due to simplistic model systems. It is essential to consider both
ecological dynamics and market forces in an integrated manner to comprehensively understand
the complex interaction of fish, fisheries and demand-supply. This will enable a more informed
approach to the sustainable management of marine resources. An important question is – does
intensive harvesting the only reason for a regime shift in fisheries? Can demand also be a
regulatory factor for the regime shift if the open market theory of price variation due to a
change in demand and supply is considered in the fishery? This thesis, therefore, aims to
integrate economic theory into current fishery management policies to find the occurrence of
unwanted regime shifts in fisheries.

Fish is a renewable resource; most fisheries contain susceptible and infected fishes [143].
Global warming, climate change and industrial pollutants have been attributed to increasing
aquatic fish disease [59, 60]. Water pollution is considered one of the significant causes of
fish infection in the coastal areas [144, 145, 146]. Some other reasons behind the increasing
infection rate are water temperature variation, changes in coastal dynamics, and lack of proper
governance [59]. New and transboundary diseases have recently augmented epidemiological
studies of aquatic fish in the presence of infection [147]. Infection may cause a low level of
fish productivity [148]. Disease caused by a virus, bacteria, protists, and metazoans in fish is
ubiquitous and known for a very long period [55, 149]. It is, therefore, essential to analyze
mathematically the socio-ecological-economic aspects of the fishery model in the presence of
infection. Earlier bioeconomic studies ignored the effect of disease on the harvested stock
[139, 150, 151, 152, 153]. On the other hand, some studies [154] considered harvesting in
an eco-epidemiological model and showed that infection could be eliminated through proper
harvesting strategy, but they ignored the economic effect of disease in the harvested stock.
Similar studies were done in a ratio-dependent predator-prey-parasite model [155] and Leslie-
Gower ecoepidemic model [156] with prey harvesting. Harvested stock and revenue generation
may be severely affected due to infection [157, 158]. However, the reason and distribution of
fish infection must be better understood, particularly for marine fish [159].

Contagious diseases cause a significant economic loss in fishery either by reducing the
biological productivity of the diseased fish and/or by lowering the commercial value of the in-
fected fish [149, 160]. White spot syndrome virus (WSSV) is a predominant infectious disease
in shrimp. Since 1992, this disease has devastated shrimp production and related industries in
many countries, like Thailand [161], Ecuador [162], India [163], Iran [164] and USA [165].
This virus spreads rapidly from one infected shrimp to another susceptible shrimp and can kill
them within seven to ten days [166, 167]. Thus, the infected shrimps have no chance to re-
produce but to die. The economic loss due to WSSV in the last two-three decades has been
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reported to be huge. During 2010-2016, Thailand reported a financial loss of 11.58 B$ and
working days loss of 0.1 million [168]. India reported 250 M$ loss due to WSSV in 2006-2008,
along with 2.15 million man-days employment loss [163]. Shrimp production in Bangladesh
dropped to 18,630 tonnes in 1998 from 25,742 tonnes in 1997, causing a significant economic
loss [169]. This viral infection drastically reduced the income from shrimp export in Iran. The
frozen shrimp export of Iran declined to 2,290 tonnes in 2007 compared to 7,680 tonnes in
2004, causing a reduction in income from 32.8 M$ in 2004 to 8.7 M$ in 2007 [164]. Peterman
and Posadas [170] reported a total 16.9M$ loss in 2016 due to the catfish disease in the east
Mississippi catfish industry. Therefore, a global challenge is protecting fish and fishery from
diseases and reducing economic loss by maintaining sustainable production. This thesis will
analyze how infection may affect the productivity of a fishery. Another question is – will there
be any regime shift in an infected fishery when economic theory is incorporated. This thesis
will demonstrate such a possibility of regime shift.

There are numerous mathematical models that consider harvesting of renewable resources
like fish. The single-species bioeconomic fishery model with harvesting has garnered signif-
icant interest among researchers [171, 172]. Kar and Matsuda [173] examined the economic
and biological consequences of implementing marine protected areas (MPAs) and how they
affect a single-species fishery model, with a specific focus on the dynamics of harvesting. Cid
et al. [174] presented a discrete single-species fishery modelling framework emphasizing how
temporal variation in harvesting efforts significantly influences population dynamics. Mansal
et al. [175] explored a fishery model encompassing both variable harvesting effort and vari-
able price, and they extended their study to include an age-structured fishery model. On the
other hand, Moussaoui and Auger [142] examined a bioeconomic single-species fishery model
with saturated harvesting function, variable fishing effort, and price. However, neither of these
studies considered the presence of infection within the harvested stock. A two-dimensional
predator-prey model under impulsive constant fishing pressure was considered, and its eco-
logical and economic consequences were reported by Bischi et al. [176]. Similar ecological
models with constant harvesting were explored in numerous studies [177, 178, 179] and the
references therein. A fishery model with one predator and two prey was analyzed in Raymond
et al. [180], where they discussed the stability properties of different equilibrium points and
bio-economic harvesting with constant harvesting effort. The most popular harvesting strat-
egy in bioeconomic models is the traditional catch per unit effort (CPUE) harvesting strategy
[139, 181, 140]. However, the CPUE type harvesting has several abridgements, such as the
harvesting rate becoming infinite as the harvested stock is infinite or the effort is infinite. This
is quite unrealistic from the applicability and theoretical viewpoints [142, 179, 182]. To remove
such unrealistic features of the harvesting rate with a finite effort, Moussaoui and Auger [142]
proposed a bioeconomic fishery model considering a nonlinear saturated type harvesting effort.
Krishna et al. [183] considered saturation on both effort and stock levels.

According to classical economic theory [99], an essential commercial factor in any bioe-
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conomic study is maintaining the balance between the landed biomass and market demand.
Also, the demand for a product plays one of the most significant roles in any bioeconomic
model. Every fluctuation in market price depends on the demand. Auger et al. [139] described
a fishery model considering the demand as a linear function of price. Mansal et al. [175] con-
sidered a modification in the previous demand function and considered demand as a linearly
decreasing function of price. The variation in market price was assumed to be proportional
to the difference between demand and supply. A similar linear function for the price-demand
relationship was considered recently by Moussaoui and Auger [142]. While the majority of ex-
isting studies have predominantly focused on linear demand functions [175, 142], it is widely
acknowledged that nonlinear demand functions offer a more realistic representation of market
dynamics [184, 185]. Given this understanding, the present research endeavours to contribute
significantly by conducting multiple comparative studies. These investigations investigate the
impact and implications of various demand functions within socioeconomic interactions. By
exploring and analyzing the effects of these diverse demand functions, this study seeks to un-
veil critical insights that can potentially revolutionize our understanding of market scenarios
and decision-making processes.

Fishing has a direct effect on the harvested biomass. Fixing a harvesting quota for a partic-
ular fish species may protect the species from being overharvested [186, 187]. A fishing license
or vessel buy-back policy is another means to reduce overharvesting [188]. Some popular and
practical approaches to reduce harvesting pressure are to levy a tax on the landed fish [30], put
a tax on the fishing vessels [31], fix a fishing quota [32] and fishing days [33]. Furthermore, a
fishing fee or tax is usually considered one of the crucial measures for controlling overharvest-
ing. These regulatory measures help protect fish and fisheries and achieve the SDG 14 targets at
large [189]. Taxation is more critical in recreational fisheries run by various non-governmental
agencies, where the management imposes taxes for access to the fishing zone, doing fishing or
cultural activities as a part of the collective management [190, 191].

Policymakers may use the tax revenue earned through such fiscal policy for the socio-
economic upliftment of the fishers and the marine ecosystem. Iceland is one of such countries
that successfully implemented fishing fees for pelagic and demersal fishes [192]. On the other
hand, many socio-ecological-economic studies have shown a conflict between conservation
policy and socio-economic objectives [193]. For example, a higher fishing tax may relieve the
fish stock from over-harvesting but may jeopardize the livelihood of local fishing people. It is
particularly true in underdeveloped countries where fishermen have limited alternatives for their
livelihood. Therefore, imposing a fishing tax scientifically and sensibly is essential. While the
studies mentioned above have made notable strides in examining the implications of taxation
policies on various aquatic aspects and the improvement of fishers’ livelihoods, there remains
a significant research void concerning the impact of these policies on aquatic epidemiology.
This thesis, with unwavering commitment, aims to address this crucial gap in knowledge com-
prehensively and sustainably. By delving into the unexplored territory of aquatic epidemiology
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in the context of taxation policies, this research endeavours to shed light on vital connections
and intricate dynamics that potentially revolutionize our understanding of aquatic ecosystems
and their interplay with human activities. Through rigorous investigation and analysis, this
thesis seeks to contribute to a more holistic and informed approach to policy-making, fostering
sustainable practices and the well-being of aquatic environments and communities reliant upon
them.

Ecotourism is one of the leading and potential branches of the tourism industry because of
its significant role in sustainable development [194, 195, 196]. Ecotourism was advocated in
1968 when Hetzer [197] integrated culture, education, and tourism in a string, later becoming
a conservation and sustainable development pillar. According to The International Ecotourism
Society (TIES), ecotourism is a liable excursion into the natural environment that must conserve
the area’s ecology, maintain the territorial inhabitant’s prosperity, and the consciousness to pre-
serve the ecosystem [198]. Recreational fishing and non-extractive recreational activities may
be an integral part of ecotourism. Coral reef ecotourism and fishing are one of the most cru-
cial nature-based tourism having potential ecological and economic value [199, 200]. Marine
wildlife, including marine mammals, maybe another potential player in the modern fishery that
could play a significant role in achieving the goal of fishery-based ecotourism [201, 202, 203].

One of the ecotourism principles is providing direct financial benefits for conservation. For
this, tourist entry fees at the ecotourism spot may be one step forward to maintaining the preser-
vation of the tourist spot and the economic development of the people associated with such
program [8]. The preceding studies have discussed sustainable ecotourism principles; how-
ever, they may not fully address the primary objectives of the blue economy, which encompass
safeguarding marine species for sustainable use, enhancing local livelihoods and economies,
and preserving the health of marine ecosystems and their resources. To achieve these goals,
a scientific integration of fishery and ecotourism could prove valuable in reducing pressure on
fish and fisheries while fostering long-term economic and social development for coastal com-
munities. A combination of market-based fishing strategies in a multi-species fishery and a fair
taxation policy holds promise for sustainable growth. Additionally, fishery-based ecotourism
emerges as a potential component that can significantly improve the financial well-being of lo-
cal populations by safeguarding the aquatic ecosystem. Implementing an entry tax on tourists
may further support the development of ecotourism in the region. One of the significant pur-
poses of this thesis is to propose and analyze a harvesting model that harmonizes the ecological
dynamics between predator and prey fish with ecotourism and the principles of an open market
economy, thus bridging the research gaps.

Through the comprehensive literature review, several research questions emerge, presenting
unexplored avenues in bioeconomic modelling. These thought-provoking inquiries include:

(i) What precise environmental carrying capacity is imperative for sustaining harvesting,
and at what level of enrichment can we optimize fish harvest and generate maximum
revenue?
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(ii) To what extent does the open market philosophy contribute to the potential occurrence of
disastrous regime shifts within the fishing industry?

(iii) How does the interplay of supply and demand intricacies influence the dynamics of fish-
eries, particularly in attaining the elusive Maximum Economic Yield (MEY)?

(iv) Is fish demand a potential factor for regime shift?

(v) What specific harvesting rate and demand function combinations show a regime shift?

(vi) What is the extent of taxation’s beneficial impact on a fishery, particularly in the presence
of infection?

(vii) Are there discernible economic trade-offs that necessitate exploration and understanding?

(viii) Is there any trade-off that maximizes the societal benefit?

(ix) How do the complexities of demand patterns, tax policies, and disease dynamics collec-
tively influence fishery dynamics and revenue generation?

(x) When an economic trade-off exists, what specific harvesting rate allows for attaining
MEY with the least imposition of fishing effort?

(xi) In what multifaceted ways does the scientific integration of commercially harvested and
recreational fishery effectively contribute to reducing pressure on fisheries and fostering
coastal communities’ economic and social development?

These pivotal research questions beckon further investigation and hold significant implications
for advancing our comprehension of sustainable fishery management and the overarching goals
of the blue economy.

1.12 Aim of the thesis

Fishing is a social-ecological interaction where human and non-human species (including the
harvested and non-harvested species) interact. Such social-ecological systems are dynamic and
complex [204]. The complexity may multiply if the social-ecological phenomenon of interest
is connected with the economic ingredients. This thesis aims to comprehensively explore the
intricate interactions between social, ecological, and economic factors in fishing practices. The
primary objectives of this thesis are as follows:

• Investigate the coupling of social-ecological interactions in fish harvesting with dynamic
fish market prices, focusing on understanding how market demand influences fish and
fisheries dynamics.
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• If economic theory is added to describe dynamic fish prices based on the demand-supply
for fish, do the extended socio-ecological-economic model exhibit a regime shift?

• Investigate different functions for expressing harvesting rate and demands showing regime
shift.

• Perform qualitative studies on bioeconomic fishery management in the presence of infec-
tions, analyzing the effects of various bioeconomic parameters on infection control and
disease eradication.

• Propose and examine regulatory policies like taxation to mitigate overexploitation while
considering their ecological and economic effects.

• Integrate fishing-based tourism with optimal fishing tax policies to promote sustainable
resource management and revenue generation in ecotourism sites.

• Optimize societal revenue by determining an optimal tax level using Pontryagin’s maxi-
mum principle, aiming to achieve a win-win situation for all stakeholders in sustainable
fishery management.

Throughout the thesis, we will conduct analytical and numerical studies to explore various
social, ecological, and economic phenomena, including species extinction, persistence, sta-
bility, economic trade-offs, and bionomic equilibrium. Additionally, we will investigate the
occurrence of MSY and MEY to understand their significance in fishery dynamics and revenue
generation.

Furthermore, the thesis aims to offer valuable insights into several critical socio-ecological-
economic questions. These include determining the environmental carrying capacity needed
for sustainable harvesting, analyzing the influence of the open-market philosophy on regime
shifts in the fishing industry, and understanding the intricate interplay of supply and demand in
fisheries dynamics to achieve the (MEY).

The study will also explore the interplay of taxation, infection, and demand in fishery dy-
namics and revenue generation. In cases where economic trade-offs exist, we will determine
the optimal harvesting rate to achieve MEY with minimal fishing effort. Additionally, we will
analyze how integrating commercially harvested and recreational fisheries can reduce pressure
on fisheries and enhance economic and social development in coastal communities.

By addressing these research questions, this thesis aims to provide valuable insights into
sustainable fishery management, ecological conservation, and socioeconomic development in
complex social-ecological-economic systems.
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1.13 Thesis overview

In this thesis, we study social-ecological-economic interaction and management of some com-
mercial species in the presence or absence of an infectious disease. The basis of this thesis is
to know how the dynamics of a renewable species are affected by human intervention and the
demand-supply theory of the open market.

In Chapter 2, we analyzed a basic two-dimensional bioeconomic model representing the
time evolutions of fish population in the presence of harvesting and market price that depends
on supply and demand. We explored the dynamic behaviours of the system with four different
harvesting functions and eight demand functions. Different analytical results were presented for
a pair of saturated demand and saturated harvesting functions, but simulation results were given
for all the thirty-two pairs. It is shown for all thirty combinations that the system may shift from
a harvesting state to a non-harvesting state through a saddle-node bifurcation for some values of
harvesting effort and demand. However, a disastrous regime shift with unbounded prices may
be observed in some combinations. For example, there will be no regime shift for quadratic
demand, whatever the harvesting rate. However, a regime shift may be observed in all four
harvesting rates if the demand function is saturated. A trade-off between the harvesting effort
and net revenue always occurs for the quadratic and exponential demand functions but never
for saturated and mixed demand functions.

Intense harvesting and emerging infectious diseases are potential threats to the global fish-
ery. A proper management policy with a scientific understanding of species interaction is a foot-
step in a long-term sustainable fishery. Considering those factors in Chapter 3, we performed
a qualitative study of the bioeconomic management of a fishery in the presence of infection
and dynamic harvesting. The model narrates the rate equations of the healthy fish, infected fish,
fishing effort and market price, where the fishing effort is considered to be dependent on the fish
price, and the demand-supply theory of the open market regulates the fish price. Routh-Hurwitz
criterion is utilized for the local stability analysis, whereas the high-dimensional Bendixson
criterion is used for the global stability analysis. The one-and-two-parameters bifurcation anal-
ysis explains various switching in equilibrium states, which include infection-free, infected and
harvesting-free states. The existence conditions of the bionomic equilibrium, where both the
ecological and economic equilibrium exists, have been established. The harvested fish biomass
is higher at the infection-free equilibrium state than at the infected equilibrium state under an
increasing infection rate. However, the outcome is the opposite under increasing environmental
carrying capacity. The total revenue is highest in the infection-free state when demand is high.
An unintuitive result is that the infection persists higher if demand decreases.

Taxation policy for fishing received global consent to protect fisheries from drastic harvest-
ing. Still, it should be applied sustainably for a greater ecological and economic benefit because
over-taxation may impair fishers’ earnings and reduce the overall societal revenue. The fish
disease may alter the system dynamics and reduce the revenue generation from the fishery. In
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Chapter 4, we propose a nonlinear bioeconomic harvesting model of a single-species fishery
with infection, variable market price, and nonlinear demand to explore taxation’s ecological
and economic effects. We provide the stability results of the system’s different ecological and
economic equilibrium points. The analytical conditions for the existence of transcritical bi-
furcation are also established. The computational results show that the system exhibits three
dynamical regimes depending on the fishing tax. It is shown that taxation might control in-
tensive harvesting but augment disease spreading and price hiking. Higher regulatory tax may
even cause a regime shift, where the system enters into a non-harvesting regime from the har-
vesting one, causing an ecological and economic imbalance. Using Pontryagin’s maximum
principle, we decipher that some optimal fishing tax exists for the maximum societal benefit in
a disease-induced fishery.

The analysis is then improved in several ways in Chapter 5, including by considering more
realistic demand-supply functions, improved harvesting techniques, and implementing a fishery
regulatory policy to prevent drastic harvesting. A four-dimensional bioeconomic fishery model
is considered and analyzed to explore the system’s dynamic behaviour. The objective is to
decipher the consequences of a single-species fishery model in the presence of infection, non-
linear saturated harvesting rate and market demand, and fishing tax. How increasing demand
may cause a regime shift in the fish and fishery is the most crucial objective of this work. For
this, we studied different equilibrium points of the system and analyzed their local and global
stabilities. An extensive bifurcation analysis is also done to demonstrate the effect of single-
and multi-parameter variations. Using Pontryagin’s maximum principle, we further discussed
optimal revenue generation. The one-parameter bifurcation analysis revealed that the demand
parameter plays a vital role in the system dynamics. Demand can make the system stable from
its unstable state. It also plays a role in removing the infection from the system. Increasing
demand corresponds to increased harvesting effort, which helps eliminate the disease. On the
contrary, the negative side of high demand could be severe. There may be a drastic change in
the system’s qualitative behaviour. A regime shift from a harvested state to a non-harvested
state may occur, causing an imbalance between demand and supply and the socioeconomic
condition of the people associated with the fishery. The two-parameter bifurcation results were
presented to demonstrate the more extensive dynamical behaviour of the system. It shows that
the non-harvesting regime, where the price is unbounded, is not observed in any bifurcation
results where demand is not one of the bifurcation parameters. Such demand-induced fishery
collapse is rare in the literature. This study further shows no trade-off between fishing tax
and revenue generation, opposing the conventional observation. The tax revenue levied by the
regulating authority and the societal revenue increase with increasing tax.

The blue economy advocates using marine ecosystems sustainably for economic develop-
ment, improvement of the livelihood of local people, and overall national development while
preserving aquatic health. A scientific integration of fishery and ecotourism may help to achieve
the target. Intermingling a market-based fishing strategy in a multi-species fishery with a fair
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taxation policy may provide long-term sustainable growth. Fishery-based ecotourism with an
entry fee for the tourist may further contribute to the financial improvement of the local people
by preserving the aquatic ecosystem. In Chapter 6, we have proposed and analyzed a harvest-
ing model that integrates the ecological interaction of predator and prey fish with ecotourism
and the open market economy theory. In the ecological interaction, the prey fish is harvested
commercially, whose market price is determined by the demand-supply relationship. The har-
vesting effort of the prey fish is proportional to the profit margin. The regulatory authority
imposes a fishing tax on landed fish as a controlling measure to restrict overfishing. The preda-
tory fish (dolphin) is banned from commercial harvesting but used for recreation purposes for
visitors as a part of ecotourism. The mentioned social-ecological-economic interaction may
match various commercial and fishery-based ecotourism sites, including the Chilika lagoon of
Odisha state, India. We analyze the proposed model from the dynamic and economic points
of view and provide the local and global stability conditions of the ecological and economic
equilibrium points. The broader dynamics of the system are unveiled through one-and two-
parameter bifurcation analysis. Using Pontryagin’s maximum principle, we mathematically
show that an optimal tax exists, maximizing overall revenue generation and societal benefit.
The thesis ends with the conclusion and future direction in the last chapter.



2
Dynamic consequence of an

ecological-economic model with different
harvesting strategies and demand functions

2.1 Introduction

Over the past few decades, the world’s seafood supply structure has undergone tremendous
alteration [205]. Two significant trends are a standstill in wild fish harvesting and growth in
associate production [206]. Fisheries rely heavily on harvesting rates for survival. Several
authors described the bioeconomic model with constant harvesting effort [176, 177, 178, 179,
181, 207]. However, it is the most insignificant harvesting strategy and has been heavily crit-
icized in recent times [183]. The most popular harvesting function associated with fishery is
the traditional catch-per-unit-effort (CPUE) fishing strategy [125, 139, 140, 175, 208]. Several
flaws are present in this functional form, such as, for each (fish), a random search is presumed,
it assumes that each (fish) has an equal chance of being caught [209]. Secondly, if the stock
size is constant, the harvesting rate may grow unboundedly with the effort level. Similarly, for
a constant effort, the harvesting rate grows unboundedly with the stock size [90]. Nonetheless,
saturated harvesting is more realistic than CPUE harvesting because it slows the harvesting rate
and allows a maximum limit even when stock size is huge [183, 210, 211]. According to Mous-
saoui and Auger [142], the non-linear saturation type harvesting rate for a fixed fishing effort
exhibits a plateau regarding rising fish biomass, which is reasonable given that boats have a

35
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finite capacity for stocking and engaging in subsequent fishing operations. We have considered
all possible types of harvesting techniques in our study to provide a comparative analysis and
demonstrate various ecological and economic relevance.

The fluctuation of aquatic production has significantly impacted the dynamics of the global
aquaculture markets [212]. To understand the changes in fisheries supply that influence the de-
mand for these resources from urban rich to rural poor, fish and aquaculture production trends
have been observed and analyzed for decades [213]. As a result of their continuous depletion
of wild stock, fishery demand-supply interaction patterns are changing alarmingly in poor and
developed countries. As availability has risen, species such as prawns, salmon, sea bass, sea
bream, and catfish have experienced significant price drops [214]. Thus, it is crucial to analyze
a bioeconomic fishery model with dynamic price strategies that follow the supply-demand phe-
nomenon of the open market [139]. Mansal et al. [175] advanced the concept further in two
scenarios: an age-structured fisheries model and a fishery with resource storage. With the help
of the fluctuating market price, Brochier et al. [184] illustrated an over-exploited fishery with
the dynamic market price. Each of these models considers price-dependent demand. However,
the demand might depend on both price and stock level [151]. In this chapter, many forms of
price-dependent and stock-price-dependent demands are taken into account, and their effects
on the dynamics of the fisheries have been observed.

Disastrous shifts in regimes happen in various social, ecological, and economic systems
[132, 215, 216]. A regime shift occurs when a system switches from one set of self-reinforcing
procedures and frameworks to another [132, 217, 218]. Researchers continue to face challenges
in forecasting and counteracting this problem [219, 220]. A regime shift in fisheries refers to
a drastic alteration in the dynamics of the fishery brought on by harvesting [221], climate
change [137, 138], and eutrophications [222]. Overexploitation is assumed to be the primary
reason for a regime shift in fishery [135, 136]. This fact is true if economics is not considered
explicitly. However, if the dynamic price, i.e., the instantaneous price change, depends on
the instantaneous demand and supply, demand may be the driver for regime shift. If demand
increases, then price increases, which causes harvesting effort to rise. The increased harvesting
eventually causes the regime shift, if any. If it is not the case, then the question is – will there
be any regime shift if there is no fish demand. Indeed, the answer is no. Because there will be
no intensive harvesting due to the lack of demand, and possibly no regime shift will occur.

Recently, Bairagi et al. [223] shows that market demand for fish can be the primary cause of
regime shift in a fishery. However, they considered one particular supply and demand function:
saturated demand and saturated supply. But they did not find an economic trade-off that would
allow them to achieve the maximum economic yield (MEY). Now the question is, are these
two results valid for all types of demand and supply functions? The answer is no. Further, as
in many other bioeconomic models, such as those that consider polynomial demand functions
with linear or nonlinear harvesting efforts, economic trade-offs between revenue generation and
harvesting effort have been identified without catastrophic regime shifts [91, 208, 224]. None
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of these studies observed regime shifts and economic trade-offs with the variation of a single
bioeconomic parameter. In this chapter, we use a simple bioeconomic model with a dynamic
price of the harvested stock to demonstrate how the regime shift and the economic trade-off in
fisheries are related to the demand-supply phenomenon of open markets. A further question
arises: If the trade-off exists, what harvesting rate can the MEY be achieved with the least
effort?

In this chapter, we considered a combination of four harvesting rates and eight demand
functions and analyzed 32 ecological-economic interactions to answer the questions. Different
analytical results were presented for a pair of saturated demand and saturated harvesting func-
tions, but simulation results were given for all the thirty-two pairs. It is shown for all thirty-
two combinations that the system may shift from a harvesting state to a non-harvesting state
through a transcritical bifurcation for some values of harvesting effort and demand. However,
a disastrous regime shift with unbounded prices hike may be observed in some combinations.
For example, there will be no regime shift for quadratic demand, whatever the harvesting rate.
However, regime shift may be observed in all four harvesting rates if the demand function is of
saturated type. A trade-off between the harvesting effort and net revenue always occurs for the
quadratic and exponential demand functions but never occurs for saturated and mixed demand
functions.

The subsequent chapter is arranged as follows. Section 2.2 describes the ecological-economic
model formulation for a single-species fishery with a dynamic market price. Section 2.3 con-
tains the analysis of the bioeconomic model, such as equilibria, their local stability properties,
and possible bifurcations. The existence of maximum economic yield is discussed in Section
2.4, and the economic trade-off is illustrated in 2.5. The chapter ends with a discussion in
Section 2.6.

2.2 The model

A general socio-ecological-economic single-species fishery model is the first thing we look for
in this section. Assume the commercial harvesting of a fish species, which has a demand in the
market. If X is the stock size of the fish at any time t and P be its price per unit biomass, then
their instantaneous rates change may be expressed as follows:

dX
dt

= f (X)−hi(X ,E), (2.1)

dP
dt

= φP
(
D j(X ,P)−hi(X ,E)

)
.

It says that fish stock variation is balanced by the difference between the fish growth rate,
f (X), and harvesting rate hi. The instantaneous change in fish’s per capita market price is
proportional to the difference between the instantaneous demand D j(X ,P) and supply hi(X ,E)
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with φ as the proportionality constant. The demand may depend both on the stock size & price,
and the harvesting rate is a function of stock size & harvesting effort, E. Note that the supplied
quantity equalizes with the amount harvested.

The expression hi(X ,E) denotes the rate of fish harvesting (or the supplied quantity) with a
parametric fishing effort E. Four different types of harvesting functions are typically prioritized
in the fishery literature:

(i) The constant-effort harvesting, which has the form h1(X ,E) = E, and is independent of
the fish stock [153].

(ii) The catch-per-unit-effort (CPUE) harvesting (or constant-yield harvesting), which has
the form h2(X ,E) = qXE, where q is the catchability coefficient [208].

(iii) Saturated harvesting, h3(X ,E) = qXE
m1X+m2E [90], where the saturation is on both the fish

and effort level. Here, m1 is the degree of competition among the boats, fishing net, fish-
ermen and other technology used in fishing [225], and m2 is the product of capture rate
and handling time [226]. In this situation, the fisherman can impose a limitless amount
of effort, which results in a maximum harvested amount qX

m2
, obtained from the limiting

value of qXE
m1X+m2E when E → ∞ [183]. Similarly, when the stock size is enormous, one

can obtain the maximum fish catch as qE
m1

.

(iv) Imposing an unlimited amount of effort is sometimes considered infeasible. In light of
this, a straightforward saturated harvesting approach is considered, where the harvesting
rate is expressed as h4(X ,E) = qXE

X+D , called a stock-dependent saturation, where D is the
half-saturation constant. In this case, the anglers are subjected to a bounded fishing effort
[142].

Different demand functions have been used in the literature. Usually, demand is considered to
vary with the price (P) and therefore expressed as D(P). It is customary to assume that demand
decreases with increasing costs. However, demand may also vary with the stock size (X) of
some products. Thus, a more general functional form of demand is D(X ,P). In the following,
we present various demand functions used in the literature.

(a) The constant demand is expressed as D1(X ,P) = A, where A is a positive constant [227].
This is the simplest demand function and is unrealistic for most products. In such a case,
demand elasticity, the change in the demand in response to the stock or price level [228],
is zero.

(b) The linear demand function may be represented by D2(X ,P) = A−αP, where A is the
maximum demand and α (> 0) is the demand decreasing rate [208]. The demand for
common mackerel fish follows a linear function of its price [229].
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(c) The quadratic demand function has the form D3(X ,P) = A−αP− βP2 [230], where
β (> 0) is a constant and A, α have the similar meanings as in D2(X ,P). The demand
for numerous small fish and shrimp adheres to a quadratic demand pattern [231].

(d) The saturated type demand function has the form D4(X ,P) = A
1+BP , where A indicates

the maximum demand and B is the demand-sensitive parameter [232]. Thiao et al. [233]
found that "Thiof” catch and abundance significantly declined from 1974 to 2006. The
ex-vessel price boomed during this period, and the demand remained stable from 1994 to
2006. This situation persists today. Despite declining catches, the high price motivates
fishermen to continue catching "Thiof” as their revenue through the landed value remains
favourable.

(e) The exponential demand is represented as D5(X ,P) = Ae−bP, where A is the maximum
demand and b is the demand sensitive parameter [234]. The demand for various vegeta-
bles, fruits, and sweets can be described using this type of function [234].

(f) The logarithmic demand has the form D6(X ,P) = A−b1 lnP [235], where A, and b1 are
some positive constants. Cosmetic products are an illustrative example of such price-
dependent demand [236].

(g) The logistic type demand function is expressed as D7(X ,P) = Â
1+ebP [235], where Â

2 is
the maximum demand and b is a positive constant. Two products, yoghurt and catsup,
follow such a demand function [237].

(h) The price and stock dependent demand function has the form D8(X ,P) = A+A1X
1+BP , where A

is the constant demand, A1 is the demand increasing rate with stock, and B is the demand
decreasing rate with price [238]. The demand in Taiwanese vegetable farmhouses is
strongly influenced by both price and stock levels Mishra et al. [239].

It is worth noting that in the constant demand scenario, demand is independent of market price,
whereas in the remaining situations, demand is a diminishing function of market price. Only
the last function depends on both the stock size and price. Thus, one may construct at most
thirty-two models from Eq. (2.1) with different combinations of hi(X ,E) and D j(X ,P). In
the following, we present an analysis of a single model out of these 32 models, considering
a saturated harvesting function and a saturated demand function. One can perform a similar
analysis for other models.

2.3 Model analysis

Consider that fish species grows logistically in the absence of harvesting and is represented by
f (X) = rX

(
1− X

K

)
, where r is the intrinsic growth rate (birth minus death), and K is the sys-

tem’s carrying capacity. Then the system (2.2) with saturated harvesting and demand functions
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reads

dX
dt

= rX
(

1− X
K

)
−h4 = F(X ,P),

dP
dt

= φP
(

D4 −
qXE

X +D

)
= G(X ,P), (2.2)

where h4(X ,E) = qXE
X+D , and D4(X ,P) = A

1+BP . The initial value is considered as (X(0) = X0 >

0, P(0) = P0 > 0).

2.3.1 Positivity and boundedness

To establish that the considered system (2.2) is ecologically and economically well-posed, we
need to show that the solution exists uniquely, and the solutions are positive and bounded. For
such findings, we prove the following lemma.

Lemma 2.1. Each solution (X(t),P(t)) of the system (2.2) having initial point (X0,P0) ∈ R2
+

exists uniquely. Furthermore, the solution remains positive and uniformly bounded in RS ,

where

RS = {(X ,P) : 0 < X < ζ + ε̂, 0 < Y (X ,P)<
r
s1

+ ε, for any positive ε̂,ε}

with Y (X ,P) = lnX +P, and s1 = min
{

r
K ,

φA
B

}
.

Proof. Consider the set of all such Banach space of continuous functions as B, and define the
function f as

f : [0, t]→ R2,0
+ .

The initial condition of the system (2.2) can be written in the form

Xθ = N1(θ)> 0, and Pθ = N2(θ)> 0, θ ∈ [0, t], (2.3)

where (N1(0),N2(0)) ∈ B. Then the corresponding norm can be stated as

||N ||= sup
0<θ<t

(|N1(θ)|, |N2(θ)|),

where N = (N1,N2). According to the fundamental theorem of functional differential equa-
tions [240], there exists a unique solution of the system (2.2) with the initial point (2.3).

One can easily write from (2.2)

X(t) = X0e
∫ t

0

[
r(1−X

K )−
qE

X+D

]
ds > 0 if X0 > 0,

P(t) = P0e
∫ t

0 φ [( A
1+BP−

qXE
X+D)]ds > 0 if P0 > 0.
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Thus, whenever the solutions start with a positive initial point, the system (2.2) remains positive
for all future time, implying that the system is positively invariant.

From Eq. (2.2)a, one have

dX
dt

≤ rX
(

1− X
K

)
.

Then the standard comparison theorem gives

limsup
t→∞

X(t)≤ ζ ,

where ζ = max{X0,K}.
Define

Y = lnX +P.

Its time derivative along the solution of (2.2) gives

dY

dt
=

1
X

dX
dt

+
dP
dt

= r
(

1− X
K

)
− qH

X +D
+φP

(
A

1+BP
− qXH

X +D

)
≤ r− r

K
X − φA

B
P

≤ r−
(

r
K

lnX +
φA
B

P
)

(as X > lnX ∀ X > 0).

Choosing s1 = min{ r
K ,

φA
B }, one can write

dY

dt
+ s1Y ≤ r.

Following differential inequality theorem [241], one then have

0 < Y (X ,P)<
r
s1

+
Y (X0,P0)

es1t .

Clearly, t → ∞ provides 0 < Y (X ,P)< r
s1
. Hence, solutions of the system (2.2) with positive

initial values are bounded in

RS = {(X ,P) : 0 < X < ζ + ε̂, 0 < Y (X ,P)<
r
s1

+ ε, for any positive ε̂,ε}.

This completes the lemma.
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2.3.2 Equilibria and their stability

The system (2.2) has three equilibrium points:

(i) The trivial equilibrium Θ0 = (0,0) always exists.

(ii) The only-fish equilibrium Θ1 = (X1,0), where X1 is the positive roots of the equation

rX̄2 − r(K −D)X̄ +K(qE − rD) = 0. (2.4)

Solving it, one gets the roots as

X+
1 =

1
2r

{
r(K −D)+

√
{r(K −D)}2 −4rK(qE −D)

}
and

X−
1 =

1
2r

{
r(K −D)−

√
{r(K −D)}2 −4rK(qE −D)

}
.

It is reasonable to assume that system’s carrying capacity is always higher than the half-
saturation constant, i.e., K > D. Then Eq. (2.4) has a unique real positive root X+

1 if
E < rD

q , two real positive roots, X+
1 and X−

1 , if rD
q < E < r(K+D)2

4qK , and no real root under

the restriction E > r(K+D)2

4qK . Hence, there may exist two only-fish equilibria of the form
Θ
+
1 = (X+

1 ,0) and Θ
−
1 = (X−

1 ,0) in some range of fishing effort, and a single only-fish
equilibrium of the form Θ1 = (X1,0) in some other range of E, where X1 = X+

1 .

(iii) The interior equilibrium point Θ2 = (X2,P2), where X2 is again obtained from the Eq.
(2.4), have the equilibrium components

X2 =
1
2r

{
r(K −D)±

√
{r(K −D)}2 −4rK(qE −D)

}
, and (2.5)

P2 =
1
B

{
A(X2 +D)

qX2E
−1
}
. (2.6)

Proceeding similarly, one gets the existence conditions of a single, double and no interior
equilibrium points as E < min

{
A(X2+D)

qX2
, rD

q

}
, rD

q < E < min
{

A(X2+D)
qX2

, r(K+D)2

4qK

}
and

r(K+D)2

4qK < E < A(X2+D)
qX2

, respectively.

It should be emphasized that for this demand-supply relationship, the fish-free equilibrium of
the form Θ3 = (0,P3) does not exist. The saturated type demand function restricts to happen
it. Since fish stock is zero in Θ3, the last equation of system (2.2) has to satisfy A

1+BP3
= 0

for the existence of such equilibrium. So, for non-zero positive demand parameters A and B,
the market price P3 has to be infinite. As a result, instead of existing a fish-free equilibrium, an
unbounded price-hike occurs. Such an equilibrium, however, may exist when demand functions
are linear or quadratic.
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2.3.3 Local stability analysis

The stability of an equilibrium point is determined by the sign of the eigenvalues of the Jacobian
matrix of the system (2.2) evaluated at the equilibrium point. The Jacobian matrix evaluated at
an arbitrary equilibrium point Θ̃ = (X̃ , P̃) reads

J(X̃ , P̃) =

 r
(
1− 2X

K

)
− qE

X+D + qXE
(X+D)2 0

− φqDEP
(X+D)2 φ

(
A

1+BP − qXE
X+D − ABP

(1+BP)2

) 
(X̃ ,P̃)

. (2.7)

Then the following stability results hold.

Theorem 2.2. (i) The trivial equilibrium Θ0 = (0,0) is always unstable.

(ii) Whenever the only-fish equilibrium Θ1 = (X1,0) exists, it is locally asymptotically stable

(LAS) if φA(X1+D)
qX1

< E < r(X1+D)2

qK , and it is an unstable point otherwise.

(iii) The interior equilibrium point Θ2(X2,P2), whenever it exists, is LAS if and only if E <
r(X2+D)2

qK . It is a saddle point if the inequality is reversed.

Proof. (i) One eigenvalue of the matrix (2.7) corresponding to the equilibrium point Θ0(0,0)
is φA, which is always positive. This implies that the trivial equilibrium point Θ0(0,0) is
always unstable.

(ii) The Jacobian matrix corresponding to the only-fish equilibrium point Θ1(X1,0) reads

J(X1,0) =

(
a11 a12

a21 a22

)
, (2.8)

where a11 = − rX1
K + qX1E

(X1+D)2 ,a12 = 0, a21 = 0, a22 = φ

(
A− qX1E

X1+D

)
. Thus, the eigen-

values are − rX1
K + qX1E

(X1+D)2 and φ

(
A− qX1E

X1+D

)
. Hence, Θ1(X1,0) is LAS whenever the

condition A(X1+D)
qX1

< E < r(X1+D)2

qK is satisfied, and unstable otherwise.

(iii) At the interior equilibrium point Θ2(X2,P2), the variational matrix (2.7) reads

J(X2,P2) =

(
f10 f01

g10 g01

)
, (2.9)

where f10 =− rX2
K + qX2E

(X2+D)2 , f01 = 0, g10 =− φqDEP2
(X2+D)2 , g01 =− φABP2

(1+BP2)2 . One eigenvalue

of this matrix is − φABP2
(1+BP2)2 , which is always negative. Therefore, the interior equilibrium

will be LAS if the other eigenvalue is also negative, giving E < r(X2+D)2

qK . It will be a
saddle point in the opposite case.

Hence the theorem.
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2.3.4 Bifurcations analysis

In the system (2.2), a number of local bifurcations can be identified with the variation in fishing
effort, E. We show that the system can experience transcritical and saddle-node bifurcations at
some critical values of this parameter.

2.3.4.1 Transcritical bifurcations

Transcritical bifurcation is associated with the interchange of stability of equilibrium points.
Two equilibria overlap in this bifurcation for some critical value of a parameter, and one equi-
librium point drives from stable to unstable while the other moves from unstable to stable state.
This occurrence is known as the exchange of stability. The following theorem states the exis-
tence of transcritical bifurcation in system (2.2) when the effort, E, is varied.

Theorem 2.3. The system (2.2) experiences a transcritical bifurcation at the only-fish equilib-

rium Θ1(X1,0) if the fishing effort E attains the critical value ETC = A(X1+D)
qX1

.

Proof. (i) Observe that the Jacobian matrix (2.8) provides a simple zero eigenvalue when the
fishing effort reaches the threshold E = A(X1+D)

qX1
= ETC. In this effort level ETC, the right

and left eigenvectors corresponding to the zero eigenvalue of the variational matrix J(X1,0)
can, respectively, be found as ζ = (0,1)T , and η = (0,1)T . For the existence of a degenerate
transcritical bifurcation at E = ETC, the following three transversality conditions [119] must
be hold.

η
T RE

(
Θ1(X1,0);E = ETC

)
= 0,

η
T DRE

(
Θ1(X1,0);E = ETC

)
ζ = 0, (2.10)

η
T D2R

(
Θ1(X1,0);E = ETC

)
(ζ ,ζ ) ̸= 0,

where R =

(
F(P,Q),G(P,Q)

)T

and RE =

(
dF(P,Q)

dE , dG(P,Q)
dE

)T

are two vector-valued func-

tions, and the other two terms DRE

(
Θ1(X1,0);E = ETC

)
and D2R

(
Θ1(X1,0);E = ETC

)
, re-

spectively, indicate the Jacobian matrix of the vector-valued function RE and DR
(

Θ1(X1,0);E =

ETC
)

ζ at E = ETC. It is to be noted that, in case of non-degenerate transcritical bifurcation,

the second condition of (2.10) must be non-zero. Now,

η
T RE

(
Θ1(X1,0);E = ETC

)
= (0 1)

(
− −qX1

X1+D

0

)
= 0,
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η
T DRE

(
Θ1(X1,0);E = ETC

)
ζ = (0 1)

(
− qD

(X1+D)2 0

0 0

)
E=ETC

(
0
1

)
= 0, (2.11)

η
T D2R

(
Θ1(X1,0);E = ETC

)
(ζ ,ζ ) = (0 1)

(
0 0

− φqDE
(X1+D)2 −2AB

)
E=ETC

(
0
1

)
= −2AB ̸= 0.

Thus, following Sotomayars theorem [119], a degenerate transcritical bifurcation point always
exists at the critical value E = A(X1+D)

qX1
= ETC. Hence the theorem.

2.3.4.2 Saddle-node bifurcation

The saddle-node bifurcation is the fundamental mechanism by which equilibria are created and
destroyed. Due to the variation in the control parameter, two equilibria move toward each other,
collide, and mutually annihilate. Typically, a saddle-node bifurcation occurs if the Jacobian
matrix at an equilibrium point exhibits a single zero eigenvalue, representing a neutral direction
in the system’s dynamics, and the other eigenvalues determine the stability of the equilibria.
One can then prove the following theorem using Sotomayor’s theorem [119].

Theorem 2.4. Two only-fish equilibriums Θ
+
1 = (X+

1 ,0) and Θ
−
1 = (X−

1 ,0) are collide with

each other at E = r(XSN+D)2

qK = ESN and then disrepairs. Thus, the system (2.2) experience a

saddle-node equilibrium ΘSN = (XSN ,0) under the condition ESN ̸= −2r(XSN+D)2

qKD and ESN >
A(XSN+D)

qXSN .

Proof. Sotomayor’s theorem [119] states that one of the Jacobian’s eigenvalues must be zero,
and the other must have a negative real component at the saddle-node equilibrium point. The
Jacobian matrix at the equilibrium point ΘSN = (XSN ,0) can be calculated as

J(XSN ,0) =

 − rX
K + qXE

(X+D)2 0

0 φ

(
A− qXE

X+D

) 
(XSN ,0)

. (2.12)

The eigenvalues are λ1 = − rXSN

K + qXSNE
(XSN+D)2 and λ2 = φ

(
A− qEXSN

XSN+D

)
. If ESN represents the

effort level when one eigenvalue (say, λ1) becomes zero, we have ESN = r(XSN+D)2

qK . The con-

dition of another eigenvalue (λ2) being negative is ESN > A(XSN+D)
qXSN . Let η̄ = [v1,v2]

T and
ζ̄ = [w1,w2]

T are, respectively, the right and left eigenvectors of J(ΘSN) corresponding to the
zero eigenvalue, where

v1 = 1, v2 = 0, w1 = 1, w2 = 0.
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Then the transversality conditions of the saddle-node bifurcation [119] are

η̄
T RE(Θ

SN ;E = ESN) = (1 0)

(
− qXSN

(XSN+D)

0

)
=− qXSN

(XSN +D)
̸= 0, and

η̄
T D2R(ΘSN ;E = ESN)(ζ̄ , ζ̄ ) = (1 0)

(
−2r

K − qESND
(XSN+D)2 0

0 0

)(
1
0

)

= −2r
K

− qESND
(XSN +D)2 ̸= 0,

when ESN ̸=−2r(XSN+D)2

qKD holds. Hence the proof.

2.4 Simulation results

For simulation purposes, we use the parameter set described in Table 2.1, which remains fixed
unless mentioned.

Table 2.1: State variables and parameters with their descriptions and default values.

Variable Description Unit
X(t) Fish biomass at time t metric tonnes (MT)
P(t) Market price per unit of biomass at time t M$∗∗/metric tonne

Parameter Description Default Value Reference
r Intrinsic growth rate of healthy fish 0.9 /year [208]
K Environmental carrying capacity 7 metric tonnes [208]
q Catchability coefficient 0.5 metric tonnes/SFU/year [208]
E Harvesting effort SFU∗ Variable
A Maximum demand metric tonnes/year Variable
D Positive constant 2 [208]
B Demand sensitivity parameter 5 metric tonnes/M$
φ Stiffness parameter 0.1 SFU/M$ [208]

∗ SFU stands for Standardized Fishing Unit [242, 243] and ∗∗ M$ indicates million USD.

We explored the switching phenomena of the system under the variation of the harvesting
effort E ∈ [0,6.5]. Fig. 2.1 shows three distinct dynamic regimes. A transition from the stable
interior state at the lower value of E to the stable only-fish equilibrium state occurs through a
transcritical bifurcation at E = 3, following Theorem 2.3. Observe that fish biomass steadily
decreases with increasing effort. The price also drops sharply as the fish supply increases with
the harvesting effort. The price becomes zero at the critical harvesting effort, E = 3, where a
transcritical bifurcation occurs. The only-fish equilibrium Θ1(X±

1 ,0) appears as E exceeds the
value 3.
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Figure 2.1: System dynamics under the variation of fishing effort, E. Here red and blue colours
indicate the equilibrium components of Θ2(X2,P) and Θ1(X±

1 ,0). The dotted line indicates the
unstable branches and the solid line indicates the stable branch of the respective equilibrium
points. The time series solutions for a fixed value of E taken from each region are given in the
insets. Other parameters as in Table 2.1 with A = 1.1.

A pair of only-fish equilibrium points Θ1(X±
1 ,0) exists and become stable in the range

3 < E < 5.2, following Theorem 2.2 (ii). The equilibrium with higher fish density, Θ
+
1 , is sta-

ble (blue solid curve), and the other one is unstable (blue dotted curve). The stable and unstable
branches approach each other with increasing effort and colloids each other. These two equilib-
rium components disappear upon collision, following a saddle-node bifurcation (Theorem 2.4).
No stable equilibrium state exists for the fishing effort E > 5.2; instead, the price becomes un-
bounded due to the unavailability of fish. Therefore, a catastrophic shift of the system’s state
occurs when the fishing effort crosses the upper threshold value, E = 5.2, where the system
enters from a harvesting (no price) state to a non-harvesting (price unbounded) state, indicating
a catastrophic regime shift. The inset figures visualize the corresponding time evolutions of the
system for a particular value of E taken from each region. For instance, the system’s time series
for E = 1 ∈ (0,3) shows stable behaviour of the interior equilibrium. For a particular value of
the harvesting effort E = 4 ∈ (3,5.2), the system stabilizes to the only-fish equilibria; and for
E = 6(> 5.2), an unbounded price hike with zero effort is observed.

2.4.1 Two-parameter bifurcation

In Fig. 2.1, we observed a catastrophic regime shift from an equilibrium fishing state to a
non-equilibrium unbounded price-hike state when both the demand and harvesting (or supply)
functions are of saturated types. Now the question is, under what demand-supply relationship
such a regime shift may occur? To explore it and to observe broader dynamics, we presented
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two-parameter bifurcation results for the remaining 31 combinations of demand and harvesting
functions and presented a few in Fig. 2.2 to Fig. 2.6. The bifurcation parameters chosen in each
figure are A, representing the maximum demand, and E, the harvesting effort. We overlooked
the constant demand situation since the non-trivial finite equilibrium price does not exist with
this demand function. This is evident from the demand function D4 and Eq. (2.6) when B = 0.

In Fig. 2.2, we presented the two-parameter bifurcation results where the saturation demand
(D4) combined with all four harvesting functions hi, i = 1,2,3,4. It shows that each parametric
plane is divided into three distinct regimes R1, R2 and R3, representing the stability zone of the
interior equilibrium, the only fish equilibrium, and the unbounded price-hike region, respec-
tively. Interestingly, the unbounded price-hike area exists in each parametric plane when the
fishers impose higher effort. Such a higher effort is responsible for overexploitation and regime
shift. A transcritical bifurcation curve separates the magenta region from the green part. Each
region is separated from the blue area by a saddle-node bifurcation line. Fig. 2.1 can be looked
at as a particular case of Fig. 2.2(d). All three dynamic behaviours of Fig. 2.1 may be observed
if one moves along the horizontal line A = 1.1.

Figure 2.2: Two parameter bifurcation diagrams when the fishing effort (E) and maximum
demand parameter (A) are varied simultaneously. We have considered saturated type demand
(D4) with all four harvesting rate functions hi(i = 1,2,3,4) : (a) constant harvesting rate (h1),
(b) CPUE harvesting rate (h2), (c) Saturated harvesting rate (h3), and (d) the harvesting rate
(h4). Here R1 and R2 represent the regions where the interior equilibrium and the only-fish
equilibrium are stable. In the region R3, X goes to zero in finite time, and P becomes un-
bounded. Parameter are as in Fig. 2.1 with m1 = 1 and m2 = 2 for Fig. (c).

Different dynamic regions with the variation of E and A are plotted in Fig. 2.3 when the
exponential demand function D5 is combined with the four types of harvesting rate functions.
One can notice that the regime shifts from a harvesting state to a non-harvesting state occurs
much earlier than in the previous case when harvesting function is a constant (Fig. 2.3a) or
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CPUE (Fig. 2.3b). Interestingly, no regime shift occurs due to overexploitation for the saturated
harvesting functions h3 and h4 whatever be the harvesting effort. It shows that the demand and
its functional form play a more critical role in the regime shift. One can get a similar bifurcation
design with logistic type demand function D7(P) (see Table 2.2).

Figure 2.3: Two-parameter bifurcation diagrams of the system with demand function D5 and
harvesting function hi (i = 1,2,3,4). The parameters remain the same as in Fig 2.2 with b = 5.
Catastrophic regime shift is observed in Figs. 2.3a,b.

Figure 2.4: Two-parameter bifurcation diagrams with respect to E and A when the demand
function D8 is combined with the harvesting function hi, i = 1, ...,4. Catastrophic regime shift
is observed for the combinations (D8,h2) and (D8,h4). Parameters remain the same as in Fig
2.2 with A1 = 0.2.
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Fig. 2.4 represents the similar two-parameter bifurcation dynamics when the demand is
both stock and price-dependent (D8). This type of demand function has the largest stable
interior equilibrium region. The combination of D8 with h3 shows the most robust dynamics.
Here, the interior equilibrium is stable throughout the entire plane. No catastrophic shift in the
system is observed in the case (D8,h1) also. Such unwanted behaviour, however, is observed
for the combinations (D8,h2) and (D8,h4).

Figure 2.5: Similar two-parameter bifurcation diagrams with the quadratic demand function
D3. The choice of harvesting rates and parameter values remain the same as in Fig 2.2 with
(α,β ) = (0.61,0.05) [208]. Here, R1 is the stable region of the interior equilibrium Θ2; R2
is the stable region of the only-fish equilibrium Θ1; R4 is the stable region of the equilibrium
point Θ3(0,P3); R1

4 is the bistable region of the equilibrium points Θ1 and Θ3; R2
4 is the bistable

region of the equilibrium points Θ2 and Θ3.

Fig. 2.5 shows that no regime shift is observed in the A−E parametric plane when the
four harvesting functions are considered with the quadratic demand function, D3(X ,P) = A−
αP−βP2. However, the most diverse dynamics are observed when D3 is combined with the
saturated harvesting function h4 (Fig. 2.5). In this case, one may find five different dynamic
behaviours of the system. It is mentionable that there exists an equilibrium point of the form
Θ3(0,P3) when D3 is combined with either h2(X ,E) = qXE (Fig. 2.5b. ) or h4(X ,E) = qXE

X+D

(Fig. 2.5d). The region R4 delineates the parametric space where the equilibrium Θ3 is stable.
Two different bistable states may be observed in the regions R1

4 and R2
4. The equilibrium states

Θ3 and Θ1 may be stable in the area R1
4 depending on the initial values. On the other hand, the

equilibrium points Θ3, and Θ2 may be stable in the bistable region R2
4. The time evaluations

of the system for five pairs of (E,A), taking one from each area of Fig. 2.5(d), are presented
in Fig. 2.6 to show the monostability and bistability of the system. One can draw similar-
two parameter bifurcation diagrams considering other combinations of demand and harvesting
functions. We have tabulated the existence or nonexistence of the catastrophic regime shifts of
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all 32 combinations of hi(i = 1, ..,4) and D j( j = 1, ..,8) in Table 2.2.

Figure 2.6: Representative time series behaviour of the system for D3 and h4 for some particular
values of (E,A) taken one from each region of Fig. 2.5(d). Initial points are X(0) ∈ (0,2) and
P(0) ∈ (0,2). (a) The coexistence equilibrium Θ2 is stable when (E,A) is selected from the
region R1. (b) The only-fish equilibrium Θ1 is stable when (E,A) is selected from the region
R2. (c) Two equilibrium points Θ2 and Θ3 may be stable when (E,A) is selected from the
region R2

4. (c) Two equilibrium points Θ2 and Θ3 may be stable when (E,A) is selected from
the region R2

4. (d) Two equilibrium points Θ1 and Θ3 may be stable when (E,A) is selected
from the region R1

4.

Table 2.2: This table shows the occurrence of catastrophic regime shift under all possible
demand-supply combinations. Parameters are same as in Table 2.1 with α = 0.61, β =
0.05, A1 = 0.2, Â = 1.1, B = 5, b = 5, b1 = 0.7,m1 = 1 and m2 = 2.

Demand Harvesting Catastrophic Demand Harvesting Catastrophic
function rate regime-shift function rate regime-shift

h1 NA h1 Yes
h2 NA h2 Yes

D1 h3 NA D5 h3 No
h4 NA h4 No
h1 No h1 No
h2 No h2 No

D2 h3 No D6 h3 No
h4 No h4 No
h1 No h1 Yes
h2 No h2 Yes

D3 h3 No D7 h3 No
h4 No h4 No
h1 Yes h1 No
h2 Yes h2 Yes

D4 h3 Yes D8 h3 No
h4 Yes h4 Yes

‘NA’ stands for not applicable.
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2.5 Economic trade-off

Here, we look into whether there is an economic trade-off between fishing effort and net rev-
enue. We aim to enhance the fishermen’s profit or achieve the MEY. To do this, we first define
the net revenue (Π), which is the difference between the total revenue (TR) earned by fishermen
and their expenses (TC). Thus,

Net revenue (Π(X ,P,E)) = TR−TC

= hi(X ,E)P− cE, (2.13)

where c denotes the cost per unit of fishing effort. We find whether there exists an optimal
value of the fishing effort for different hi so that the net revenue is maximum. To maximize the
net revenue, the optimal economic problem may be defined as

J =
∫

∞

0
Π(X ,P,E)e−δ tdt, (2.14)

where δ indicates the annual discount rate and Π is defined in Eq. (2.13). The control variable
E is subject to the constraints 0<E <Emax, where Emax denotes the upper limit of the imposed
effort. By virtue of Pontryagin’s maximum principle [122], one can write the Hamiltonian as

H = Π(X ,P,E)e−δ t +η1

(
rX
(

1− X
K

)
−hi(X ,E)

)
+η2φP

(
D j(P)−hi(X ,E)

)
, (2.15)

subject to the system (2.1), where η1, and η2 are the adjoint variables. The optimal control
variable E has to satisfy the following conditions to maximize H [51]:

∂H

∂E
= 0,

dη1

dt
=−∂H

∂X
,

dη2

dt
=−∂H

∂P
.

We considered a quadratic demand function with saturated harvesting to analyze the optimal
effort level and the economic trade-off. One can select other combinations also.

With this choice of demand-supply, Eq. (2.15) reads

H =

[
qXEP
X +D

− cE
]

e−δ t +η1

[
rX
(

1− X
K

)
− qXE

X +D

]
+η2φP

[
A−αP−βP2 − qXE

X +D

]
. (2.16)

We are only interested in observing the optimal economic yield at the interior equilibrium
point, say Θ̄2(X̄2, P̄2), as any other equilibria is insignificant from bioeconomic viewpoint. For
optimal value, ∂H

∂E = 0 at Θ̄2(X̄2, P̄2), giving

η1 +η2φ P̄2 =

[
P̄2 −

c(X̄2 +D)

qX̄2

]
e−δ t . (2.17)
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Again, dη1
dt =−

[
∂H
∂X

]
(X̄2,P̄2)

gives

dη1

dt
= G1η1 +G2e−δ t , (2.18)

where G1 =
2rX̄2

K − qE(X̄2−D)
(X̄2+D)2 and G2 =

cDE
X̄2(X̄2+D)

− 2qDEP̄2
(X̄2+D)2 . Solving (2.18), one gets

η1 =− G2

G1 +δ
e−δ t . (2.19)

From (2.17) and (2.19), one have

η2 =
1

φ P̄2

[
P̄2 −

c(X̄2 +D)

qX̄2
+

G2

G1 +δ

]
e−δ t . (2.20)

Observe that each of these adjoint variables (η1 and η2) are bounded. Substituting the values of
these adjoint variables in dη2

dt = −
[

∂H
∂P

]
(X̄2,P̄2)

, we have the maximum economic yield (MEY)
equation as

Γ(E) =
(

P̄2 −
c(X̄2 +D)

qX̄2
+

D2

D1 +δ

)(
α +2β P̄2 −

δ

φ P̄2

)
− qX̄2E

X̄2 +D
= 0, (2.21)

for a suitable choice of the annual discount rate, δ . The positive value of E, say E = Ec,
for which Γ(E = Ec) = 0 is the possible optimal effort, where Π is the locally maximum.

Figure 2.7: This figure shows that the optimal tax equa-
tion (2.21) has a unique positive root E = 1.35. Parame-
ters are same as Fig. 2.5(d) with A = 1.1 and c = 0.01.

We then numerically computed the
optimum effort level E =Ec and the
corresponding MEY Π(X ,P,Ec).
We choose the parameter values as
in Fig. 2.5(d) with A = 1.1, c =

0.01, and δ = 0.001. Fig. 2.7
shows that the Eq. (2.21) evalu-
ated at the interior equilibrium has
a unique optimal value E = Ec =

1.35. Then the MEY can be com-
puted from (2.13) as Π(Ec) = 0.447
M$/year. The diagram of the as-
sociate net revenue is given in Fig
2.8(a), green curve. In this diagram, we have also plotted the net revenues with respect to
the constant harvesting rate (h1, magenta colour), CPUE harvesting rate (h2, blue colour), and
saturated harvesting rates (h3, black colour and h4, green colour). In each case, an economic
trade-off exists between fishing effort and net revenue. Similar plots for three more demand
functions are presented in Figs. 2.8(b)-(d).
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Figure 2.8: The net revenue with variable fishing effort for different demand functions, hi(i =
1, ..,4). It shows that a trade-off exists for quadratic demand D3 and exponential demand D5
for all hi. The parameters are as in Fig. 2.1 with c = 0.01.

In Table 2.3, we have tabulated the demand functions for which an economic trade-off
exists for each type of harvesting function. The corresponding optimum effort, equilibrium
fish biomass and price are also given. Note that the economic trade-off exists for the demand
functions D2, D3, D5, D6, D7, and there is no trade-off for the demand functions D1,D4,D8. In
the case of quadratic demand (D3), the optimum fishing effort (Ec) varies with the harvesting
rate functions, while the MEY (Π(Ec)) remains almost the same. However, there are clear
variations in the MEY for the demand functions D5 and D6. For D6, the MEY is maximum
(4.166) corresponding to the harvesting function h1 and it is minimum (1.237) for h2. Another
intriguing fact is that whenever the trade-off occurs, the CPUE harvesting rate (h2) invariably
requires the least effort to reach the MEY.

2.6 Discussion

The emerging world has driven growing trade, production, and consumption, demonstrating the
need to establish forecasts for future patterns of production and consumption as well as their
challenges. In a recent groundbreaking study, the International Food Policy Research Institute
(IFPRI) and the World Fish Center examined global fish market forecasts over the next 20 years
using sophisticated modelling tools [244]. As the model predicts, the global demand for fish is
projected to grow faster than the supply, leading to a significant surge in fish prices.
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Table 2.3: This table shows the optimal effort level (Ec) and the corresponding MEY Π(Ec) for
the demand-supply combinations depicted in Figure 2.8, where there is an economic trade-off.
The corresponding equilibrium fish biomass and the market price are also given. Parameters
are same as in Table 2.2.

Demand Harvesting Optimum Equilibrium Price at MEY
function rate effort(Ec) fish biomass equilibrium (Π(Ec))

h1 0.55 6.32 0.9 0.490
h2 0.17 6.34 0.92 0.494

D2 h3 1.62 6.34 0.93 0.479
h4 1.18 6.46 1.07 0.448
h1 0.57 6.29 0.81 0.458
h2 0.18 6.32 0.84 0.462

D3 h3 1.7 6.32 0.84 0.447
h4 1.4 6.38 0.9 0.45
h1 0.37 6.56 0.22 0.077
h2 0.12 6.5 0.2 0.08

D5 h3 0.87 6.59 0.24 0.071
h4 0.27 6.88 0.47 0.022
h1 0.3 6.65 3.14 4.166
h2 0.23 6.11 1.77 1.237

D6 h3 0.7 6.66 3.18 4.157
h4 0.8 6.63 3.1 4.161
h1 0.23 6.73 0.27 0.059
h2 0.07 6.73 0.26 0.061

D7 h3 0.51 6.75 0.28 0.056
h4 0.57 6.75 0.28 0.055

The analyses of this chapter identified several issues that have yet to be given much thought
in previous bioeconomic modelling. For instance, how may the open market philosophy con-
tribute to the disastrous regime shift in the fishing industry? How does the complexity of supply
and demand affect the dynamics of the fisheries to reach the MEY? Whenever the economic
trade-off exists, at what harvesting rate can the MEY be achieved with the least amount of
imposed fishing effort? We analyzed a basic two-dimensional bioeconomic model incorporat-
ing a rate equation for a fish species in the presence of harvesting and a rate equation for its
price change in the market. We considered combinations of four harvesting functions and eight
demand functions to find which combinations show a regime shift and economic trade-offs.

We observed that certain equilibria depend on market demand to exist. For instance, the
fish-free equilibrium only occurs when the demand functions are polynomial or logarithmic.
On the contrary, such a fish-free equilibrium does not exist for a saturated demand function,
for which the price needs to be infinite. Still, the system may converge to this state in finite
time when the harvesting effort exceeds some higher threshold value. Thus, the fishery shifted
to a non-harvesting state due to the lack of fish, and a compensatory sharp price increase was
observed. Such an unwanted regime shift could be dangerous for the environment and the
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underprivileged. Our bifurcation analysis showed that this regime shift occurs through a saddle-
node bifurcation. However, a disastrous regime shift with an extreme price hike is not observed
in the polynomial and logarithmic demand case. Again, when the demand is exponential,
logistic or mixed, the regime shift depends on the demands’ functional form and the supply
term (or harvesting function).

Figure 2.9: Price equilibrium (QE ,PE) exists where de-
mand and supply become equal, i.e., where the demand
curve meets the supply curve. A surplus occurs if the cur-
rent price exceeds the equilibrium price, where the sup-
plied quantity exceeds the demand.

An unusual situation arises for
some intermediate range of the har-
vesting effort, where fish is avail-
able but its price is zero (the
case where the only-fish equilib-
rium is stable). From the dy-
namical point of view, this situa-
tion appears through a transcriti-
cal bifurcation, where the interior
equilibrium losses its stability to
the only-fish equilibrium with zero
price as the harvesting effort crosses
the lower threshold value. From
an economic viewpoint, an equilib-
rium price (P1) exists in the market
when the demand and supply become equal (see Fig. 2.9). However, if the quantity supplied
Q1S exceeds the amount demanded Q1D, there will be a surplus. In this case, the interior equi-
librium does not exist. The market price (P1) always remains above the equilibrium price PE .

Figure 2.10: The demand curve (black dotted line) and
supply curve (red dashed line). Equilibrium exists in the
range 0 ≤ E < 3, where supply and demand are equal,
and a surplus exists in the range 3 ≤ E < 5.2, where sup-
ply exceeds demand. For E > 5.2, there is unbounded
price. Parameters remain the same as in Fig. 2.1.

Therefore, the system has to
converge to the available only-fish
equilibrium, where the price is zero,
once the harvesting effort crosses
the threshold value (see Fig. 2.1).
Such a surplus situation occurred in
the system for the intermediate har-
vesting range 3 < E < 5.2. Fig.
2.10 demonstrates that the quan-
tity supplied (red dashed curve) sur-
passes the amount demanded (black
dotted curve) once the fishing effort
exceeds the threshold of E = 3. The
recent oil market price collapse in
Saudi Arabia serves as a concrete
example of such a scenario, where
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higher availability forced the oil market price to zero [245].
Understanding trade-offs is significant in economics because it helps in decision-making,

figuring out costs and benefits. It also helps to see how well the resources are being used.
Fishers and policymakers must understand that trade-offs are involved when they make choices.
We used the optimum control theory to determine when economic trade-offs exist. Our study
shows that a trade-off depends on demand functions and is independent of the type of harvesting
functions. Such a trade-off exists for polynomial, exponential, logarithmic and logistic-type
demand functions and does not exist for constant, saturated and mixed-type functions.

The chapter can indeed be extended even further. While we have explored a paramet-
ric variation of harvesting effort, an interesting avenue to explore would be to consider the
time-dependent fishing effort that varies with the profit margin. Additionally, it is essential to
acknowledge that fish disease can have significant consequences on the fish population and the
economy, as highlighted by previous studies [55, 149]. Since most of the fisheries consist of
both susceptible and infected fish populations [143], it becomes crucial to understand the po-
tential impact of fish disease in this context. Considering these, we aim to proceed to Chapter
3, where we will delve deeper into these fishery-related phenomena and their implications.





3
Bioeconomics fishery model in presence of
infection: Sustainability and demand-price

perspectives1

3.1 Introduction

Fishery is an important sustainable livelihood. The recent tidings of the Food and Agriculture
Organization (FAO) of the United Nations [14] show that about 39 million people are involved
in fisheries and another 20.5 million people are engaged in aquaculture. Global fish production
reached 96.4 million tonnes in 2018 compared to 93.1 million tonnes in 2017. The total revenue
earned from fish exports in 2018 is about USD 164 billion [14]. Many factors put tremendous
stress on the global fishery. Of course, overexploitation is the foremost factor of such stress.
The fish disease [149] is another serious issue in the fish production and revenue earning [246].
Global warming, climate change and industrial pollutants have been attributed for increasing
aquatic fish disease [59, 60]. It is, therefore, considered to be a global responsibility to maintain
the health of the world fisheries for sustainable development.

Bioeconomics, which applies the biological knowledge for commercial and industrial pur-
poses, has become a global trend in modern research [63]. Many remarkable works in bioe-
conomic modelling [247] have appeared in the literature, which consider both the ecological

1The bulk of this chapter has been published in Applied Mathematics and Computation,
DOI:https://doi.org/10.1016/j.amc.2021.126225, (2021).
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and economic aspects [125]. Fish is necessarily a renewable resource and most of the fish-
eries contain susceptible as well as infected fishes [143]. It is, therefore, important to analyze
mathematically the economical as well as biological aspects of the fishery model in presence
of infection.

Most of the mathematical fishery models figure out the concept of an open-access fishery.
They disregarded the concept of the free market, i.e., they ignored the balance between supply
and demand. That is why it is not always possible to set a reasonable market price for the re-
source, thus influencing the total revenue. A fishery model with one predator and two-prey was
analyzed in [180], where they discussed the stability properties of different equilibrium points
and bio-economic harvesting with constant harvesting effort. A two-dimensional predator-
prey model under impulsive constant fishing pressure was considered and its ecological and
economic consequences were reported in [176]. Similar ecological models with constant har-
vesting were explored in numerous studies [177, 178, 179] and the references therein. Variable
harvesting was considered in the ecological model to control the exploitation of resources and
to determine optimal harvesting so that resource biomass and population maintain its optimal
level [248]. Some mathematical models assumed a variable market price or demand to suit
supply of the harvested stock [249]. But none of the above works considered infection in har-
vested stock. On the other hand, some authors described mathematical bioeconomic models
in presence of infection, but they did not consider the variable market price [250] because of
difficulty to construct and analyze a model with all such variables. This chapter aims to embed
the theory of open market into a bioeconomic fishery model with infected fishes. Following the
open market policy, demand has been considered as a decreasing function of the price. Another
important point which has been described here is the mutual impact of biological equilibrium
and the economic equilibrium. The available equilibrium fish biomass and the harvested fish
biomass, corresponding to the infection-free and infected equilibrium states, are determined
under the variable parametric condition and the corresponding total revenue is also determined.

The proposed chapter is structured as follows: In Section 3.2, a bioeconomic fishery man-
agement is proposed. Section 3.3 describes all possible equilibrium points and their local sta-
bility analysis. Section 3.4 gives the solution methodology for the global stability of the system.
Time series analysis and bifurcation results for some important parameters are given in Section
3.5. Conditions for bionomic equilibrium solution are established and illustrated in Section 3.6.
Section 3.7 discusses the major findings and further research scopes.
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3.2 Model construction

A fish population is considered that grows logistically in the absence of infection and harvest-
ing. The growth rate of fish stock then can be represented by

d∆

dt
= r∆

(
1− ∆

K

)
, (3.1)

where ∆ is the biomass of fish population at time t, r is its intrinsic growth rate and K is the
environmental carrying capacity. Suppose that the fish population is harvested by catch-per-unit
(CPU) effort hypothesis with E as the harvesting effort and q1 as the catchability coefficient.
Then the fish growth rate in presence of harvesting can be expressed as

d∆

dt
= r∆

(
1− ∆

K

)
−q1E∆. (3.2)

The dynamics of both the systems (3.1) and (3.2) are simple. However, one important char-
acteristic of model (3.2) is that the fish population may go to extinction if harvesting effort is
higher than some critical value, i.e., E > Ec, where Ec =

r
q1

. Otherwise, the fish population sta-
bilizes to ∆∗ = K(1− q1E

r ), where r, q1, E are positive constants with r > q1E. On the contrary,
population in model (3.1) can never be extinct, but stabilizes at a fish density ∆∗ = K, which is
higher than that of the second system.

Suppose that the fish species are infected by some parasites and, in that case, the fish pop-
ulation is divided into two subpopulations, viz. susceptible fish (S) and infected fish (I), such
that the total fish stock at time t is ∆(t) = S(t)+ I(t). In such a case, the interactive dynamics
of susceptible and infected fishes are given by

dS
dt

= rS
(

1− S+ I
K

)
−λSI −q1SE,

dI
dt

= λSI −µI −q2IE. (3.3)

The underlying assumptions of this model are: (i) the microparasitic infection occurs through
horizontal transmission and follows the mass action law with λ as the force of infection, (ii)
the infected fishes do not recover from the infection and also do not reproduce, but contribute
to the carrying capacity [154]. Here the parameter µ represents the total death (natural plus
virulence) rate of infected fish, and q2 corresponds to the catchability coefficient of the infected
fish. As the infection may affect the fish ability of swimming, it is reasonable to assume that
q2 ≥ q1.

In the models (3.2) and (3.3), harvesting effort E has been considered as a parameter. In re-
ality, however, fishing effort is not a constant but a time-varying variable [175]. By convention,
fishing effort is assumed to vary with the profit margin (the difference between the selling price
and cost price). It then makes sense to assume effort to be an increasing function of profit. For
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example, fishermen will employ more boats in fishing if profit is there, otherwise, they will opt-
out from the fishery. The market price of per unit biomass of fish p(t) at any time t is dependent
on the demand and supply. It is assumed that the market price at a particular time varies with
the difference between demanded quantity and supplied quantity at that time with proportional-
ity constant φ2 > 0. Demand is represented by a linear function, e.g., D(p) = A−α p(t), where
A and α are positive constants which represent, respectively, the maximal demand and the rate
at which the demand decreases with price [139]. Based on these assumptions, the sustainable
bioeconomic management of a fishery in presence of infection can be represented as

dS
dt

= rS
(

1− S+ I
K

)
−λSI −q1SE,

dI
dt

= λSI −µI −q2IE,

dE
dt

= φ1

(
p(q1S+q2I)E − cE

)
, (3.4)

d p
dt

= φ2

(
(A−α p)− (q1S+q2I)E

)
,

where c represents the cost per unit of fishing effort and φ1 > 0 is a proportionality constant,
called stiffness parameter. Variables and parameters used in this model are presented in Table
3.1.

Table 3.1: Variables and parameters with their descriptions

Variable Description
S(t) Susceptible fish biomass at time t
I(t) Infected fish biomass at time t
E(t) Harvesting effort at time t
p(t) Price per unit of biomass at time t

Parameter Description
r Intrinsic growth rate of susceptible fish
K Environmental carrying capacity
λ Force of infection
q1 Catchability coefficient of susceptible fish
µ Total death (natural + virulance) rate of infected fish
q2 Catchability coefficient of infected fish
c Cost per unit of fishing effort
A Maximal demand
α The rate at which the demand decrease
φ1 Stiffness parameter
φ2 Proportionality constant

Model (3.4) is a generalization of many other models. For example, if there is no infection
(i.e. λ = 0) and φ1 = 1 then it becomes a basic fishery model with variable price ( see for
reference [175]). If λ = 0 and φ2 = 0 then the submodel was studied in [140]. However, if
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λ = 0 and φ1 = 0 = φ2 then the dynamic evolution of the fishery model was discussed in [125]
and [251]. The model becomes a SI-type epidemic model if E = 0 and φ1 = 0 = φ2, which has
been analyzed from different points of view [252]. Finally, if E = 0, λ = 0 and φ1 = 0= φ2 then
it represents a basic population model having density-dependent regulation [253]. The general
model (3.4) will be analyzed from the epidemic, over exploitation and sustainable points of
view as well as from the economic perspective.

3.3 Investigation for equilibrium points and their local sta-
bility analysis

The proposed model (3.4) has five equilibrium points: (i) ξ1 = (0,0,0, A
α

), (ii) ξ2 = (K,0,0, A
α

),

(iii) ξ3 =
(

µ

λ
, r(λK−µ)

λ (1+λK) ,0,
A
α

)
, λK > µ , (iv) ξ4 =

(
S̄,0, r

q1

(
1− S̄

K

)
, c

q1S̄

)
, K > S̄, where S̄ is the

positive root of the equation

rq1S̄3 − rq1KS̄2 +q1KAS̄−Kαc = 0,

and (v) the interior equilibrium point ξ ∗ = (S∗, I∗,E∗, p∗), where

S∗ =
µ +q2E∗

λ
,

I∗ =
rλK − rµ − (λKq1 + rq2)E∗

λ (r+λK)
,

p∗ =
cλ (r+λK)

rq1µ +λKq1µ +λKrq2 − rq2µ + rq1q2E∗− rq2
2E∗ ,

and E∗ is the positive root of the equation

X̄E3 + Ȳ E2 + Z̄E +W̄ = 0, (3.5)

where the coefficients are

X̄ = r2q2
2(q1 −q2)

2,

Ȳ = 2(rq1µ +λKq1µ +q2rλK −q2rµ)rq2(q1 −q2),

Z̄ = (rq1µ +λKq1µ +q2rλK −q2rµ)2 −Aλ rq2(q1 −q2)(r+λK),

W̄ = cαλ
2(r+λK)2 −Aλ (r+λK)(rq1µ +λKq1µ +λKq2r−q2rµ).

The conditions of having only one positive root of the equation (3.5) are X̄ > 0,W̄ < 0 and
18X̄Ȳ Z̄W̄ − 4Ȳ 3W̄ + Ȳ 2Z̄2 − 4X̄ Z̄3 − 27X̄2W̄ 2 < 0 [254]. Note that I∗ and p∗ are positive if
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L1 > 0 and L2 > 0, where

L1 = rλK − rµ − (λKq1 + rq2)E∗, (3.6)

L2 = rq1µ +λKq1µ +λKrq2 + rq1q2E∗− rq2µ − rq2
2E∗.

Thus, one can write the following lemma.

Lemma 3.1. An interior equilibrium exists uniquely if (i) X̄ > 0, (ii) W̄ < 0, (iii) 18X̄Ȳ Z̄W̄ −
4Ȳ 3W̄ + Ȳ 2Z̄2 −4X̄ Z̄3 −27X̄2W̄ 2 < 0, (iv) L1 > 0 and (v) L2 > 0.

Table 3.2: Parametric conditions for the nature of roots of (3.5)

No. of positive root Ȳ Z̄ W̄ ϒ Ψ Ω

− + + + + +
+ − −
− − −
+ − +
− + −

0 − − +
+ − + + − −

− − +
− − + + − −

− − +
+ + + Any sign Any sign Any sign
+ + − Any sign Any sign Any sign
+ − − Any sign Any sign Any sign
− − − Any sign Any sign Any sign
− + − + + +

1 + − −
− − −
− − +
+ − +
− + −

− + + + + −
− + +

+ − + + + +
+ + −
− − −
− + +
+ − +
− + −

2 − − + + + +
+ + −
− − −
− + +
+ − +
− + −

− + − − + +
+ + −

3 − + − − + +
+ + −

This lemma guarantees the existence of a unique interior equilibrium point, however, the
number of interior equilibrium points may increase as the cubic equation (3.5) may have more
than one positive root. For the existence of more than one bioeconomic equilibrium points,
one can follow Sturm’s method. This method uses Sturm’s functions [255], which are implicit
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functions of the coefficients of the given cubic equations [256, 257], given by

S f = X̄E3 + Ȳ E2 + Z̄E +W̄ ,

S f1 = E2 +
2Ȳ
3X̄

E +
Z̄

3X̄
,

S f2 = E +
ϒ

Ψ
,

S f3 = Ω,

where

ϒ = Ȳ Z̄ −9X̄W̄ , Ψ = 2Ȳ 2 −6X̄ Z̄, Ω = 2Ȳ
ϒ

Ψ
−3X̄

{
ϒ

Ψ

}2

− Z̄.

Depending on the signs of the coefficients Ȳ , Z̄, W̄ and signs of the key quantities ϒ, Ψ, Ω,
the equation (3.5) will have zero, one, two or three positive roots and consequently no, one, two
and three interior equilibrium points will be obtained if L1 and L2 be also positive. An essence
of the number of positive roots of equation (3.5) is listed in Table 3.2. In the simulation section,
we will illustrate further about the number of equilibrium points using these Sturm’s functions.

Different stability properties of the equilibrium points are presented here using the lineariza-
tion technique. In this method, an equilibrium point is said to be locally asymptotically stable
if all the eigenvalues of the variational matrix evaluated at the equilibrium point have negative
real parts [258]. At any arbitrary equilibrium point ξ = (Ŝ, Î, Ê, p̂), the Jacobian matrix of the
system (3.4) is given by

J =


r
(
1− 2S+I

K

)
−λ I −q1E −

( r
K +λ

)
S −q1S 0

λ I λS−µ −q2E −q2I 0

φ1 pq1E φ1 pq2E φ1[p(q1S+q2I)− c] φ1(q1S+q2I)E

−φ2q1E −φ2q2E −φ2(q1S+q2I) −φ2α


(Ŝ,Î,Ê,p̂)

. (3.7)

We now prove the following theorems in relation to the stability of different equilibrium points.

Theorem 3.2. The equilibrium point ξ1(0,0,0, A
α
) is always unstable. The equilibrium ξ2(K,0,0, A

α
)

is locally asymptotically stable if λK < µ and q1AK < αc hold simultaneously, otherwise it

is unstable. The equilibrium ξ3 =

{(
µ

λ
, r(λK−µ)

λ (1+λK) ,0,
A
α

)
,λK > µ

}
is locally asymptotically

stable if A
α

(
q1µ

λ
+ q2r(Kλ−µ)

λ (1+Kλ )

)
< c, otherwise it is unstable.

Proof. The Jacobian matrix at ξ1 = (0,0,0, A
α

) reads

J(0,0,0,
A
α
) =


r 0 0 0
0 −µ 0 0
0 0 −φ1c 0
0 0 0 −φ2α

 . (3.8)
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Here eigenvalues are r (> 0), −µ (< 0), −φ1c (< 0), −φ2α (< 0). Thus, the equilibrium point
(0,0,0, A

α
) is always unstable ( saddle).

At ξ2 = (K,0,0, A
α

), the variational matrix is evaluated as

J(K,0,0,
A
α
) =


−r −r−λK −q1K 0
0 λK −µ 0 0
0 0 φ1(q1

AK
α

− c) 0
0 0 −φ2q1K −φ2α

 . (3.9)

In this case, four eigenvalues are given by −r, λK − µ , φ1(q1
AK
α

− c), −φ2α . It is easy to
see that (K,0,0, A

α
) is locally asymptotically stable if λK < µ and q1AK < αc, otherwise it is

unstable.
At the equilibrium ξ3 =

(
µ

λ
, r(λK−µ)

λ (1+λK) ,0,
A
α

)
, we have

J
(

µ

λ
,

r(λK −µ)

λ (1+λK)
,0,

A
α

)
=


− rµ

Kλ
−( r

K +λ ) µ

λ
−q1

µ

λ
0

r(Kλ−µ)
1+Kλ

0 − q2r(Kλ−µ)
1+Kλ

0

0 0 φ1

[
A
α

(
q1µ

λ
+ q2r(Kλ−µ)

λ (1+Kλ )

)
− c
]

0

0 0 −φ2

[
q1µ

λ
+ q2r(Kλ−µ)

λ (1+Kλ )

]
−φ2α

 . (3.10)

Here eigenvalues are

−φ2α, φ1

[
A
α

(
q1µ

λ
+

q2r(Kλ −µ)

λ (1+Kλ )

)
− c
]
,
1
2

[
− rµ

Kλ
+

√
r2µ2

K2λ 2 −4
µr(Kλ −µ)

(
λ + r

K

)
λ (Kλ +1)

]
and

1
2

[
− rµ

Kλ
−

√
r2µ2

K2λ 2 −4
µr(Kλ −µ)

(
λ + r

K

)
λ (Kλ +1)

]
.

Therefore, ξ3 is locally asymptotically stable if A
α

(
q1µ

λ
+ q2r(Kλ−µ)

λ (1+Kλ )

)
< c, otherwise it is un-

stable. Hence the theorem is proven.

Theorem 3.3. The equilibrium point ξ4 =

(
S̄,0, r

q1

(
1− S̄

K

)
, c

q1S̄

)
, whenever it exists, is lo-

cally asymptotically stable if µ > λ S̄ and X1Y1Z1 > (Z2
1 +X2

1 W1) hold simultaneously, where

X1,Y1,Z1 and W1 are defined in (3.13).

Proof. At the equilibrium point ξ4 =

(
S̄,0, r

q1

(
1− S̄

K

)
, c

q1S̄

)
, one can evaluate the variational
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matrix as

J
(

S̄,0,
r

q1

(
1− S̄

K
)
,

c
q1S̄

)
=


− rS̄

K − rS̄
K −λ S̄ −q1S̄ 0

0 λ S̄−µ − q2r
q1

(
1− S̄

K

)
0 0

φ1rc
q1S̄

(
1− S̄

K

)
φ1q2rc

q2
1S̄

(
1− S̄

K

)
0 φ1rS̄

(
1− S̄

K

)
−φ2r

(
1− S̄

K

)
− φ2q2r

q1

(
1− S̄

K

)
−φ2q1S̄ −φ2α

(3.11)

and the corresponding characteristic equation reads

β
4 +X1β

3 +Y1β
2 +Z1β +W1 = 0, (3.12)

where

X1 =
rS̄
K

+φ2α −λ S̄+µ +
q2r
q1

(
1− S̄

K

)
,

Y1 =−rS̄
K

{
λ S̄−µ − q2r

q1

(
1− S̄

K

)}
+φ2α

(
r
K
+λ

)
S̄+

r
K

φ2α S̄+

φ1φ2q1rS̄2
(

1− S̄
K

)
+φ1rc

(
1− S̄

K

)
,

Z1 =−φ2rα S̄
K

{
λ S̄−µ − q2r

q1

(
1− S̄

K

)}
−φ1φ2q1rS̄2

(
1− S̄

K

){
λ S̄−µ − (3.13)

q2r
q1

(
1− S̄

K

)}
−φ1rc

(
1− S̄

K

){
λ S̄−µ − q2r

q1

(
1− S̄

K

)}
+φ1φ2r(

1− S̄
K

)(
S̄2r(φ2q2 −q1)+αc

)
,

W1 =−
{

λ S̄−µ − q2r
q1

(
1− S̄

K

)}(
1− S̄

K

){
rφ1φ2cS̄2

K
+φ1φ2r2q1S̄2

(
1− S̄

K

)
+φ1φ2rcα

}
.

All roots of (3.12) will be negative or have negative real parts [259] if X1 > 0,Z1 > 0,W1 > 0
and X1Y1Z1 > (Z2

1 +X2
1 W1). The first three conditions hold if µ > λ S̄. Thus, the equilibrium ξ4

becomes stable whenever X1Y1Z1 > (Z2
1 +X2

1 W1) holds. Hence the theorem.

Theorem 3.4. Suppose an internal equilibrium point ξ ∗ =
(
S∗, I∗,E∗, p∗) exists uniquely. Then

ξ ∗ is locally asymptotically stable if α p∗2 > cE∗ and X2Y2Z2 > Z2
2 +X2

2 W2 hold together, where

X2,Y2,Z2, W2 are defined in (3.16).

Proof. Suppose the conditions of Lemma 3.1 hold and there exists a unique interior equilibrium
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ξ ∗ = (S∗, I∗,E∗, p∗) of the system (3.4). In this case, the Jacobian matrix is evaluated as

J(S∗, I∗,E∗, p∗) =


− rS∗

K −
( r

K +λ
)
S∗ −q1S∗ 0

λ I∗ 0 −q2I∗ 0
φ1q1 p∗E∗ φ1q2 p∗E∗ 0 φ1cE∗

p∗

−φ2q1E∗ −φ2q2E∗ −φ2
c
p∗ −φ2α

 . (3.14)

The corresponding characteristic equation can be expressed as

β
4 +X2β

3 +Y2β
2 +Z2β +W2 = 0, (3.15)

where

X2 = φ2α +
rS∗

K
,

Y2 =
rφ2αS∗

K
+φ1q2

2 p∗E∗I∗+
( r

K
+λ

)
λ I∗S∗+φ1q2

1S∗p∗E∗+
c∗φ1φ2E∗

p∗2 ,

Z2 = φ1φ2E(I∗q2
2 +S∗q2

1)

(
α p∗− cE∗

p∗

)
+λφ2α

(
r
K
+λ

)
S∗I∗+

φ1q2
2r

K
S∗I∗E∗p∗ (3.16)

+λφ1q1q2E∗I∗2 p∗+φ1q1q2λ p∗E∗S∗I∗+
rφ1φ2c2S∗E∗

K p∗2 ,

W2 =

(
φ1φ2q2αrS∗I∗E∗p∗

K
+

φ1φ2q2crS∗I∗E∗2

K p∗2

)
(q2 −q1)+φ1φ2c2

λ

(
r
K
+λ

)
S∗I∗E∗

p∗2 .

Here X2 and W2 are always positive. Note that Z2 also becomes positive if α p∗2 > cE∗. So,
by Routh-Hurwitz Criteria [259], the equilibrium point ξ ∗ is locally asymptotically stable if
α p∗2 > cE∗ and X2Y2Z2−(Z2

2 +X2
2 W2)> 0 hold simultaneously. This proves the theorem.

3.4 Investigation for global stability

In this section the interest is to know about the basin of attraction of the interior equilibrium
point ξ ∗, i.e, whether ξ ∗ is globally asymptotically stable. The most common method for
such studies is the construction of Lyapunov function [260]. But for the system (3.4), it is
quite laboured to construct such global Lyapunov function. Hence high-dimensional Bendixson
criterion is utilized [261].

The following assumption is assumed for the global stability of the internal equilibrium
point of the system (3.4).
(H) There exist positive numbers ω , θ , ν , ρ and σ such that

max
{

c11 +
c12ω

θ
+ c14ω

ν
, c21θ

ω
+ c22 + c23θ + c24θ

ν
, c31

w + c32
θ
+ c33 +

c35
ρ
+ c36

σ
, c41ν

ω
+ c42ν

θ
+ c45ν

ρ
,

c51ρ

ω
+ c53ρ + c54ρ

ν
+ c55 +

c56ρ

σ
, c62σ

ω
+ c63σ + c64σ

ν
+ c65σ

ρ
+ c66

}
< 0.
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Theorem 3.5. The system (3.4) has no non-trivial periodic solutions under the hypothesis (H).

Furthermore, the unique positive equilibrium ξ ∗ is globally stable in R4,0
+ .

Proof. Let F : X 7→ F(X) ∈ Rn be a C1 function for X ∈ D, where D ⊂Rn be an open set. Also
consider the differential equation

dX
dt

= F(X). (3.17)

To find a high-dimensional Bendixson criterion, it is sufficient to show that the second com-
pound equation

dZ
dt

=
∂F [2]

∂X
(X(t,X0))Z(t) (3.18)

with respect to a solution X(t,X0) ∈ D of system (3.17) is equi-uniformly asymptotically stable
[261]. That means, for each X0 ∈ D, the system (3.18) is uniformly asymptotically stable, and
the exponential decay rate is uniform for X0 in each compact subset of D, where D ∈ Rn is an
open connected set. The second additive compound matrix of the Jacobian matrix ∂F

∂X is ∂F [2]

∂X ,
which is a

(n
2

)
×
(n

2

)
matrix, and thus the dimension of the linear system (3.17) is

(n
2

)
[262, 263].

So, if A = (ai j)4×4 be the general 4×4 matrix, then

A[2] =



a11 +a22 a23 a24 −a13 −a14 0
a32 a11 +a33 a34 a12 0 −a14

a42 a43 a11 +a44 0 a12 a13

−a31 a21 0 a22 +a33 a34 −a24

−a41 0 a21 a43 a22 +a44 a23

0 −a41 a31 −a42 a32 a33 +a44


(3.19)

will be its second additive compound matrix. The equi-uniform asymptotic stability of (3.17)
implies the exponential decay of the surface area of any compact two-dimensional surface in D.
If D is simply connected, this excludes the existence of any invariant simple closed rectifiable
curve within D, including periodic orbits. The following proposition will be used in the sequel.

Proposition 3.6. Let D ⊂ Rn be a simply connected region. Assume that the family of linear

system (3.17) is equi-uniformly asymptotically stable. Then

(a) D contains no simple closed invariant curves, including periodic orbits, homoclinic

orbits, heteroclinic cycles;

(b) each semi-orbit in D converges to a single equilibrium.

In particular, if D is positively invariant and contains a unique equilibrium X, then X is globally

asymptotically stable in D.
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For model (3.4), denote X = (S, I,E, p)T and

F [X ] =

(
rS
(

1− S+ I
K

)
−λSI −q1SE,λSI −µI −q2IE,φ1

(
p(q1S+q2I)E − cE

)
,

φ2

(
A−α p− (q1S+q2I)E

))T

.

We then have

∂F
∂X

=


r
(
1− 2S+I

K

)
−λ I −q1E −

( r
K +λ

)
S −q1S 0

λ I λS−µ −q2E −q2I 0
φ1 pq1E φ1 pq2E φ1[p(q1S+q2I)− c] φ1(q1S+q2I)E

−φ2q1E −φ2q2E −φ2(q1S+q2I) −φ2α


and assume

∂F [2]

∂X
=



b11 b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

b31 b32 b33 b34 b35 b36

b41 b42 b43 b44 b45 b46

b51 b52 b53 b54 b55 b56

b61 b62 b63 b64 b65 b66


.

By (3.19), we obtain
b11 = r

(
1− 2S+I

K

)
−λ I−q1E+λS−µ −q2E, b12 =−q2I, b13 = 0, b14 = q1S, b15 = 0, b16 =

0, b21 = φ1 pq2E, b22 = r
(
1− 2S+I

K

)
−λ I−q1E +φ1[p(q1S+q2I)−c], b23 = φ1(q1S+q2I)E,

b24 = −
( r

K + λ
)
S, b25 = 0, b26 = 0, b31 = −φ2q2E, b32 = −φ2(q1S + q2I), b33 = r

(
1 −

2S+I
K

)
− λ I − q1E − φ2α, b34 = 0, b35 = −

( r
K + λ

)
S, b36 = −q1S, b41 = −φ1 pq1E, b42 =

λ I, b43 = 0, b44 = λS−µ −q2E+φ1[p(q1S+q2I)−c], b45 = φ1(q1S+q2I)E, b46 = 0, b51 =

φ2q1E, b52 = 0, b53 = λ I, b54 = φ1[p(q1S + q2I)− c], b55 = λS − µ − q2E − φ2α, b56 =

−q2I, b61 = 0, b62 = φ2q1E, b63 = φ1 pq1E, b64 = φ2q2E, b65 = φ1 pq2E, b66 = φ1[p(q1S+

q2I)− c]−φ2α.

The second compound system

(ż1, ż2, ż3, ż4, ż5, ż6)
t =

∂F [2]

∂X
(z1,z2,z3,z4,z5,z6)

t

then becomes

ż1 =

[
r
(
1− 2S+ I

K

)
−λ I −q1E +λS−µ −q2E

]
z1 −q2Iz2 +q1Sz4,
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ż2 = φ1 pq2Ez1 +

(
r
(
1− 2S+ I

K

)
−λ I −q1E +φ1(p(q1S+q2I)− c)

)
z2 +

φ1(q1S+q2I)Ez3 −
( r

K
+λ

)
Sz4,

ż3 = −φ2q2Ez1 −φ2(q1S+q2I)z2 +

(
r
(
1− 2S+ I

K

)
−λ I −q1E −φ2α

)
z3

−
( r

K
+λ

)
Sz5 −q1Sz6, (3.20)

ż4 = λ Iz2 −φ1 pq1Ez1 +

(
λS−µ −q2E +φ1

(
p(q1S+q2I)− c

))
z4 +φ1(q1S+q2I)Ez5,

ż5 = φ2q1Ez1 +λ Iz3 +φ1[p(q1S+q2I)− c]z4 +(λS−µ −q2E −φ2α)z5 −q2Iz6,

ż6 = φ2q1Ez2 +φ1 pq1Ez3 +φ2q2Ez4 +φ1 pq2Ez5 +

(
φ1
(

p(q1S+q2I)− c
)
−φ2α

)
z6.

Now, set
W (Z) = max{ω|z1|,θ |z2|, |z3|,ν |z4|,ρ|z5|,σ |z6|}.

Then from (3.20), one can get the following inequalities

d+

dt
ω|z1| ≤ c11ω|z1|+

c12ω

θ
θ |z2|+

c14ω

ν
ν |z4|,

d+

dt
θ |z2| ≤

c21θ

ω
ω|z1|+ c22θ |z2|+ c23θ |z3|+

c24θ

ν
ν |z4|,

d+

dt
|z3| ≤

c31

w
ω|z1|+

c32

θ
θ |z2|+ c33|z3|+

c35

ρ
ρ|z5|+

c36

σ
σ |z6|, (3.21)

d+

dt
ν |z4| ≤

c41ν

ω
ω|z1|+

c42ν

θ
θ |z2|+

c45ν

ρ
ρ|z5|,

d+

dt
ρ|z5| ≤

c51ρ

ω
ω|z1|+ c53ρ|z3|+

c54ρ

ν
ν |z4|+ c55ρ|z5|+

c56ρ

σ
σ |z6|,

d+

dt
σ |z6| ≤

c62σ

ω
θ |z2|+ c63σ |z3|+

c64σ

ν
ν |z4|+

c65σ

ρ
ρ|z5|+ c66σ |z6|,

in which d+

dt denotes the right-hand derivative and

c11 =−rS∗

K
,c12 =−q2I∗,c13 = 0,c14 = q1S∗,c15 = 0,c16 = 0,

c21 = φ1 p∗q2E∗,c22 =−rS∗

K
,c23 =

φ1cE∗

p∗
,c24 =−

( r
K
+λ

)
S∗,c25 = 0 = c26,

c31 =−φ2q2E∗,c32 =−φ2c
p∗

,c33 =−rS∗

K
,c34 = 0,c35 =−

( r
K
+λ

)
S∗,c36 =−q1S∗,

c41 =−φ1q1 p∗E∗,c42 = λ I∗,c43 = 0,c44 = 0,c45 =
φ1cE∗

p∗
,c46 = 0,

c51 = φ2q1E∗,c52 = 0,c53 = λ I∗,c54 =−φ2c
p∗

,c55 =−φ2α,c56 =−q2I∗,

c61 = 0,c62 = φ2q1E∗,c63 = φ1q1 p∗E∗,c64 = φ2q2E∗,c65 = φ1 p∗q2E∗,c66 =−φ2α.
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Therefore,
d+

dt
W (Z(t))≤ ψW (Z(t))

with
ψ = max{c11 +

c12ω

θ
+ c14ω

ν
, c21θ

ω
+ c22 + c23θ + c24θ

ν
, c31

w + c32
θ
+ c33 +

c35
ρ
+ c36

σ
, c41ν

ω
+ c42ν

θ
+

c45ν

ρ
, c51ρ

ω
+ c53ρ + c54ρ

ν
+ c55 +

c56ρ

σ
, c62σ

ω
+ c63σ + c64σ

ν
+ c65σ

ρ
+ c66}.

Now, using the hypothesis (H) and since the system (3.4) is bounded, there exists a positive
constant η such that ψ ≤−η < 0, implying

W (Z(t))≤W (Z(s))exp(−η(t − s)), t ≥ s > 0.

Hence the second compound system (3.19) is equi-uniform asymptotic stable, and therefore the
interior equilibrium ξ ∗ of model (3.4) is globally stable, following Proposition 3.6.

3.5 Simulation results

Based on the analytical results in Section 3.3, the dynamics of the system (3.4) is simulated.
We first search for a parameter set that satisfies the basic model assumptions and gives at least
one interior equilibrium point. The following set of hypothetical (but biologically reasonable)
parameter values are considered:

r = 0.9,λ = 0.3,q1 = 0.5,µ = 0.05,q2 = 0.7,c = 2,φ1 = 0.1,φ2 = 0.15,A = 2.1,α = 0.61.

We then find the range of K by plotting L1 and L2 (see Eq. (3.6)) to ensure that I∗ and P∗

are positive. Subsequently, we plot the key quantities of Table 3.2 to find whether there exists
any interior equilibrium point of the system (3.4). Existence and uniqueness of the equilibrium
point is verified by checking the signs of the key quantities.

Figure 3.1 shows that the cubic equation (3.5) has a unique positive root as well as I∗ >

0, p∗ > 0 in the range 1.15 < K < 2.02 and K > 4.56. Therefore, a unique interior equilibrium
point of the system (3.4) exists for those ranges of K. For example, if we choose K = 1.5 then
L1 = 0.1464 > 0, L2 = 0.2543 > 0 and the quantities mentioned in Table 3.2 are evaluated as

Ȳ =−0.0720, Z̄ = 0.1888, W̄ =−0.0429, ϒ =−0.0075, Ψ =−0.0076, Ω =−0.3757.

From the 17th row of Table 3.2 and Lemma 3.1, one can notice that the sign restrictions of a
unique equilibrium point are satisfied in this case, implying that the system (3.4) has exactly
one interior equilibrium point for this parameter set. Similarly, for K = 7, L1 = 0.3693 >

0, L2 = 1.2558 > 0 and the key quantities

Ȳ =−0.03444, Z̄ = 2.1055, W̄ =−1.5945, ϒ =−0.4972, Ψ =−0.0366, Ω =−1.5375,
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Figure 3.1: Determination of positive roots of the cubic equation (3.5) using the signs of the
quantities Ȳ , Z̄,W̄ ϒ, Ψ, and Ω (see Table 3.2) and positive value of I∗, p∗ using L1, L2 with
respect to K. This figure shows that there exists a unique interior equilibrium point of the
model (3.4) for 1.15 < K < 2.02 & K > 4.56 and no interior equilibrium point for 0 < K <
1.15 & 2.02 < K < 4.56.

follow the sign restrictions of the 20th row of Table 3.2, giving rise to a unique interior equi-
librium point of the model (3.4). In fact, for all values K in the range 1.15 < K < 2.02, the
quantities Ȳ , Z̄,W̄ ϒ, Ψ, Ω will satisfy the sign restrictions of the 17th row of Table 3.2, and
the 20th row of Table 3.2 will be satisfied for all K > 4.56. Thus, there exists a unique posi-
tive root of the equation (3.5) and in both cases L1 > 0, L2 > 0, ascertaining a unique interior
equilibrium of the system in these ranges. Similar observation shows that there is no interior
equilibrium point for 0 < K < 1.15 and 2.02 < K < 4.56. Analogous study can be obtained for
any other parameter. One may find a parameter set where more than one interior equilibrium
exists. The parameter set considered here, however, provides a unique interior equilibrium
only. After obtaining the existence range of the unique interior equilibrium point, we look
for its stability range by verifying the stability criteria of the interior equilibrium point (see
Theorem 3.4) for the same parameter set. From Fig. 3.2, one can be sure that the stability
conditions X2 > 0, Z2 > 0,W2 > 0 and X2Y2Z2 − (Z2

2 +X2
2 W2) > 0 are satisfied in the region

1.15 < K < 2.02 and K > 4.56, implying that the interior equilibrium point is stable in these
ranges of K. Hence, the following values are taken with appropriate units

r = 0.9, K = 7, λ = 0.3, q1 = 0.5, µ = 0.05, q2 = 0.7, c = 2, φ1 = 0.1, φ2 = 0.15,

A = 2.1, α = 0.61 (3.22)

as the baseline values and will remain fixed unless it is mentioned.
Fig. 3.3(a) with the parameter set (3.22) shows that all the state variables coexist in a stable



74
Chapter 3. Bioeconomics fishery model in presence of infection: Sustainability and

demand-price perspectives

0
.1

7

1
.1

5

2
.0

2

4
.5

6 8
K

-0.1

0

0.2

0.4

0.6

0.8
(a)

X
2

Z
2

W
2

[X
2
Y

2
Z

2
-

(Z
2

2
+X

2

2
W

2
)]

0
.1

7

1
.1

5

2
.0

2

4
.5

6 8

-0.0025

0

0.005

0.009

0.0013

0.0017

0.0022

K

(b)

Figure 3.2: Stability of the interior equilibrium point for various ranges of K. (a)
Following Theorem 3.4, ξ ∗ is stable in the ranges 1.15 < K < 2.02 and K > 4.56 as
X2, Z2,W2 and X2Y2Z2 − (Z2

2 +X2
2 W2) are all positive there. (b) Positivity of these expressions

are shown with a magnification. Parameters are as in (3.22).
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Figure 3.3: Time evolutions of the model (3.4) with initial conditions (1,0.5,0.6,0.4). (a) For
λ = 0.3, the interior equilibrium ξ ∗ is locally asymptotically stable. (b) For λ = 0.07, ξ4
is locally asymptotically stable. (c) The equilibrium ξ3 is locally asymptotically stable for
α = 1.7. (d) For λ = 0.007 and α = 3.8, the equilibrium ξ2 is locally asymptotically stable.
Parameter sets are as in (3.22).

state at their equilibrium values S∗ = 2.22, I∗ = 0.41,E∗ = 0.88, p∗ = 1.43. Total fish stock
at the equilibrium level is around 2.63 units, out of which 0.41 units are infected and the
remaining 2.22 units are healthy. Note that here price is high (1.43 per unit of fish) because
supply is less due to low stock level. The harvesting effort is dependent on the profit margin. As
the harvested stock is not high, the profit margin is also not high, and consequently, harvesting
effort remains low even when the price is high enough. At lesser value of the force of infection,
λ = 0.07, the system becomes infection-free (Fig. 3.3b). In this case, the system converges to
the infection-free equilibrium ξ4 = (4.17,0,0.73,0.96). Total fish production increases from
2.63 units in the presence of infection to 4.47 units in the absence of infection, and therefore
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fish price decreases due to its market availability. The fishery may be profitable in this case
due to the higher availability of fishing stock even at the lower stock price in comparison to
the previous case. However, if we increase the demand-decreasing parameter α from its base
value 0.61 to 1.7, instead of reducing the force of infection λ , then the system stabilizes to the
equilibrium ξ3 = (0.17,2.04,0,1.23), where harvesting effort diminishes to zero but the other
three state variables coexist in a stable state (Fig. 3.3c).
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Figure 3.4: Global stability of the coexisting equilibrium ξ ∗. Solutions starting from the ini-
tial points (1,0.5,0.6,1),(3,1,1,3) and (2,1.5,1.5,2) asymptotically converge to the steady-
state values S∗ = 2.22, I∗ = 0.41,E∗ = 0.88, p∗ = 1.43. Parameters are as in (3.22) with
ω = 0.0100, θ = 0.10000, ρ = 9.0000, σ = 0.0001.

As expected, demand decreases here at a faster rate and consequently price also decreases. As
profit margin decreases due to lower fish price, fishermen gradually opt-out from the fishery
and therefore E goes to zero. It is also to be noted that infected fish density increases in the
absence of harvesting, implying that harvesting helps to reduce infection in the host population.
The coexistence equilibrium might lose its stability and switch to the equilibrium point ξ2 =

(6.97,0,0,0.54), where the infected population and harvesting effort both are absent if the
force of infection decreases and demand-decreasing rate parameter increases simultaneously
(Fig. 3.3d). It is actually the combined case of Fig. 3.3(b) and Fig. 3.3(c). Due to a lower force
of infection, the disease can not persist in its host population and fishing is also not profitable
due to low demand.

To show that ξ ∗ is globally asymptotically stable, the same parameters are considered as
in (3.22) and choose the positive numbers ω = 0.0100, θ = 0.10000, ρ = 9.0000, σ = 0.0001.
In this case, the hypothesis (H) is satisfied as

max{−0.3342,−0.4564,−11383,−79.3863,−12.8048,−0.42}=−0.3342 < 0
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and hence, following Theorem 3.5, the unique positive equilibrium ξ ∗ is globally asymptoti-
cally stable in R4

+. Solutions starting from different initial points approach asymptotically to
the interior equilibrium point ξ ∗ = (2.22,0.41,0.88,1.43), indicating global stability of ξ ∗ (see
Fig. 3.4).
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Figure 3.5: One parameter bifurcation diagrams with respect to the parameter K. The bi-
furcation points, where an exchange of stability occurs through transcritical bifurcation, are
mentioned in the horizontal axis. For example, there exist four transcritical bifurcations in S
population due to the variation of K at 0.17,1.15,2.02,4.56. Here red color represents the sta-
ble branch and black color represents the unstable branch. Other parameters remain fixed as in
(3.22).

We have drawn different one-parameter bifurcation diagrams (see Fig. 3.5 and Fig. 3.6) to
observe the response of the system with respect to a parameter when other parameters remain
fixed. The environmental carrying capacity (K) is the most valuable parameter in this model
and is assumed to be responsible for producing various dynamics including the paradox of
enrichment [264] and species extinction [265]. We, therefore, explored the changes in system
dynamics when K is varied in the range 0 < K < 8. Fig. 3.5 demonstrates that the equilibrium
ξ2 is stable for lower values of K (0 < K < 0.17), where S and p components have non-zero
equilibrium values, but I and E are zero. Note that red color represents the stable components of
ξ2 equilibrium, and black color represents the unstable component of other equilibrium points
in the same range of K. In the range 0.17 < K < 1.15, the equilibrium ξ3 is stable, having
non-zero components for S, I, p and zero for E. In the range 1.15 < K < 2.02, the interior
equilibrium ξ ∗ is stable, where all state variables have a non-zero value. For 2.02 < K < 4.56,
the equilibrium ξ4 is stable, having non-zero components for S,E, p and zero for I. For K >

4.56, the interior equilibrium point ξ ∗ again becomes stable. Thus, there are four transcritical
bifurcation points at K = 0.17,1.15,2.02 and 4.56, where two equilibrium points meet and
interchange their stabilities. It is to be recalled that the environmental carrying capacity of the
system measures how much individuals the system can support when a population grows there
in an isolated way. Thus, an infection can not invade a host whose density is too low, i.e., the
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Figure 3.6: One parameter bifurcation diagrams with respect to the parameters α,c and λ : (a)
For the variation of α , there exists two transcritical bifurcations at α = 0.14 and α = 0.16. (b)
For the variation of c, there exists two transcritical bifurcations at c = 1.35 and c = 5.23. (c)
For the variation of λ , there exists two transcritical bifurcations at λ = 0.13 and λ = 1.0. In
each case, the transition occurs in the sequence ξ4 −→ ξ ∗ −→ ξ3. Here red color represents the
stable branch and black color represents the unstable branch. Other parameters remain fixed as
in (3.22).

environmental carrying capacity is low. Harvesting is also not profitable at low harvested stock,
so E is also zero in the low range of K (0 < K < 0.17). As K increases, I starts increasing,
but still harvesting is not profitable so E remains zero in the range 0.17 < K < 1.15. Thus, the
first transcritical bifurcation occurs at K = 0.17. As K increases further, the system can support
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higher population and harvesting becomes possible in the range 1.15 < K < 2.02, where all
variables attain non-zero value and the equilibrium ξ ∗ becomes stable. Therefore, the second
transcritical bifurcation occurs at K = 1.15. As harvesting increases, the infected fish density
begins to decline and can not sustain when it is significantly high, causing the existence of third
transcritical bifurcation at K = 2.02 with the appearance of infection-free equilibrium point
ξ4. The susceptible fish density continues to increase for increasing carrying capacity in the
range 2.02 < K < 4.56 and then saturates. Infection can again capture the host population, even
at the same force of infection, as more fishes become available for infection and the interior
equilibrium point ξ ∗ again appears following the fourth transcritical bifurcation at K = 4.56.
Note that the price steadily decreases as long as harvesting is on (for K > 1.15). Similar
bifurcations have been drawn (see Fig. 3.6) for α , c and λ representing, respectively, the rate
at which demand decreases, cost per unit of fishing and the force of infection. Switching
of equilibrium points through two transcritical bifurcations in the sequence ξ4 −→ ξ ∗ −→ ξ3

occurs with increasing value of these parameters.

Figure 3.7: Two parameters bifurcation diagrams: (a) λ −α plane, (b) K − c plane, (c) λ −K
plane, (d) K−α plane, (e) K−A plane. Black, red, green, and yellow regions are, respectively,
the stability regions of the equilibrium points ξ2, ξ3, ξ4 and ξ ∗. Parameters are as in (3.22).

We now look into the changes in the system dynamics when two parameters are varied
simultaneously (Fig. 3.7). It gives a broader scenario in the dynamic changes of the system
(3.4). Observe that each parametric plane is separated by four stability regions represented by
four colours, viz. black, red, green and yellow, corresponding to the four equilibrium points
ξ2, ξ3, ξ4 and ξ ∗, respectively. The stability domain of different equilibrium, however, differs
significantly in each case. The equilibrium ξ2 has the least stability domain in all parametric
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plane. One can easily observe the results of one-parameter bifurcation from this two-parameter
bifurcation results. For example, consider a line A = 2.1 in Fig. 3.7e, which is parallel to the
horizontal axis, the one-parameter results given in the Fig. 3.5 can be observed.

3.6 Bionomic Equilibrium

Bionomic equilibrium [266] is a combination of both biological equilibrium and economic
equilibrium to inspect the maximum level of harvesting effort that matches its corresponding
cost per unit of fishing effort. The economic rent or net revenue π at any time can be written
as the difference between the total revenue earned by selling the harvested fishes (TR) and the
total cost for the fishing effort (TC), i.e.,

π(S, I,E) = p1(q1S+q2I)E − cE, (3.23)

where the per-unit price of fish biomass, p1, is assumed to be constant. The biological equilib-
rium is written as dS

dt = dI
dt = 0 and the economic equilibrium is obtained from π = 0. Thus it

can be found as follows:

E =
r

q1
− rS

q1K
−
(

r
K
+λ

)
I

q1
(3.24)

and

E =
λS
q2

− µ

q2
. (3.25)

From Eqs. (3.24) and (3.25), one gets the non-trivial biological equilibrium solution on the line
segment (

λ

q2
+

r
q1K

)
S+

1
q1

(
r
K
+λ

)
I −
(

r
q1

+
µ

q2

)
= 0, (3.26)

provided E > 0. Also, the economic equilibrium line can be written as

p1(q1S+q2I)− c = 0, (3.27)

provided E > 0. The biological equilibrium line (3.26) meets the S-axis and I-axis at (S̃,0) and
(0, Ĩ), respectively, where

S̃ =

(
r

q1
+ µ

q2

)
(

λ

q2
+ r

q1K

) > 0 and Ĩ =
q1

(
r

q1
+ µ

q2

)
(

r
K +λ

) > 0.
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The point of intersection of the line (3.26) and (3.27) in the first quadrant (if exists) is the
bionomic equilibrium point provided the harvesting effort at that point of intersection (E∞) is
positive. Although, the bionomic equilibrium point can also exist when the lines (3.26) and
(3.27) do not intersect within the first quadrant. The bionomic equilibrium point is the point
where the biological equilibrium line (3.26) meets either S = 0 line or the line I = 0, i.e., when
one of the worthy species S and I is completely fished out under the positivity maintaining
conditions of E and π at that point. We have already seen that S̃ and Ĩ are always positive. One

can notice from Eq. (3.24) that E = r
q1

(
1− S̃

K

)
at (S̃,0), which is always positive (since, K >

S̃). Thus, the point (S̃,0) is bionomically feasible if π > 0, i.e., if c < p1q1S̃. Also, from Eq.
(3.25), one can get E = − µ

q2
at the point (0, Ĩ), which is always negative and hence the point

(0, Ĩ) is not bionomically feasible.
Solving (3.26) and (3.27), one obtains

S∞ =

{
p1q1q2

c
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)
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(
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)}
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cq1(
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Therefore, S∞ > 0 if any of the following two conditions hold(
r
K
+λ

)
< Min
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p1q1q2

c
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(3.28)
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)
> Max
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Similarly, I∞ > 0 provided(
λ

q2
+

r
q1K

)
< Min

{
p1q1
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(3.30)

or (
λ
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+
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q1K

)
> Max
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p1q1

c

(
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q1
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q2

)
,

1
q2

(
r
K
+λ

)}
. (3.31)

From (3.24) and (3.25), one can have E∞ > 0 whenever

µ

λ
< S∞ < K −

(
1+

λK
r

)
I∞. (3.32)

Therefore, if c > p1(q1S+q2I), the cost becomes more than the revenue and hence the fishery
remains unexploited. On the other hand, if c < p1(q1S+ q2I), the total revenue is more than
the cost and hence it can be harvested. So, when c ≤ p1(q1S+q2I), the bionomic equilibrium
occurs either (i) at the point (S∞, I∞) in the first quadrant, where (3.26) and (3.27) intersect,
or (ii) at the point (S̃,0) when (3.26) and (3.27) do not intersect. If neither (3.30) nor (3.31)
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holds, then I-species faces extinction in the bionomic equilibrium. If any one of the conditions
(3.28) or (3.29), and any one of the conditions (3.30) or (3.31) hold together with the condition
(3.32) then (S∞, I∞) exists. Thus, the collective harvesting of a fish species with infection may
lead infected species to obliterate while the bionomic equilibrium of the open-access fishery
continues with the support of the healthy fish species.

Example 3.7. For illustration, consider the parameter set (3.22) with p1 = 1.43. Then the

Eqs. (3.28), (3.31) and (3.32) hold (i.e.,0.4286 < 0.4683 = Min{0.4683,0.4800}, 0.6857 >

0.6690 = Max{0.6690,0.6122} and 0.1667 < 2.1622 < 5.488). Thus, there always exists a

bionomic equilibrium point (S∞ = 2.1622, I∞ = 0.4536) as shown in Fig. 3.8. From the Eq.

(3.24) or (3.25), one can obtain the corresponding harvesting effort E∞ = 0.8552. One can

similarly find the bionomic equilibrium (S̃,0) for a different set of parameter values.
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Figure 3.8: Existence of bionomic equilibrium point. The biological equilibrium line (solid)
and the economic equilibrium line (dashed) intersect at the bionomic equilibrium point (S∞ =
2.1622, I∞ = 0.4536).

3.7 Discussion

Millions of people live on fishing and many fisheries are under stress due to intense harvesting.
Emerging diseases, caused due to global warming, water temperature rise, pollutants etc., is a
potential threat to fisheries. A proper management policy equipped with the scientific under-
standing of species interaction is a footstep in a long-term sustainable fishery. In this chapter,
we present such a theoretical study that club fish species interaction in presence of infection
and the demand-supply theory based on open market policy. More specifically, we propose a
four-dimensional bioeconomic model, which is a generalization of many other models, with
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variable harvesting effort and market-based stock price. It is assumed that a fish stock is in-
fected by some microparasites, which otherwise grows logistically in absence of harvesting.
Both the healthy and infected fishes are subject to harvesting following catch-per-unit effort
hypothesis. Harvesting effort is considered as time-varying with respect to the profit margin,
whereas fish price is regulated by the open-market theory of demand-supply relationship.

The proposed model has five feasible equilibrium points, which are time-independent val-
ues of the state variables. Out of these five equilibrium points, one is unachievable but the
other four can be stable under different parametric conditions. Considering the ecological,
epidemiological and economic importance, we have selected four important parameters and
observed how their variational effect may cause stability switching. Our one-parameter bi-
furcation analysis revealed that harvesting is not possible at the lower value of environmental
carrying capacity. Once its value crosses some threshold value such that the system can support
a higher population then only harvesting will be feasible. It is interesting to note that infection
is eliminated from the system once harvesting is on and the system remains infection-free for a
long-range of K (2.02 < K < 4.56) (see Fig. 3.5). The ecological parameter K may cause five
switching of equilibrium points, ξ2 −→ ξ3 −→ ξ ∗ −→ ξ4 −→ ξ ∗, as it moves from lower to
higher value. For bioeconomic harvesting, we have to concentrate on two equilibrium points ξ4

and ξ ∗. For the other three parameters, α , c and λ , representing, respectively, the rate at which
demand decreases, cost per unit of fishing, and force of infection, switching of equilibrium
points occur in the sequence ξ4 −→ ξ ∗ −→ ξ3 (Fig. 3.6). It is to be mentioned that equilibrium
analysis is important and has practical applications. State variables are maintained at a fixed
level when such points are achieved. It is mentionable that each equilibrium point has its own

significance. For example, if the equilibrium point ξ4 =

(
S̄,0, r

q1

(
1− S̄

K

)
, c

q1S̄

)
is achieved then

there will be no infection in the system. Similarly, all state variables, including the infected fish,
are maintained at their respective positive values when the system arrives at the interior equi-
librium point, ξ ∗. Since infection has a detrimental effect on the system population, the system
manager will try to modulate model parameters in such a way that the stability conditions of ξ4

is achieved, and the system becomes disease-free. Another practical application of equilibrium
points is that it may guide the fishery manager to maximize revenue at different equilibrium
states.

Interestingly, the demand decreasing parameter α plays a very important role in the infec-
tion spreading. If α increases then demand decreases and therefore price decreases following
open-market theory. This causes fishery unprofitable and the fishing effort gradually declines
to zero. In the absence of harvesting, infected fishes grow at a faster rate by making suscepti-
ble fish infected. Thus, the number of healthy fish decreases sharply and the system stabilizes
to a harvest-free state, where infected fish persists at a high density. The situation is exactly
similar if per unit fishing cost is gradually increased, keeping other system parameters unal-
tered. Harvesting is also not sustainable when the infection rate is high. At the higher force
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of infection, susceptible fish density reduces to a very low level, where fishing is not profitable
even though the stock price remains high. In a more general situation, where two parameters
are varied simultaneously, the region of bioeconomic harvesting (where ξ4 and ξ ∗ are stable) is
large in the λ −K and K − c parametric planes (see Fig. 3.7). Interestingly, the system shows
different dynamics like coexisting with infection, infection-free state and no-harvesting state
due to simultaneous change in the two parameters.
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Figure 3.9: Available fish biomass (dotted line) and harvested fish biomass (solid line) corre-
sponding to equilibrium state ξ4 (red color) and ξ ∗ (blue color), respectively, for the variation
of parameters K (Fig. a), α (Fig. b), c (Fig. c) and λ (Fig. d). Parameters are as in (3.22).

As mentioned previously that we are interested in two equilibrium points ξ4 and ξ ∗, where
harvesting is possible. Now the question is which equilibrium has maximum equilibrium fish
stock and maximum harvested stock. For this, we have plotted (see Fig. 3.9) the equilibrium
fish stock and the corresponding harvested stock for the two equilibrium points ξ4, where there
is no infected fish, and ξ ∗, where both the healthy and infected fishes are present. It shows
that equilibrium harvest increases with the increased carrying capacity (Fig. 3.9a). The har-
vested stock is always higher at the infection-free equilibrium ξ4 compare to that of the interior
equilibrium at the lower value of K but always lower than the interior equilibrium at a higher
value of K. On the other hand, the harvested biomass is maximum at the transcritical value,
where ξ4 and ξ ∗ interchanges their stability, while α and c vary (see Figs. 3.9b,c). In fact, the
equilibrium harvested fish biomass is an increasing function of α and c at the disease-free equi-
librium, but a decreasing function at the interior equilibrium. The equilibrium harvested fish
stock remains unaltered at the disease-free equilibrium, however, it is a decreasing function of
the force of infection, λ at ξ ∗ (Fig. 3.9d). The corresponding total revenue (TR) is presented in
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Fig. 3.10. It shows that the revenue is highest in a disease-free system (at ξ4 equilibrium point)
when demand is high (see Fig. 3.10b). However, the total revenue is higher at ξ ∗ compare to
ξ4 at some intermediate force of infection (see Fig. 3.10d).
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Figure 3.10: Total revenue (TR) at the equilibrium points ξ4 and ξ ∗. TR of harvested fish at the
equilibrium state ξ4 is represented by red color and the same at ξ ∗ is represented by blue color
for the variation of different parameters. Parameters are as in (3.22).

The unique feature of this work is that it considers the open market theory in a bioeco-
nomic fishery model with infection. To the best of our knowledge, no work has appeared by
considering variable harvesting and market price in an infected fishery.

This conceptual work addresses a real-world ecological and economic issue, but there are
several important aspects that require further investigation. For instance, incorporating non-
linear demand, which is more realistic than linear demand. Additionally, it is crucial to address
the issue of overharvesting and develop policies to mitigate this problem. One widely studied
and effective approach for controlling overfishing is the implementation of taxation policies.
Many researchers have utilized taxation models in the context of harvesting to promote sus-
tainability and conservation [90, 267, 268, 269, 270, 271]. Therefore, incorporating a taxation
policy in our study would be a significant step towards extending the research. With these
considerations in mind, our objective is to proceed to Chapter 4, where we will delve deeper
into these fishery-related phenomena, including non-linear demand, and the implementation
of a taxation policy. This chapter will provide valuable insights into the implications of these
factors and contribute to a more comprehensive understanding of sustainable fisheries manage-
ment.



4
Dynamic behaviour of a single-species

nonlinear fishery model with infection: The
role of fishing tax and time-dependent market

price 1

4.1 Introduction

Infection in fish is ubiquitous and known for a very long period. Fish production and rev-
enue generation may be severely affected due to disease [157, 158]. However, the reason and
distribution of fish infection must be better understood, particularly for marine fish [159]. Wa-
ter pollution is considered one of the significant causes of fish infection in the coastal areas
[144, 145, 146]. Some other reasons behind the increasing infection rate are water temperature
variation, changes in coastal dynamics, and lack of proper governance [59]. Recently, new and
transboundary diseases have augmented epidemiological studies of aquatic fish in the presence
of infection [147]. Infection may cause a low level of fish productivity [148]. The economic
loss due to the production loss of fish for the disease may be huge despite complimentary price
hikes due to short supply. Thailand reported a financial loss of US$ 7.38 billion during 2010-
2017 for decreased shrimp production due to episodes of disease [168]. Peterman and Posadas

1The bulk of this chapter has been accepted in Journal of Nonlinear Science and Applications, (2023).
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[170] reported a total of 16.9M$ loss in 2016 due to the catfish disease in the east Mississippi
catfish industry. Therefore, a global challenge is protecting fish and fishery from diseases and
reducing economic loss by maintaining sustainable production.

Several governing agencies apply many actions to protect overexploitation and preserve
marine resources and habitats for sustainable use. For example, creating a marine protected
area (MPA) is a well-accepted conservation policy for the fish, fisheries, and marine envi-
ronment [272]. However, the success of MPA has been questioned. MPA is more likely to
improve the biological goals (like increased fish abundance and improved fish habitat) but, in
many cases, fails to revamp social benefit [273]. Fishing has a direct effect on the harvested
biomass. Fixing a harvesting quota for a particular fish species may protect the species from
being overharvested [186, 187]. A fishing license or vessel buy-back policy is another means
to reduce overharvesting [188]. Furthermore, a fishing fee or tax is usually considered one of
the crucial measures for controlling overharvesting. These regulatory measures help protect
fish and fisheries and achieve the SDG 14 targets at large [189]. Policymakers may use the tax
revenue earned through such fiscal policy for the socio-economic upliftment of the fishers and
the marine ecosystem. Iceland is one of such countries that successfully implemented fishing
fees for pelagic and demersal fishes [192].

Modern bioeconomic fishery received global attention as it can give insights into how to
deal with the multi-difficulties of fisheries [63, 274] and prescribe suitable protective measures
that could be ecologically and economically viable [275]. However, it is shown that a conflict
exists between conservation policy and socio-economic objectives [193]. For example, a higher
fishing tax may relieve the fish stock from over-harvesting but may jeopardize the livelihood of
local fishing people. It is particularly true in underdeveloped countries where fishermen have
limited alternatives for their livelihood. Therefore, imposing a fishing tax scientifically and
sensibly is essential.

The price of many commodities, like fish, is determined by instantaneous demand and
supply in an open market. Demand is an essential tool that enhances market price fluctuation.
Price tends to increase if there is a shortfall in supply and vice-versa. The intricacy of demand,
tax, and infection plays a role in the fishery system and revenue generation and needs better
understood. Using an ecological model for the harvested species with the market-linked price
might be more effective in deciding the control measure. Here, we propose and analyze a
dynamic model of fish stock in the presence of infection, where harvesting effort depends on
the profitability of the fishery. The model also considers a fishing tax on the landed fish, and
the market price of fish depends on the difference between instantaneous demand and supply.
Our analysis revealed that taxation might control intensive fish harvesting but augment disease
spreading and price hiking. Higher regulatory tax may cause a regime shift, where the system
enters a non-harvesting regime from the harvesting one. Using the optimal control theory,
we show some trade-offs between revenue generation and regulatory tax. The overall societal
revenue, defined here as the sum of fishers’ income from selling fish plus the tax revenue earned
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by the regulatory body, is highest at the optimal tax level. However, the individual earnings in
these heads are different at different tax levels.

The rest of the chapter is organized as follows. Section 4.2 describes the bioeconomic model
formulation for a single-species fishery. Section 4.3 contains the positivity boundedness, the
existence of equilibrium points of the model, and their local stability properties. The impacts
of variation in the regulatory tax on the equilibrium values are also presented in this section.
The existence of some optimal policies is discussed in Section 4.4. The chapter ends with a
brief discussion in Section 4.5.

4.2 Model construction

Suppose F(t) be the current stock level of a fish and h(t) be the harvesting rate then the fish
growth equation may be represented by

dF
dt

= jF
(

1− F
L

)
−h(t), (4.1)

where j is the intrinsic growth rate of the fish population and L is the environmental carrying
capacity.

Many fish harvesting models [153, 180, 179] consider h(t) as a constant and independent
of the stock size. We, however, consider here that the harvesting rate follows the catch per unit
of effort (CPUE) hypothesis, where harvesting at any time is proportional to the fish biomass
of that time [139, 140, 175, 207]. Thus, h(t) = q1H(t)F(t), where H(t) is the harvesting effort
at time t, measured in terms of the number of boats, fishing gears, individuals involved in the
fishing; and q1 is the catchability coefficient, measured in terms of the mesh size of the net,
gear sophistication, etc. Then the rate equation (4.1) reads

dF
dt

= jF
(

1− F
L

)
−q1HF. (4.2)

Presume that the fish stock is infected by some parasites, giving rise to two fish sub-populations:
a susceptible class, S, and an infected class, I. So, the net fish stock at any time t is F(t)= S(t)+

I(t), and at any time t, S(t)+ I(t) ≤ L, meaning that the entire fish population never exceeds
the environmental carrying capacity. Then the interactive dynamics of the fish population can
be represented as

dS
dt

= j(S+ I)
(

1− S+ I
L

)
− f SI −q1HS,

dI
dt

= f SI −µI −q2HI, (4.3)

where the rate parameters f , µ and q2 represent, respectively, the disease transmission rate,
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death of the infected fish and catchability coefficient of the infected fish. It is assumed here
that the mixing of susceptible and infected fishes is homogeneous, the disease spreads through
horizontal transmission following the density-dependent rule, infected fishes do not recover,
harvesting is non-selective, and all biological processes are instantaneous. Since infection may
induce morbidity through hypoxia, reduce swimming ability, and the conspicuousness of the
infected fish [276, 277], the catchability may be higher for infected fish compared to healthy
fish under the same effort, i.e., q2 ≥ q1.

The fishing agency assigns more manpower, boats, etc., to harvesting if there is a profit.
However, the case will be the opposite if profitability reduces. Therefore, harvesting effort,
which is usually assumed to be time-independent [155, 278, 279], should be time-dependent.
Here we assume that the harvesting effort varies with time and is proportional to the profit
margin (selling price − cost of fishing) [208]. If c is the cost of per unit harvesting effort and M

is the market price per unit fish biomass at time t, then the system (4.3) with variable harvesting
effort can be represented as

dS
dt

= j(S+ I)
(

1− S+ I
L

)
− f SI −q1HS,

dI
dt

= f SI −µI −q2HI, (4.4)

dH
dt

= φ1

{(
q1S+q2I

)
M− c

}
H,

where φ1 is a proportionality constant.
Many authors have considered taxation policy in harvesting models [90, 267, 268, 269, 270,

271] to control overfishing. However, none of these has considered infection in the fish stock,
which may cause a significant change in the system dynamics. If the fisherman pays a tax
τ(> 0) to the regulating agency for per unit biomass of the harvested fish, then the model (4.4)
takes the form

dS
dt

= j(S+ I)
(

1− S+ I
L

)
− f SI −q1HS,

dI
dt

= f SI −µI −q2HI, (4.5)

dH
dt

= φ1

{(
q1S+q2I

)
(M− τ)− c

}
H.

The fish price is adjusted daily in the open market, balancing demand and supply. In such a
case, price should be regarded as a time variable [142, 176] instead of a constant as usually
considered in many models [140, 208]. Then the per capita rate of price change should be
proportional to the difference between the market demand (D) and the amount of supplied fish
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(Q) at that time [139]. Considering a quadratic market demand

D(M) = A−A1M−A2M2,

where A,A1,A2 are positive constants with A2 << A1 << A [230], and noting that the supplied
fish at any time t is

Q(t) = q1HS+q2HI,

the dynamic bioeconomic fishery model in the presence of infection, harvesting, and taxation
can be expressed as

dS
dt

= j(S+ I)
(

1− S+ I
L

)
− f SI −q1SH = F1(S, I,H,M),

dI
dt

= f SI −µI −q2IH = F2(S, I,H,M),

dH
dt

= φ1

((
q1S+q2I

)
(M− τ)− c

)
H = F3(S, I,H,M), (4.6)

dM
dt

= φ2M
(
D−Q

)
= F4(S, I,H,M),

where φ2 is a proportionality constant, and Fi(S, I,H,M) (i = 1,2,3,4) are the functional forms
of the rate of change of the respective state variables. Table 4.1 represents the state variables
and parameters considered to formulate the model (4.6) and their default parameter values to
be used subsequently. Many authors have studied the harvesting model in the presence and
absence of infection. For example, Hu and Cao [280] considered saturated harvesting in a
predator-prey model and analyzed its stability and bifurcations. In [281], the authors consid-
ered a predator-prey model with constant harvesting and prey refuge to show the existence and
uniqueness of the limit cycle. Juneja and Agnihotri [282] studied a predator-prey model with
prey infection and predator harvesting. They mainly observed the infection recovery effect
on the system dynamics and optimized the net profit taking tax as the controlling parameter.
They, however, ignored the dynamic market price of the harvested species. The dynamics of
a single-species fishery model, having variable harvesting effort and market price, were ex-
plored in [208]. The harvesting tax and its optimality were not considered here, and the per
capita demand was considered constant. Ang and Safuan [283] analyzed a harvested predator-
prey model with variable carrying capacity and in the presence of environmental toxicants.
It is shown that bionomic equilibrium has a strong dependence on resource density. In addi-
tion, using the Pontryagin maximum principle, they prescribed the optimal harvesting policy.
The effects of fear and refuge on the optimal harvesting in a predator-prey model with cross-
diffusion were analyzed by Ma et al. [284]. The harvesting rate was considered a constant, and
they did not consider the economic aspect of harvested species. Variable harvesting and the
demand-dependent market price of the harvested stocks were considered in [139, 142? , 175].
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These studies did not consider disease in the harvested fish and ignored the optimal tax policy
and the corresponding societal revenue.

Table 4.1: State variables and parameters with their descriptions and default values.

State variable Description Unit
S(t) Healthy fish biomass at time t metric tons
I(t) Infected fish biomass at time t metric tons
H(t) Fishing effort at time t SFU∗

M(t) Market price per unit fish biomass at time t M$∗∗/metric ton
Parameter Description Default Value Reference

j Intrinsic growth rate of healthy fish 0.9 /year [208]
L Environmental carrying capacity 5 metric tons [285]
f Disease transmission rate 0.04 /metric ton/year [286]
q1 Catchability coefficient of susceptible fish 0.8 /SFU/year [287]
µ Death rate of infected fish 0.05 /year [208]
q2 Catchability coefficient of infected fish 0.9 /SFU/year [287]
c Cost per unit of fishing effort 9 M$/SFU/year [288]
A Maximum demand 0.9 metric tons/year Assumed
A1 Demand sensitivity parameter 0.01 (metric tons)2/M$/year Assumed
A2 Demand sensitivity parameter 0.005 (metric tons)3/(M$)2/year Assumed
φ1 Stiffness parameter 0.1 SFU/M$ [208]
φ2 Proportionality constant 0.15 /metric ton [208]
τ Tax per unit biomass of harvested fish M$/metric ton Variable

∗ SFU stands for Standardized Fishing Unit [242, 243] and ∗∗ M$ indicates million USD.

4.3 Model analysis

4.3.1 Well-posedness of the system

The well-posedness of an ecological model can be justified by its positivity and boundedness
results. Following similar technique as presented in Chapter 2, Section 2.3, one can prove the
following lemma to show that the system (4.6) is positive and bounded.

Lemma 4.1. With the initial condition I = (S0, I0,H0,M0) ∈ R4,0
+ , the positivity and bound-

edness of the system (4.6) is guaranteed in GL , where GL = {(S, I,H,M) : 0 < (S + I) <

ι + ζ1, 0 < M < ι̂ + ζ2, 0 < X(S, I,H,M) < s4
s3
+ ζ , for any positive ζ1, ζ2, ζ}. Here ι =

max{S0 + I0,L}, s3 = min{ j
L ,q3,φ1q3ι} and s4 = j+φ2A.

4.3.2 Basic reproduction number

The basic reproduction number (BRN), defined by the number of secondary cases arising from
a single infected individual introduced into a group of susceptible individuals [289], is an es-
sential measure of disease dynamics. The success of a pathogen depends on the value of BRN,
R0. If R0 < 1, then the epidemic cannot grow, and the system eventually becomes disease-free
[290].
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The system (4.6) contains only one infection state, I. Let F and V , respectively, represent
the rate of appearance of new infection and the rate of transitions [290]. Then

F =
(

f SI
)

1×1 and V = (µI +q2IH)1×1.

At the infection-free equilibrium point E1 = (S1,0,H1,M1), the transmission matrix F̂ and the
transition matrix V̂ associated with system (4.6) are given by

F̂ =

[
∂F

∂ I

]
E1=(S1,0,H1,M1)

= f S1, and V̂ =

[
∂V

∂ I

]
E1=(S1,0,H1,M1)

= µ +q2H1.

Then

K = F̂V̂−1 =

(
f S1

µ +q2H1

)
1×1

,

where F̂V̂−1 is called the next generation matrix. The basic reproduction number (R0), which
is the spectral radius of the next generation matrix (K ) [291], is given by

R0 =
f S1

µ +q2H1
,

where H1 =
j

q1L(L− S1) and S1 is the equilibrium value of susceptible fish at the disease-free
state.

4.3.3 Equilibrium points

The equilibrium points of the system (4.6) are the solutions of the simultaneous equations

j(S+ I)
(

1− S+ I
L

)
− f SI −q1SH = 0,

f SI −µI −q2IH = 0,

φ1

((
q1S+q2I

)
(M− τ)− c

)
H = 0,

φ2M
(
A−A1M−A2M2 −q1SH −q2IH

)
= 0.

The system (4.6) has seven equilibrium points:

(i) The trivial equilibrium E0 = (0,0,0,0), which always exists.

(ii) The disease-free equilibrium E1 = (S1,0,H1,M1), where the equilibrium components are

H1 =
j

q1L
(L−S1), M1 = τ +

c
q1S1

,
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and S1 is the positive root of the equation

S4
1 +B1S3

1 +B2S2
1 +B3S1 +B4 = 0, (4.7)

where
B1 =−L < 0,B2 =

L
j

{
(A−A1τ −A2τ2)

}
,B3 =− Lc

jq1
(A1+A2τL)< 0,B4 =−A2c2L

jq2 < 0.

Since the number of sign change of the coefficients is exactly one under the restriction
A < A1τ +A2τ2, by Descartes’ rule of sign, Eq. (4.7) has exactly one positive root. Note
that H1 is always positive as S1 < L, and M1 is also positive. Thus, the disease-free
equilibrium point (E1) uniquely exists if A < A1τ +A2τ2.

(iii) The harvesting-free equilibrium has the form E2 = (S2, I2,0,M2), whose equilibrium

components are given by S2 =
µ

f , M2 =
1

2A2
(−A1+

√
A2

1 +4A1A2), and I2 =
1

2 j f

(
−(2 jµ+

jµ − j f L)+
√

(2 jµ + jµ − j f L)2 −4 j2µ(µ − f L)
)

. Since S2 and M2 are always posi-

tive, so E2 exists if I2 is positive and it holds whenever f L > µ .

(iv) The harvesting-and disease-free equilibrium E3 =(S3,0,0,M3) always exists, where S3 =

L > 0 and M3 =
1

2A2
(−A1 +

√
A2

1 +4A1A2) = M2 > 0.

(v) The healthy and infected fish only equilibrium E4 = (S4, I4,0,0), whose state variables at

the equilibrium level can be represented as S4 =
µ

f and I4 =
1

2 j f

(
−(2 jµ + jµ − j f L)+√

(2 jµ + jµ − j f L)2 −4 j2µ(µ − f L)
)
= I2. This equilibrium exists if f L > µ .

(vi) The only healthy fish equilibrium E5 = (S5,0,0,0) always exists with S5 = L.

(vii) The coexisting equilibrium E∗ = (S∗, I∗,H∗,M∗), and the corresponding equilibrium
components can be computed as

S∗ =
1
f

(
µ +q2H∗),

M∗ = τ +
c

q1
f

(
µ +q2H∗

)
+q2I∗

.

Observe that both S∗ and M∗ are positive. The other two equilibrium components I∗ and
H∗ are the positive roots of the equations

j
(

1
f

(
µ +q2H∗)+ I∗

)(
1−

1
f

(
µ +q2H∗)+ I∗

L

)
−
(
µ +q2H∗)(I∗− q1H∗

f

)
= 0,
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A−A1

[
τ +

c
q1
f

(
µ +q2H∗

)
+q2I∗

]
−A2

[
τ +

c
q1
f

(
µ +q2H∗

)
+q2I∗

]2

− (4.8)

q1

f

(
µ +q2H∗)H∗+q2I∗H∗ = 0.

Our computational results for the considered parameter values show that the equilibrium
E∗ is unique.

4.3.4 Stability of the equilibria

Under what parametric conditions an equilibrium state will be stable is essential for population
persistence and sustainable yield. The stability of an equilibrium point means whether the
system will return to the equilibrium point over time or not if the equilibrium point is perturbed.
One way of determining such stability is the linearization technique of the system around the
equilibrium point [258]. The Jacobian matrix of the system (4.6) at any arbitrary equilibrium
point Ê = (Ŝ, Î, Ĥ,M̂) reads

J(Ŝ, Î, Ĥ,M̂) =


a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 a34

a41 a42 a43 a44

 , (4.9)

where a11 = − f Î − Ĥq1 − j
(

2(Î+Ŝ)
L −1

)
, a12 = −Ŝ f − j

(
2(Î+Ŝ)

L −1
)
, a13 = −Ŝq1, a21 =

Î f , a22 = Ŝ f − µ − Ĥq2, a23 = −Îq2, a31 = Ĥφ1q1
(
M̂− τ

)
, a32 = Ĥφ1q2

(
M̂− τ

)
, a33 =

φ1
((

q1Ŝ+q2Î
)
(M̂− τ)− c

)
, a34 = φ1

(
ĤÎq2 + ĤŜq1

)
, a41 =−ĤM̂φ2q1, a42 =−ĤM̂φ2q2,

a43 = −M̂φ2
(
Îq2 + Ŝq1

)
, a44 = −φ2(A2M̂2 +A1M̂ −A+ ĤÎq2 + ĤŜq1)− M̂φ2

(
A1 +2A2M̂

)
.

One can then prove the following stability theorem.

Theorem 4.2. (i) The equilibrium points E0 = (0,0,0,0), E4 = (S4, I4,0,0), and E5 = (L,0,
0,0) are always unstable.

(ii) The disease-free equilibrium E1 = (S1,0,H1,M1) is locally asymptotically stable if the

conditions R0 < 1, C1 > 0, C3 > 0,and C1C2 −C3 > 0 are satisfied, otherwise it is un-

stable, where C1, C2 and C3 are given in (4.13).

(iii) If c > (I2q2 + S2q1)(M2 − τ) and 2(S2 + I2) > L, then the harvesting-free equilibrium

E2 = (S2, I2,0,M2) is locally asymptotically stable, and unstable otherwise.

(iv) Whenever the conditions µ > L f , c > Lq1 (M3 − τ) hold, the harvesting-and disease-

free equilibrium E3 = (S3,0,0,M3) remains locally asymptotically stable, and unstable

otherwise.
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(v) A set of necessary and sufficient conditions for the stability of the coexisting equilibrium

point E∗ = (S∗, I∗,H∗,M∗) is {C4 > 0,C6 > 0,C7 > 0,C4C5C6−(C2
6 +C2

4C7)> 0}, where

C4, C5, C6, and C7 are given in (4.17).

Proof. (i) The variational matrix (4.9) at the trivial equilibrium point E0 = (0,0,0,0) reads

JE0 =


j j 0 0
0 −µ 0 0
0 0 −cφ1 0
0 0 0 Aφ2

 . (4.10)

Since two eigenvalues ( j and Aφ2) of the Jacobian matrix (4.10) are positive, the equilibrium
point E0 is always unstable. Similarly, a positive eigenvalue of the form Aφ2 for both the
equilibrium points E4 = (S4, I4,0,0) and E5 = (L,0,0,0) makes them unstable.

(ii) At the disease-free equilibrium E1 = (S1,0,H1,M1), the variational matrix (4.9) reads

JE1 =


b11 b12 b13 0
0 b22 0 0

b31 b32 0 b34

b41 b42 b43 b44

 , (4.11)

where b11 = −S1 j
L , b12 = −S1 f − j

(
2S1
L −1

)
, b13 = −S1q1, b22 = S1 f − µ −H1q2, b31 =

H1φ1q1(M1 − τ),b32 =H1φ1q2(M1 − τ),b34 =H1S1φ1q1,b41 =−H1M1φ2q1,b42 =−H1M1φ2q2,

b43 =−M1S1φ2q1, b44 =−M1φ2(A1 +2A2M1).

Its one eigenvalue is S1 f − µ −H1q2, which is negative whenever the basic reproduction
number R0 < 1. The other three eigenvalues are the roots of the equation

λ
3 +C1λ

2 +C2λ +C3 = 0, (4.12)

where

C1 =−(b11 +b44), C2 =−b13 b31 +b11 b44 −b34 b43, (4.13)

C3 =−b13 b34 b41 +b13 b31 b44 +b11 b34 b43.

Following Routh-Hurwitz criterion [259], the necessary and sufficient conditions for all roots of
Eq. (4.12) to have negative real part are C1 > 0,C3 > 0,C1C2 −C3 > 0. Therefore, the disease-
free equilibrium E1 = (S1,0,H1,M1) is locally asymptotically stable under the condition R0 <

1, C1 > 0, C3 > 0,and C1C2 −C3 > 0.
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(iii) The Jacobian matrix at the harvesting-free equilibrium E2 = (S2, I2,0,M2) is

JE2 =



−I2 f − j
(

2(I2+S2)
L −1

)
−S2 f − j

(
2(I2+S2)

L −1
)

−S2 q1 0

I2 f 0 −I2 q2 0

0 0 φ1((I2q2 +S2q1) 0

(M2 − τ)− c)

0 0 −M2 φ2(I2 q2 −M2φ2(A1

+S2q1) +2A2 M2)


. (4.14)

Its two eigenvalues are −M2 φ2 (A1 +2A2 M2) < 0 and φ1 ((I2q2 +S2q1)(M2 − τ)− c). The
latter eigenvalue is negative provided c> (I2q2+S2q1)(M2 − τ), i.e., the cost per unit of fishing
effort greater than the corresponding earnings. The other two eigenvalues are the roots of the
equation

λ
2
1 +

(
I2 f + j

(
2(I2 +S2)

L
−1
))

λ1 +

(
S2 f + j

(
2(I2 +S2)

L
−1
))

I2 f = 0. (4.15)

Clearly, the roots of Eq.(4.15) will have negative real parts whenever 2(S2 + I2) > L. Thus,
the equilibrium point E2 = (S2, I2,0,M2) is locally asymptotically stable under the conditions
c > (I2q2 +S2q1)(M2 − τ), 2(S2 + I2)> L.

(iv) The characteristic equation corresponding to the Jacobian matrix (4.9) at the harvesting-
and disease-free equilibrium E3(S3,0,0,M3) can be written as

(λ3 + j){λ3 − (L f −µ)}{λ3 +φ1 (c−Lq1 (M3 − τ))}{λ3 +M3 φ2 (A1 +2A2 M3)}= 0. (4.16)

Therefore, the eigenvalues are − j, L f −µ, −φ1 (c−Lq1 (M3 − τ)) and −M3 φ2 (A1 +2A2 M3).
Clearly, two eigenvalues − j and −M3 φ2 (A1 +2A2 M3) are always negative. The negativity of
the remaining two is assured under the conditions µ > f L and c > Lq1 (M3 − τ). Recall that
the existence condition of equilibrium points E2 and E4 is µ < f L. Therefore, whenever the
equilibrium point E2 or E4 exists, the steady state E3 cannot be stable. The other condition
c > Lq1 (M3 − τ) tells that the fishing cannot be profitable whenever E3 is stable.

(v) Suppose an interior equilibrium E∗ = (S∗, I∗,H∗,M∗) of the system (4.6) exists. The
Jacobian matrix in this case is evaluated as

JE∗ =


c11 c12 c13 0
c21 0 c23 0
c31 c32 0 c34

c41 c42 c43 c44

 ,

where
c11 =−2 j(I∗+S∗)

L , c12 =−S∗ f − j
(

2(I∗+S∗)
L −1

)
, c13 =−S∗q1, c21 = I∗ f , c23 =−I∗q2, c31 =

H∗φ1q1(M∗− τ), c32 =H∗φ1q2(M∗− τ), c34 = φ1(H∗I∗q2 +H∗S∗q1), c41 =−H∗M∗φ2q1, c42
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=−H∗M∗φ2q2,c43 =−M∗φ2 (I∗q2 +S∗q1) , c44 =−M∗φ2(A1 +2A2M∗).

The corresponding characteristic equation reads

λ2
4 +C4λ2

3 +C5λ2
2 +C6λ2 +C7 = 0,

where

C4 = (−c11 − c44),

C5 = (c11 c44 − c13 c31 − c12 c21 − c23 c32 − c34 c43),

C6 =
(
c11 c23 c32 − c12 c23 c31 − c13 c21 c32 + c12 c21 c44 + c11 c34 c43 + c13 c31 c44 (4.17)

−c13 c34 c41 + c23 c32 c44 − c23 c34 c42
)
,

C7 = c11 c23 c34 c42 − c11 c23 c32 c44 + c12 c21 c34 c43 + c12 c23 c31 c44 − c12 c23 c34 c41

+c13 c21 c32 c44 − c13 c21 c34 c42.

Following Routh-Hurwitz criterion [259], a set of necessary and sufficient conditions for the
stability of the equilibrium point E∗ = (S∗, I∗,H∗,M∗) is

C4 > 0,C6 > 0,C7 > 0,C4C5C6 − (C2
6 +C2

4C7)> 0.

This completes the proof of the theorem.

4.3.5 Bifurcation analysis

Changes in the system dynamics for the variation of a system parameter may be well described
through its bifurcation results. Considering the fishing tax τ as the control parameter, we
investigate the occurrence of bifurcations in the system (4.6). One can prove the following
theorem for the existence of bifurcations.

Theorem 4.3. (i) The system (4.6) undergoes a transcritical bifurcation at the disease-free

equilibrium point E1(S1,0,H1,P1) if τ reaches the critical value τTC
1 , where τTC

1 is the

positive root of the equation

f S1(τ)−µ −q2H1(τ) = 0,

and the transversality condition f ̸= q2v3
v1

holds.

(ii) The system (4.6) undergoes a transcritical bifurcation at the harvesting-free equilibrium

point E2(S2, I2,0,P2) if τ arrives the threshold level τTC
2 , where

τ
TC
2 = M2 −

c
I2q2 +S2q1

,
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and the transversality condition τTC
2 ̸= M2 +

q1S2+q2I2
q1w1+q2w2

w4 holds.

Proof. (i) From (4.11), one can observe that the Jacobian matrix leaves a zero eigenvalue if

f S1(τ)−µ −q2H1(τ) = 0. (4.18)

Let τ = τTC
1 be a positive root of the Eq. (4.18). Then, at τTC

1 , the eigenvector corresponding
to the zero eigenvalue of JE1(S1,0,H1,M1) and JE1(S1,0,H1,M1)

T are

ζ =


v1

v2

v3

1

 and η =


0
1
0
0

 ,

where JE1(S1,0,H1,M1)
T is the transpose of JE1(S1,0,H1,M1) and

v1 = −b32v2 +b34

b31
,

v2 =
b13b34(b31b44 −b41b34)+b11b34b31b43

(b12b31 −b11b32)b31b43 −b13b31(b42b31 −b41b32)
,

v3 =
b11b34(b42b31 −b41b32)− (b12b31 −b11b32)(b31b44 −b41b34)

(b12b31 −b11b32)b31b43 −b13b31(b42b31 −b41b32)
.

Now the three conditions of Sotomayor’s theorem [119] for the existence of a degenerate tran-
scritical bifurcation at τ = τTC

1 are

η
T Rτ

(
E1(S1,0,H1,M1);τ = τ

TC
1

)
= 0,

η
T DRτ

(
E1(S1,0,H1,M1);τ = τ

TC
1

)
ζ = 0, (4.19)

η
T D2R

(
E1(S1,0,H1,M1);τ = τ

TC
1

)
(ζ ,ζ ) ̸= 0.

Here Rτ =

(
dF1
dτ

, dF2
dτ

, dF3
dτ

, dF4
dτ

)T

and DRτ

(
JE1(S1,0,H1,M1);τ = τTC

1

)
ζ is the linear trans-

formation formed by the matrix of partial derivatives of the components of Rτ with respect
to the state variables (S, I,H,M). Similarly, one can define the other linear transformation

D2R
(

JE1(S1,0,H1,M1);τ = τTC
1

)
(ζ ,ζ ). It is to be noted that the second condition of (4.19)

needs to be non-zero for the appearance of non-degenerate transcritical bifurcation [119].
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Now,

η
T Rτ

(
E1;τ = τ

TC
1

)
= (0 1 0 0)


0
0

φ1q1S1H1

0


τ=τTC

1

= 0,

η
T DRτ

(
E1;τ = τ

TC
1

)
ζ = η

T


0 0 0 0
0 0 0 0

φ1q1H1 φ1q1H1 φ1q1S1 0
0 0 0 0


τ=τTC

1

ζ

= 0,

η
T D2R

(
E1;τ = τ

TC
1

)
(ζ ,ζ ) = η

T


d11 d12 d13 0
d21 d22 d23 0
d31 d32 d33 d34

d41 d42 d43 d44


τ=τTC

1

ζ

= d21v1 +d22v2 +d23v3

= 2( f v1v2 −q2v2v3),

where
d11 = − f v2 − 2 j

L (v1 + v2)− q1v3, d12 = − f v1 − 2 j
L (v1 + v2), d13 = −q1v1, d21 = f v2, d22 =

f v1−q2v3, d23 =−q2v2, d31 = φ1q1((M1−τTC
1 )v3+H1), d32 = φ2q2((M1−τTC

1 )v3+H1), d33

= φ1{q1S1+(q1v1+q2v2)(M1−τTC
1 )}, d34 = φ1{q1S1v3+q1H1(v1+v2)}, d41 =−φ2q1(H1+

M1v3), d42 =−φ2q2(H1+M1v3), d43 =−φ2{M1(q1v1+q2v2)+S1q1(v3+1)}, d44 =−φ2{H1

(q1v1 +q2v2)+S1q1 +(2A1 +6A2M1)}.
Thus, following Sotomayars theorem [119], whenever the control parameter τ reaches the crit-
ical value τ = τTC

1 , a degenerate transcritical bifurcation point occurs if the condition f ̸= q2v3
v1

holds.
(ii) Proceeding similarly, one can show that the variational matrix (4.14), correspond-

ing to the harvesting effort-free equilibrium point E2(S2, I2,0,M2), gives a zero eigenvalue
at τ = M2 − c

I2q2+S2q1
= τTC

2 (say). In this case, the eigenvectors of JE2(S2, I2,0,M2) and
JE2(S2, I2,0,M2)

T , corresponding to the zero eigenvalue at τTC
2 , are

ζ̂ =


w1

w2

w3

w4

 and η̂ =


0
0
1
0

 ,
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where w1 = −q2
f , w2 =

q2

(
− f I2− j

(
2(S2+I2)

L −1
))

(A1+2A2M2)+ f (q1S2+q2I2)
(

f S2+ j
(

2(S2+I2)
L −1

))
q1 f φ2S2I2M2(A1+2A2M2)

, w3 =

1, w4 =
q1S2+q2I2
A1+2A2M2

.
Similar calculations show that there exists a degenerate transcritical bifurcation point at τ = τTC

2

if τTC
2 ̸= M2 +

q1S2+q2I2
q1w1+q2w2

w4.

4.3.6 Computational results

To visualize the previous bifurcations, and the in-between stabilities, we have presented a bifur-
cation diagram in Fig. 4.1 with the variations in τ . It shows three distinct dynamic behaviours
of the system when the tax is varied in some stipulated range 0 < τ < 11.

Figure 4.1: Bifurcation results of the system (4.6) when the tax, τ , is varied in the range 0< τ <
11. We have plotted the maxima and minima of each state variables for each value of τ . This tax
range is classified into three categories, low, intermediate and high, depending on the system’s
stabilities. The disease-free equilibrium (E1) is stable when the tax is low (0 < τ < 5.42). The
coexisting equilibrium (E∗) is stable in the intermediate tax, 5.42 < τ < 10.32. The harvesting-
free equilibrium (E2) is stable if the tax is high (τ > 10.32). Parameters are as in Table 4.1.

Solving Eq. (4.18), one gets the unique root as τ = τTC
1 = 5.42. At this critical value, the

eigenvector ζ = (v1,v2,v3,1)T becomes (26.30,−24.65,0.01,1)T and therefore the transver-
sality condition of Theorem 4.3(i) is satisfied as f = 0.04 ̸= qv3

v1
= 0.0004. Therefore, a tran-

scritical bifurcation arises at τ = τTC
1 = 5.42, following Theorem 4.3(i), where the disease-

free equilibrium E1 coalesces with the coexisting equilibrium E∗ and exchanges their stabil-
ity (see Fig. 4.1). At τ = τTC

2 = M2 − c
I2q2+S2q1

= 10.32, one can obtain the eigenvector as
ζ̂ = (w1,w2,w3,w4)

T = (−22.50,0.83,1,31.12)T . Also the transversality condition of Theo-
rem 4.3(ii) is satisfied as τTC

2 = 10.32 ̸= M2 +
q1S2+q2I2

q1w1+q2w2
w4 = 4.90. Therefore, following The-

orem 4.3(ii), another shift of stability through a transcritical bifurcation occurs at τ = 10.32,



100
Chapter 4. Dynamic behaviour of a single-species nonlinear fishery model with

infection: The role of fishing tax and time-dependent market price

where the coexisting equilibrium E∗ and the harvesting-free equilibrium (E2) met. Notice that
the market price (M) increases as the tax increases, while the harvesting effort (H) steadily
decreases in the same range 0 < τ < 10.32. The disease is established through the appear-
ance of the I population as the imposed tax exceeds the first transcritical value τTC

1 = 5.42.
The infected fish population increases rapidly for further increase in τ , while a gradual decline
occurs in the healthy fish population. As the regulatory tax crosses the higher transcritical
value τTC

2 = 10.32, harvesting effort declines to zero. Thus, there exist three different dynamic
regimes for the variation in τ: (i) the system remains disease-free for low tax (0 < τ < 5.42),
(ii) the disease persists when tax is intermediate (5.42 < τ < 10.32), and (iii) harvesting is not
possible if the imposed tax is high (τ > 10.32). The harvesting-and disease-free equilibrium,
E3, does not appear in the bifurcation analysis results because it is always unstable whenever
the equilibrium point E2 or E4 exists.

Figure 4.2: Time evolutions of the system (4.6) for some particular values of τ taken one
from each region (see Fig. 4.1). (a) Stable behaviour of the infection-free equilibrium E1 =
(4.02,0,0.21,5.29) for τ = 2.5. (b) The endemic equilibrium E∗ = (4.10,0.31,0.12,8.52) is
stable for τ = 6. (c) For τ = 10.35, harvesting effort becomes zero and the system stabilizes
to the harvesting-free equilibrium E2 = (1.25,3.54,0,12.45). In each case, the system started
from the initial value (0.5,0.1,0.5,2). Parameters are as in Table 4.1.

The time series solutions (Fig. 4.2) of the system for three particular values of τ show
the representative behaviour of the state variables for all τ in the considered range. At the
lower value of the regulating tax (say τ = 2.5) the required conditions of Theorem 4.2(ii) are
satisfied as C1 = 0.91 > 0,C3 = 0.16 > 0, C1C2 −C3 = 0.28 > 0. Here, the basic reproduction
number is R0 = 0.65 < 1. Therefore, the system stabilizes to the disease-free equilibrium
E1 = (4.02,0,0.21,5.29) (Fig. 4.2a). Healthy fish stock in this state is high, at 4.02 units.
Consequently, the price remains low (M = 5.29 units), and harvesting effort is high (H =

0.21 units) due to the availability of the fish stock. Intense harvesting reduces the infected
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fish, causing the elimination of infection from the system when the tax is low. If the imposed
tax is moderate, say τ = 6, the system converges to the endemic state E∗, by satisfying the
set of necessary and sufficient conditions of Theorem 4.2(v) as C4 = 0.91 > 0,C6 = 0.17 >

0,C7 = 0.002 > 0,C4C5C6 − (C2
6 +C2

4C7) = 0.03 > 0. This gives the stable solutions of all the
state variables with equilibrium population levels S∗ = 4.10, I∗ = 0.31,H∗ = 0.12,M∗ = 8.52
(Fig. 4.2b). The infected fish can persist in the intermediate range of 5.42 < τ < 10.32. This
is reasonable because increasing tax reduces harvesting and causes a compensatory increase in
infected fish, which helps infection invade the host population. The total fish stock (S∗+ I∗)
at E∗ increases to 4.41 units from 4.02 units compared to the previous state. For higher tax,
say τ = 10.35 (> 10.32), the local stability condition given in Theorem 4.2(iii) becomes c−
(I2q2 + S2q1)(M − τ) = 0.21 > 0 and 2(S2 + I2)−L = 4 > 0. Therefore, following Theorem
4.2(iii), the system converges to the harvesting-free equilibrium state E2 =(1.25,3.54,0,12.45)
(Fig. 4.2c), where each state variable has positive value except the fishing effort, which is zero.
Observe that the fish market price in this state becomes too high (M = 12.45 units) for an
imbalance in the demand and supply. Interestingly, even though the available fish stock is
maximum (S2 + I2 = 4.795 units) in this case, the demand diminishes to zero due to the high
market price (see Fig. 4.1d). Thus, there is a regime shift as τ crosses the upper transcritical
value, where the system enters into a non-harvesting regime from the harvesting regime due
to excessive fishing tax. Fishers opt out of fishing as harvesting is not economically viable at
a higher tax (τ > 10.32). Therefore, it is necessary to control the tax parameter sustainably,
and the challenge for the regulating agency is to optimize this parameter for sustainable socio-
economic benefits.

4.4 Optimal taxation policy

Here we explore the trade-off between the regulatory tax and the societal net benefit. The
societal benefit (say, Θ) is defined here as the sum of net revenue from fish selling (say, Θ1)
and the income earned from the fishing tax (say, Θ2), where

Θ1(S, I,H,M,τ) = landed fish × (market price minus fishing tax)

= H(q1S+q2I)(M− τ), (4.20)

Θ2(S, I,H,M,τ) = landed fish × fishing tax

= H(q1S+q2I)τ, (4.21)
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and

Θ(S, I,H,M,τ) = Revenue from fishing (Θ1)+Revenue from tax (Θ2)

= (q1MS+q2MI)H. (4.22)

We find whether there exists an optimal value of the imposed tax so that the societal benefit is
maximum. To maximize the societal benefit, the optimal taxation problem may be defined as

ℑ =
∫

∞

0
Θ(S, I,H,M,τ)e−δ tdt, (4.23)

where δ indicates the annual discount rate and Θ is defined in Eq. (4.22). The control variable
τ is subject to the constraints 0 ≤ τ < τmax, where τmax denote the upper limits of the imposed
tax. By virtue of the Pontryagin’s maximum principle [292], one can write the Hamiltonian of
the system as

ϒ(S, I,H,M,τ) = H(q1MS+q2MI)e−δ t +ξ1

[
j(S+ I)

(
1− S+ I

L

)
− f SI −q1SH

]
+

ξ2

[
f SI −µI −q2IH

]
+ξ3

[
φ1
(
(q1S+q2I)(M− τ)− c

)
H
]
+ (4.24)

ξ4

[
φ2M

(
A−A1M−A2M2 −q1SH −q2IH

)]
,

subject to the system (4.6), where ξ1,ξ2,ξ3 and ξ4 are the adjoint variables. The optimal control
variable τ has to satisfy the following conditions to maximize ϒ [293]:

∂ϒ

∂τ
= 0,

dξ1

dt
=−∂ϒ

∂S
,

dξ2

dt
=−∂ϒ

∂ I
,

dξ3

dt
=− ∂ϒ

∂H
,

dξ4

dt
=− ∂ϒ

∂M
. (4.25)

At any arbitrary equilibrium point (Ŝ, Î, Ĥ,M̂), ∂ϒ

∂τ
= 0 gives ξ3φ1

(
−q1Ŝ−q2Î

)
Ĥ = 0. For the

nontrivial solution, one must have

ξ3 = 0. (4.26)

Again, dξ4
dt =−

[
∂ϒ

∂M

]
(Ŝ,Î,Ĥ,M̂)

gives

dξ4

dt
= D2e−δ t +D1ξ4, (4.27)

where D1 =−φ2
{

A−2A1M̂−3A2M̂2 −q1ŜĤ −q2ÎĤ
}

and D2 =−
{

q1ŜĤ +q2ÎĤ
}

.
Solving (4.27), one gets

ξ4 =− D2

D1 +δ
e−δ t . (4.28)
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Also, dξ3
dt =−

[
∂ϒ

∂H

]
(Ŝ,Î,Ĥ,M̂)

provides

ξ1 = F1e−δ t −F2ξ2,

where F1 =
(
q1Ŝ+q2Î

)(
M̂+ D2φ2M̂

D1+δ

)
1

q1Ŝ
and F2 =

q2 Î
q1Ŝ

.

Putting the value of ξ1 in dξ2
dt =−

[
∂ϒ

∂ I

]
(Ŝ,Î,Ĥ,M̂)

, one gets

ξ2 = − D4

D3 +δ
e−δ t , and consequently

ξ1 =

{
F1 +

D4F2

D3 +δ

}
e−δ t ,

where D3 = F2

(
j
(
1− 2(Ŝ+Î)

L

)
− f Ŝ

)
− f Ŝ+µ +q2Ĥ, and D4 =−q2ĤM̂−F1

(
j
(
1− 2(Ŝ+Î)

L

)
−

f Ŝ
)
− q2φ2D2ĤM̂

(D1+δ ) .

Observe that each of these adjoint variables (ξ1, ξ2, ξ3, ξ4) is bounded. Substituting the
values of these adjoint variables in dξ1

dt =−
[

∂ϒ

∂S

]
(Ŝ,Î,Ĥ,M̂)

, one gets the optimal tax equation as

Γ(τ) = q1M̂Ĥ +

(
j
(
1− 2(Ŝ+ Î)

L

)
− f Î −q1Ĥ −δ

)(
F1 +

D4F2

D3 +δ

)
− D4 f Î

D3 +δ
+

D2φ2q1ĤM̂
(D1 +δ )

= 0 (4.29)

for a suitable choice of the annual discount rate, δ . The positive values of τ for which Γ(τ) = 0
are the possible optimal candidates. The optimal value τ = τc is the value for which Θ is
maximum. If there are i number of equilibrium points with non-zero harvesting value, we will
obtain i number of critical τc’s. Then the optimal societal revenue, Θmax, is given by

Θ
max = max

i
Θ(S, I,H,M,τc

i ). (4.30)

To compute the optimum tax level and the corresponding societal revenue Θ(S, I,H,M,τ)

for the parameter values considered in Table 4.1 with an annual discount rate δ = 0.001, we
solve Eq. (4.29) at the disease-free and endemic equilibrium points, where harvesting has non-
zero equilibrium value. We obtain two optimal values of τ , namely, τc

1 = 4.44M$/metric ton
at the infection-free equilibrium state, and τc

2 = 9.22 M$/metric ton at the endemic equilib-
rium state (See Fig. 4.3a). The societal benefit or the net revenue at these two optimal tax
values are computed from (4.22) as Θ(τc

1) = 4.096 M$/year and Θ(τc
2) = 1.478M$/year. Thus,

the maximum net revenue is Θmax = max(4.09,1.478) = 4.09M$/year and the optimal tax is
τc

1 = 4.44M$/metric ton, which is obtained at the disease-free equilibrium state, E1. Following
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similar calculations, one can get the optimal equation for the fishing tax revenue Θ2 as

Γ1(τ) =
1

q1Ŝ

{
−δ + j

{
1− 2(Ŝ+ Î)

L

}
− f Î −q1Ĥ

}{
D6q2Î
D5 +δ

+(q1Ŝ+q2Î)M̂− c− δ

φ1
+

D2

D1 +δ

}
+q1τĤ − D6 f Î

D5 +δ
+q1(M̂− τ)Ĥ +

D2τĤ
D1 +δ

= 0, (4.31)

where

D5 =
q2Î
q1Ŝ

{
j
(

1− 2(Ŝ+ Î)
L

)
− f Ŝ

}
+µ − f Ŝ+q2Ĥ,

D6 = −q2τĤ −
{
(q1Ŝ+q2Î)M̂− c− δ

φ1
+

D2

D1 +δ

}{
j
(

1− 2(Ŝ+ Î)
L

)
− f Ŝ

}
−

D2φ2q2M̂Ĥ
D1 +δ

.

The solution of Eq. (4.31) provides the optimal value of τ as τc1
Θ2

= 1 M$/metric ton and

Figure 4.3: (a) Plot of the optimal tax equation (4.29) for Θ with respect to τ . It shows that there
are two optimal values of τ , viz., τc

1 = 4.44 and τc
2 = 9.22, for which Γ(τ) = 0. (b) Similar plot

of (4.31) for Θ2 shows that there exists two optimal values of τ , viz., τc1
Θ2

= 1 and τc2
Θ2

= 5.68.
Here the annual discount rate is δ = 0.001, and the other parameters are as in Table 4.1.

τc2
Θ2

= 5.68 M$/metric ton (See Fig. 4.3b). The earnings from fishing tax at these two optimal
tax values are computed from Eq. (4.21) as Θ2(τ

c1
Θ2
) = 0.78 M$/year and Θ2(τ

c2
Θ2
) = 2.717

M$/year. Thus, the maximum fishing tax revenue is Θmax
2 = 2.717 M$/year and the optimal tax

is τc2
Θ2

= 5.68M$/metric ton, which is obtained at the endemic equilibrium state, E∗. It is worth
mentioning that the fisherman revenue (Θ1) is a decreasing tax function, and it is maximum
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when τ = 0. In Table 4.2, we have presented the equilibrium values of the state variables and the
revenues at equilibrium points E1 and E∗ for some particular discounts of τ . It shows that the
societal income is maximum (Θ = 4.096) when τ = 4.44. Fishermen’s earnings from selling
fish are maximum (Θ1 = 2.453) when τ = 0 and the revenue from the fishing tax is maximum
(Θ2 = 2.717) when τ = 5.68. It is interesting to note that the total equilibrium fish stock (Ŝ+ Î)

is maximum (4.795) in the endemic state; however, the maximum societal revenue (4.096) is
generated at the disease-free equilibrium state for the optimal tax τ = 4.44.

Table 4.2: This table evaluates the societal revenue Θ(Ŝ, Î, Ĥ,M̂), fisherman’s revenue
Θ1(Ŝ, Î, Ĥ,M̂), and tax revenue Θ2(Ŝ, Î, Ĥ,M̂) at the equilibrium states E1 and E∗, where
harvesting is possible, for some particular values of fishing tax with an annual discount rate
δ = 0.001. Observe that societal revenue is maximum (4.096 M$/year) in the disease-free state
(where Î = 0) for τ = 4.44 M$/metric ton. Tax revenue is maximum (2.717 M$/year) in the
endemic state for τ = 5.68 M$/metric ton. Fishers’ revenue is maximum (2.453 M$/year) when
there is no fishing tax and gradually declines with increasing τ . The optimum values are written
in boldface. The parameters are as in Fig. 4.3.

τ Ŝ Î Ŝ+ Î Ĥ M̂ Θ1 Θ2 Θ = Θ1 +Θ2
(M$/MT∗) (MT) (MT) (MT) (SFU) (M$/MT) (M$/year) (M$/year) (M$/year)
0 3.789 0 3.789 0.273 2.970 2.453 0 2.453
2.5 4.024 0 4.024 0.2195 5.296 1.976 1.767 3.743
4.44 4.244 0 4.244 0.1701 7.091 1.531 2.565 4.096
5 4.3123 0 4.3123 0.1549 7.609 1.394 2.672 4.066
5.07 4.320 0 4.320 0.153 7.674 1.377 2.681 4.058
5.68 4.305 0.0839 4.3889 0.1359 8.237 1.22 2.717 3.941
6 4.101 0.3118 4.4128 0.1267 8.527 1.140 2.707 3.847
8 2.780 1.791 4.571 0.0685 10.345 0.6132 2.0918 2.705
9.22 1.971 2.715 4.686 0.0321 11.459 0.289 1.189 1.478
10.32 1.250 3.545 4.795 0 12.454 0 0 0

∗MT stands for metric ton.

The equilibrium revenue curves for varying taxes are plotted in Fig. 4.4. It shows that the
fisherman’s revenue (Θ1) is maximum when there is no fishing tax. Here the societal benefit (Θ)
coincided with the fishers’ earnings. Otherwise, societal benefits exceed the fishers’ incomes
for the feasible range of τ . The societal benefit is always higher from the generated revenue
from the fishing tax (Θ1) in the same range. It is observable that the societal revenue gradually
increases with τ and becomes maximum in the disease-free state for τ = 4.44, and after that,
it decreases to zero. Whereas the tax revenue increases till τ = 5.68 and then declines to zero.
The maximum tax earned at τ = 5.68 when disease persists in the system. These results show
the existence of a trade-off between the revenue earnings and the imposed tax.
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Figure 4.4: Equilibrium revenue curves are plotted against the tax. The societal revenue (Θ(τ))
is maximum at τc

1 = 4.44 M$/metric ton, and the corresponding maximum revenue is 4.096
M$/year. The maximum revenue generated from the imposed tax (Θ2(τ)) is obtained at the
optimal tax τc

Θ2
= 5.68 M$/metric ton, and the corresponding tax revenue is 2.717 M$/year. At

τ = 0, the fishers’ revenue is maximum, and the corresponding earning is 2.453 M$/year. Here
the annual discount rate is δ = 0.001, and the other parameters are as in Table 4.1.

4.4.1 Sensitivity analysis

We estimated the changes (see Table 4.3) in the optimal societal revenue due to the changes
in the parameter values. Table 4.3 shows only those parameters out of 13 parameters in the
Table 4.1 which bring significant change in the result. While determining the sensitivity of
a parameter, all other parameters remain fixed as in Table 4.1 with τ = 4.44 M$/metric ton
at which societal revenue is maximum (4.096 M$/year). This table shows that the maximal
demand A is the most sensitive parameter. If the parameter A is enhanced by 50% or 25%
from its default value 0.9 (see Table 4.1), then the optimal societal revenue will be increased
by 83.86% or 40.18%, respectively. On the contrary, if it is decreased by 50% or 25%, the
societal revenue decreases by 76.07% or 37.95%, respectively. It is observable that the stability
region interchanges between disease-free and endemic states with the variation of most of the
parameters. However, the scenario is completely different with the variation of j and A1, where
the stability region always remains disease-free. It is interesting to observe that the optimal
societal revenue always decreases from its default value with any increment or decrement of
the parameter τ . This implies that the value of τ (4.44 M$/metric ton) is optimal and the
corresponding societal revenue (4.096 M$/year) is also optimal.
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Table 4.3: Effect on optimal societal revenue due to the change in the key parameters and the
corresponding changes in the stability state. The seven parameters are varied 25 or 50 per cent
upside or downside from their default values mentioned in Table 4.1, and the corresponding
changes in the optimal societal revenue are tabulated. Here a “+ ” sign indicates a shift in the
upside, and a “− ” sign suggests a change in the downside.

Parameters Changes in Changes Stability
parameters (%) in Θ (%) region

+50 83.86 Disease-free
A −50 −76.07 Endemic

+25 40.18 Disease-free
−25 −37.95 Endemic
+50 −20.81 Endemic

A2 −50 22.85 Disease-free
+25 −10.65 Disease-free
−25 11.19 Disease-free
+50 −2.91 Disease-free

L −50 −24.00 Endemic
+25 −1.07 Disease-free
−25 −2.84 Endemic
+50 −0.08 Disease-free

j −50 −1.79 Disease-free
+25 −0.13 Disease-free
−25 −0.03 Disease-free
+50 −6.09 Disease-free

A1 −50 6.21 Disease-free
+25 −3.06 Disease-free
−25 3.09 Disease-free
+50 −4.001 Endemic

c −50 −4.47 Disease-free
+25 −0.999 Disease-free
−25 −1.13 Disease-free
+50 −12.59 Endemic

τ −50 −11.11 Disease-free
+25 −3.03 Endemic
−25 −2.96 Disease-free

4.5 Discussion

The fishery has become one of the significant subsistences across the globe. According to
the 2021 report of the Food and Agriculture Organization (FAO), about 38.98 million people
are engaged in fisheries [294], justifying why most fisheries are under stress. Some governing
agencies try to restrict harvesting by imposing a tax per unit of biomass of landed fish. Although
taxation controls overfishing, an irrational tax policy may negatively affect fishery dynamics
and revenue generation. It may help increase fishery-related infection and drastically reduce
the amount of landed fish, causing a significant difference between the demand and supply of
this globally accepted food item. A pronounced effect of this imbalance is the price hike of the
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fish stock, which may directly impact the fishery & related industries and employability. So
the question is – how much taxation benefits a fishery in the presence of infection? Does there
exist any trade-off? How does the intricacy of demand, tax, and disease play a role in fishery
dynamics and revenue generation? We proposed a nonlinear bioeconomic harvesting model of
a single-species fishery with infection, variable market price, and nonlinear demand to answer
these questions and explore taxation’s ecological and economic effects. To our knowledge, such
a theoretical investigation is rare in the literature. We have considered a nonlinear quadratic
market demand to represent the demand-price relation. Such a quadratic demand may be a
more suitable demand function, compared to constant [295], linear [142], and saturated [223]
types functions, when the demand of a particular commodity decreases sharply if its price is
high.

Our system has seven equilibrium points, of which three are always unstable, and the re-
maining four may be stable or unstable depending on the parametric conditions. The bifurcation
analysis for the tax parameter classified the system stability into three distinct dynamic regimes.
It is revealed that the system remains disease-free if the regulatory tax is low, which promotes
intensive harvesting. Such intense harvesting reduces the infected fish, causing the elimination
of infection from the system. A reduction in the harvesting efforts due to increased tax helps
the infection spread, and the disease can invade the fish population for an extended range of
intermediate tax. Healthy fish density gradually decreases in this case with a complementary
increase in the infected fish density. Since fish harvesting is relatively low in the medium range
of tax, its supply reduces significantly, increasing the difference between demand and supply
with the growing tax. Therefore, the fish price steadily increases following the open market
theory. As the market price becomes too high, the demand gradually diminishes to zero (see
Fig. 4.5).

Figure 4.5: Quadratic demand curve D(M) = A−A1 −A2M2 is plotted as a function of price,
M, in the range 0 ≤ M ≤ 12.45. The upper value of M is fixed from Fig. 4.2(c), where the
harvesting-free equilibrium E2 is stable. It shows that demand decreases from its maximum
when the price is zero to its minimum when it is high. The parameters are as in Table 4.1.
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Thus, the fisheries experience a tax-induced functioning instability at the higher level of
fishing tax. In such a case, fishing is no more economically viable, and the fishers opt out of
fisheries due to a lack of demand and high fishing tax. The ecological and economic effect
of such a non-harvesting regime shift is immense. Such a shift from a harvesting regime to a
non-harvesting regime is not due to the scarcity of harvested stock but the need for better gov-
ernance. Therefore, it is necessary to control the tax parameter sustainably, and the challenge
for the regulatory agency is to optimize this parameter for maximal socio-economic benefits.

It is worth mentioning that the fisherman’s income will be maximum if they do not pay
any fishing tax. Indeed, their earnings will gradually decrease with the increasing tax. On
the other hand, the regulatory authority earns more revenue by charging a higher fishing tax.
Imposing a tax is beneficial because it controls harvesting and saves fishery from overexploita-
tion. Secondly, the regulatory authority may use the tax revenue for various welfare measures
for the people associated with the fishery, marine ecosystem, coastal management, and related
value chains for sustainable development and economic prosperity. Therefore, an effective
regulatory taxation policy may play a crucial role in the sustainable use of fisheries through
a win-win solution. A low tax may help make the system infection-free, while infection may
persist if the tax is high. A higher regulatory tax, however, may put an end to harvesting. It
implies that there exists a trade-off. Consequently, an optimal taxation policy is necessary to
make a balance among the harvesting intensity, infection spreading, market demand & supply,
and revenue earnings.

It is revealed that some optimum tax exists, where the societal income is maximum and
occurs at the disease-free state for some lower optimal tax. However, the regulatory authority
earns the maximum revenue for some higher optimal tax in the disease state. Fishers’ income
is maximized with no tax and steadily decreases to zero with increasing tax. Noticeably, the
gap between demand and supply of fish widens with the increasing tax, causing a steady price
increase in this globally accepted renewable food item. Thus, the higher regulatory tax causes
an imbalance in the fish supply and price, which may severely impact fishery, fishery-related
industries, and employability. Therefore, there should be an optimal tax policy for which the
fishery sustains and maximizes societal revenue. The future of fishing thus depends on many
interconnected factors, including infection control, ecosystem management, maintaining the
demand-supply chain, and implementing a justifiable regulatory taxation policy through good
governance. Indeed, this will help put a step forward in achieving the sustainable development
goals by 2030 as set by the United Nations.

In recent decades, climate change has triggered significant regime shifts in various oceanic
indices [296, 297]. While the predominant cause of this shift in the fishery is attributed to
overfishing [135, 136], there is growing evidence linking it to climate change as well [137,
138]. In the forthcoming chapter, our investigation aims to explore the possibility of additional
factors contributing to the regime shift in the fishery, which have not been addressed in previous
studies.





5
Demand-induced regime shift in fishery: A

mathematical perspective1

5.1 Introduction

A regime shift is a change in the average value of a particular data series within a year to a
decadal scale [131]. A more recent definition of regime shift is defined as a large, abrupt, and
persistent change in the system behaviour that causes significant impacts on human well-being
[132, 133]. In the case of fisheries, regime shift means a change in the harvested species due
to a change in the non-harvested species [134]. For example, different driving forces, like
eutrophication, pollution, climate change, etc., may alter the distribution of biotic and abiotic
factors, which may cause a difference in the spatial distribution of planktonic invertebrates.
Therefore, a regime shift due to the change in plankton distribution may occur in the economic
species [134]. A regime shift in many oceanic indices due to climate change has been identified
in the last three decades [296, 297]. Though overfishing is the primary reason for a regime shift
in the fishery [135, 136], climate change has a close association with it [137, 138]. In this
chapter, we demonstrate a different reason for the regime shift in fishery, not reported earlier
to the best of our knowledge. We show that high demand for fish may cause a regime shift in
a fishery in a shorter time. Therefore, economic theory should be a part of the current fishery
management policy.

1The bulk of this chapter has been published in Mathematical Biosciences,
DOI:https://doi.org/10.1016/j.mbs.2023.109008, (2023).
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Modern fishery management faces multi-factorial challenges. For example, on the one
hand, they plan for long-term sustainable fish production while maintaining the aquatic ecosys-
tem’s health. On the other hand, plans for the amount of harvested fish biomass to be harvested
to meet the market demand. The per capita consumption rose to 20.2 kg compared to 9.9 kg
in the 1960s, and the target is to increase it to 21.4 kg by 2030 [95]. The fish demand to meet
the protein and amino-acids supply for the world’s growing population is expected further to
aggravate the existing over-harvesting problems of fishery and aquaculture. Therefore, a new
challenge for the fishery management policy is to monitor the market demand for fishery items
and make the production target accordingly. Keeping the price of fish and fishery products af-
fordable is challenging for the management authorities. Price control is more critical in the case
of developing and underdeveloped countries to ensure the food supply. Different studies con-
sider that there exists an inverse relation between fish price and available fish stocks [96, 97].
Remarkably, the cost of high-valued fish in the UK market varies significantly with the landed
fish quantity [98]. There is a significant difference in the market price of highly demanded
Hilsa fish (Tenualosa ilisha) in South Asian countries due to the variation in the availability
of the fish [298]. Therefore, dynamic price monitoring depending on the instantaneous supply
and demand of fish may provide insights for the better benefit of society.

There are many pieces of evidence of fish extinction due to overharvesting [15, 16, 17]. A
fifteen years tenure of commercial harvesting reduces the community biomass of fishes by over
80% [299]. Undoubtedly, the disappearance of commercial fish has a profound direct impact
on livelihood and national income. However, their indirect effect is more severe and rarely ac-
counted for [25]. Fish species are not isolated. Instead, they are interconnected with the other
species of the aquatic ecosystem. A gradual reduction of fish species may alter the energy flow
of the food chain. Many harvested fishes are intermediate predators. They feed on zooplank-
ton but are predated by larger fish. Thus, both the top-down and bottom-up cascading effects
are observed due to overfishing [25, 26], causing reduced ecosystem services. Therefore, the
regulatory authority should take appropriate strategies to reduce the harvesting effort and min-
imize its impact on the ecosystem services. Some popular and practical approaches to reduce
harvesting pressure are to levy a tax on the landed fish [30], put a tax on the fishing vessels
[31], fix a fishing quota [32] and fishing days [33]. In this chapter, we only consider the tax on
landed fish as the controlling measure.

Another concern of fishery management is the infectious disease caused by a virus, bacteria,
protists, and metazoans [55, 149]. Such contagious diseases cause a significant economic loss
in fishery either by reducing the biological productivity of the diseased fish and/or by lowering
the commercial value of the infected fish [149, 160]. White spot syndrome virus (WSSV) is
a predominant infectious disease in shrimp. Since 1992, this disease has devastated shrimp
production and related industries in many countries, like Thailand [161], Ecuador [162], India
[163], Iran [164] and USA [165]. This virus spreads rapidly from one infected shrimp to
another susceptible shrimp and can kill them within seven to ten days [166, 167]. Thus, the
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infected shrimps have no chance to reproduce but to die. The economic loss due to WSSV in
the last two-three decades has been reported to be huge. During 2010-2016, Thailand reported
a financial loss of 11.58 B$ and working days loss of 0.1 million [168]. India reported 250 M$
loss due to WSSV in 2006-2008, along with 2.15 million man-days employment loss [163].
Shrimp production in Bangladesh dropped to 18,630 tonnes in 1998 from 25,742 tonnes in
1997, causing a significant economic loss [169]. The income from shrimp export drastically
reduced in Iran due to this viral infection. The frozen shrimp export of Iran declined to 2,290
tonnes in 2007 compared to 7,680 tonnes in 2004, causing a reduction in income from 32.8 M$
in 2004 to 8.7 M$ in 2007 [164].

Many bioeconomic models consider that the harvesting effort follows a catch per unit ef-
fort (CPUE) hypothesizes [139, 181, 140]. However, the CPUE type harvesting has several
abridgments, such as the harvesting rate becoming infinite as the harvested stock is infinite or
the effort is infinite. This is quite unrealistic from the applicability and theoretical viewpoints
[179, 142, 182]. Recently, Moussaoui and Auger [142] proposed a bioeconomic fishery model
considering a nonlinear saturated type harvesting effort. According to classical economic the-
ory [99], an essential commercial factor in any bioeconomic study is maintaining the balance
between the landed biomass and market demand. Although most studies considered linear de-
mand function [142, 175, 208], it is well-known that nonlinear demand provides a better market
scenario than the former [184, 185]. Here, we consider such nonlinear saturated type demand
to integrate the dynamic price of fish with its instantaneous demand and supply. We analyze a
four-dimensional bioeconomic model taking into consideration all these aspects. The objective
is to decipher the consequences of a single-species fishery model in the presence of infection,
nonlinear saturated harvesting rate, fishing tax, and market demand. How increasing demand
may cause a regime shift in the fish and fishery is the most crucial objective of this work.

The subsequent chapter consists of the following sections in sequential order. The imme-
diate next section describes the bioeconomic model formulation for a single-species fishery.
Analytical results of the model, like well-posedness, basic reproduction number, and equilib-
rium points & their stability analysis, are presented in Section 5.3. The optimal fishing tax
analysis is given in Section 5.4. Section 5.5 contains the simulation results, including one and
two-parameter bifurcation results. Furthermore, the price-induced regime shift of the system is
discussed here. Section 5.6 sums up the entire chapter.
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5.2 The model

In Chapter 3, we explored the dynamical behaviour of the following single-species bioeco-
nomic fishery model in the presence of infection:

dX
dt

= rX
(

1− X +Y
K

)
−λXY −Q1(X ,H),

dY
dt

= λXY −µY −Q2(Y,H),

dH
dt

= φ1

{
P(q1X +q2Y )H − cH

}
, (5.1)

dP
dt

= φ2

{
D(P)− (q1X +q2Y )H

}
,

where X & Y are the densities of susceptible and infected fishes, and H & P are the harvesting
effort and market price of fish at time t. This model says that fish species are classified into two
classes, susceptible fish and infected fish when the disease invades the fish population. Disease
spreads through contact following mass action law with λ as the transmission rate. Infected
fish cannot give birth and does not recover. The death (natural plus virulence) of infected fish
occurs at an exponential rate with a rate constant µ . Under the same effort, H, the harvesting
rate of healthy fish (Q1(X ,H)) and infected fish (Q2(Y,H)) are

Q1(X ,H) = q1XH, Q2(Y,H) = q2Y H,

where q1 and q2 are the catchability coefficients of susceptible and infected fishes, respectively.
Harvesting effort at any time is proportional to the profit margin (selling price − cost of fishing),
and the corresponding instantaneous price change is proportional to the difference between the
demand and supply of fish. The demand decreases linearly with the price as D(P) = A−αP,
where A is the maximum demand and α is the demand decreasing rate. The parameters φ1,φ2

are proportionality constant.
We mentioned its several drawbacks that should be addressed in the future study. For exam-

ple, this model considers that fish harvesting follows the CPUE hypothesis, which states that
the harvesting rate at any time is proportional to the product of the fish stock and harvesting
effort. Such harvesting has some serious loopholes. For example, the harvesting rate becomes
unbounded when either effort or fish stocks become large. To remove such unrealistic features
of the harvesting rate with a finite effort, we consider

Q1(X ,H) =
q1XH
X +D1

, Q2(Y,H) =
q2Y H

Y +D2
,

where D1,D2 are the half-saturation constants of susceptible and infected fishes. Secondly, the
demand function considered in the model (5.1) varies linearly with the price. It is, however,
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pointed out that the demand for many commodities in a real market scenario is nonlinear and
saturates as price becomes high [184, 185]. We, therefore, consider here a saturated demand of
the form [184]

D(P) =
A

1+BP
,

where A is the maximum demand as before, and B is the demand sensitivity parameter. Third,
the cost of the healthy and infected fishes in model (5.1) was considered the same. However, it
is certainly not true in the real market scenario. The insalubrious fish is sold at a much lower
price than its healthy counterpart. In many cases, such fish are sold at a fixed lower price [300].
The demand for salubrious fish varies with its price; however, it is not the case for insalubrious
fish. We further assume that the regulatory agency imposes a tax τ(> 0) on the per unit biomass
of the landed fish to control the overexploitation of fish [271, 267]. Taking into account that
fishes are harvested with a saturated catch, a fishing tax, different prices for healthy and infected
fish, and saturated demand, we propose the following bioeconomic fishery model:

dX
dt

= X

{
r
(

1− X +Y
K

)
−λY − q1H

X +D1

}
,

dY
dt

= Y

{
λX −µ − q2H

Y +D2

}
,

dH
dt

= φ1H

{(
q1(P− τ)X

X +D1
+

q2(p− τ)Y
Y +D2

)
− c

}
, (5.2)

dP
dt

= φ2P
(

A
1+BP

− q1XH
X +D1

)
,

where p(<< P) is the constant price per unit biomass of the infected fish. It is to be noted
that the epidemiological characteristics of shrimp due to WSSV match the assumptions of our
model. All parameters are nonnegative from biological viewpoints. The variables and parame-
ters are described in Table 5.1.

Several studies have considered the harvesting of ecological species. Gakkhar and Singh
[301] studied a food web model where the top predator is harvested following the CPUE type
rate. They examined the local stability of the equilibrium points and optimized the net revenue.
It is also demonstrated that complex dynamics like chaos may be suppressed through harvest-
ing. Ang and Safuan [283] considered CPUE harvesting in an intraguild predator-prey model
with variable carrying capacity and studied the bionomic equilibrium and optimal harvesting
policy. CPUE harvesting was considered in a predator-prey model with imprecise biological
parameters in [302]. The optimal harvest policy and the bionomic equilibrium were studied
there in detail. Chakraborty et al. [153] considered a ratio-dependent predator-prey model with
CPUE predator harvesting. They explained the coexistence of the species under harvesting.
A harvested predator-prey model with infection and the ratio-dependent functional response
was proposed and analyzed in [155]. They observed the effect of harvesting on the qualitative
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behavior of the system and prescribed the conditions for which the system would not show
periodic solutions. The impact of fishing tax has been considered in many bioeconomic models
[303, 268, 270, 90]. Ghosh and Kar [90] considered a predator-prey model with prey harvest-
ing and observed that the optimal taxation policy is bang-bang control. Kar [269] executed
a similar study in a ratio-dependent predator-prey harvesting model, where predator species
are subject to harvesting. Saturated harvesting effort was considered in several fishery models
[179, 183, 304, 305]. However, these studies did not consider price as a dynamic variable fol-
lowing open market theory and did not examine the effect of disease on the harvested stock.
This chapter explicitly combines all these essential ecological and epidemiological ingredients
and fulfills the shortcomings of many studies.

Table 5.1: State variables and parameters with their descriptions and default values.

Variable Description Unit
X(t) Healthy fish biomass at time t metric tonnes (MT)
Y (t) Infected fish biomass at time t metric tonnes
H(t) Fishing effort at time t SFU∗

P(t) Market price per unit of biomass at time t M$∗∗/metric tonne
Parameter Description Default Value Reference

r Intrinsic growth rate of healthy fish 0.9 /year [208]
K Environmental carrying capacity metric tonnes Variable
D1 Half saturation level of susceptible fish 4 metric tonnes This chapter
D2 Half saturation level of infected fish 4.8 metric tonnes This chapter
λ Transmission rate metric tonnes/year Variable
q1 Catchability coefficient of susceptible fish 0.8 metric tonnes/SFU/year [287]
µ Total death (natural + virulence) rate of infected fish 0.05 /year [208]
q2 Catchability coefficient of infected fish 0.9 metric tonnes/SFU/year [287]
c Cost per unit of fishing effort 0.05 $/SFU/year This chapter
A Maximum demand metric tonnes/year Variable
B Demand sensitivity parameter 5 metric tonnes/M$ This chapter
φ1 Stiffness parameter 0.1 SFU/M$ [208]
φ2 Proportionality constant 0.15 /metric tonne [208]
p Fixed market price of infected fish 0.05 $/metric tonne This chapter
τ Tax per unit biomass of harvesting M$/metric tonne Variable

∗ SFU stands for Standardized Fishing Unit [242, 243] and ∗∗ M$ indicates million USD.

5.3 Analytical results

In any population model, it is vital to show that model solutions are positively invariant and
bounded. The region where every solution of the system (5.2) is positive and uniformly
bounded is given in the following lemma. The proof is similar to lemma 2.1 in Chapter 2.

Lemma 5.1. Every solution of the system (5.2), having a starting point (X0,Y0,H0,P0) ∈ R4,0
+ ,

is positive and uniformly bounded in

M = {(X ,Y,H,P) : 0 < X < ζ + ε̂, 0 < S (X ,Y,H,P)<
s2

s1
+ ε, for any positive ε̂,ε},
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where s1 = min{ r
K ,φ2q1D1,φ1q1}, s2 = r+φ1q2 p+φ2A, and ζ = max{X0,K}.

5.3.1 Equilibrium points

Our model system (5.2) has five equilibrium points. The trivial equilibrium point ξ0 =(0,0,0,0)
and the only healthy fish equilibrium ξ1 = (K,0,0,0) always exist. The healthy and infected
fishes equilibrium ξ2 = (µ

λ
, r(λK−µ)

λ (λK+r) ,0,0) exists whenever the condition λK > µ is hold. The
infection-free equilibrium point ξ3 = (X3,0,H3,P3) has the equilibrium components

H3 =
r

q1

(
1− X3

K

)
(X3 +D1), P3 =

(
A

rX3
(
1− X3

K

) −1

)
1
B
,

where X3 is the positive root of the equation

C1X2
3 +C2X3 +C3 = 0, (5.3)

having coefficients

C1 = q1rB
(
τ +

1
B

)
+ rBc, C2 = rBc(D1 −K)−q1rBK(τ +

1
B
), C3 = q1AK − rBcD1K.

The Eq. (5.3) has exactly one positive real root if C1C3 < 0, and consequently, H3,P3 are
unique. Note that H3 is always positive as X3 < K. Since 0 < (1− X3

K ) < 1, the positivity of
P3 is assured if A > rX3

(
1− X3

K

)
. Thus, the disease-free equilibrium point ξ3 uniquely exists

if A > rX3
(
1− X3

K

)
and C1C3 < 0. There may exist two disease-free equilibria under some

parametric conditions. Observe that Eq. (5.3) will have two real roots if C2
2 −4C1C3 > 0. These

roots will be positive if the signs of C1,C2,C3 are, respectively, +,−,+ or −,+,−. In any case,
the signs of C1 and C2 are opposite, and the signs of C1 and C3 are the same (either both positive
or both negative). Thus, Eq. (5.3) will have two real positive roots and hence two disease-free
equilibria, if C2

2 −4C1C3 > 0,C1 > 0,C2 < 0,C1 > 0 or C2
2 −4C1C3 > 0,C1 > 0,C2 < 0,C1 > 0.

The endemic equilibrium point is represented by ξ4 = (X̄ ,Ȳ , H̄, P̄), where

Ȳ =
q2H̄

(λ X̄ −µ)
−D2, P̄ =

(
A(X̄ +D1)

q1X̄H̄
−1
)

1
B
. (5.4)

Observe that Ȳ > 0 if λ < D2µ+q2H̄
D2X̄ and P̄ > 0 if D1 > (q1H̄ −A)X̄ . The other two equilibrium

components X̄ , Ȳ are the positive solutions of the equations

A
BH̄

− q1X̄
B(X̄ +D1)

− q1τX̄
X̄ +D1

− c+(p− τ)

(
1− D2(λ X̄ −µ)

H̄

)
= 0,

r(K − X̄)− (r+λK)

(
q2H̄

λ X̄ −µ
−D2

)
− q1H̄

X̄ +D1
= 0. (5.5)
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The complexity of Eq. (5.5) restricts its analytical solution, however, the unique equilibrium
will be numerically computed in the simulation section.

5.3.2 Basic reproduction number

Whether a disease will be successful to invade a host population is determined by the basic
reproduction number (BRN) of the disease, usually denoted by R0. If R0 < 1 then there will
be no epidemic. Following [290], one can determine the basic reproduction number of the
system (5.2) as follows.

Note that the system (5.2) has one infection state, Y . Consider that F and V , respectively,
indicate the rate of appearance of new infection and the rate of other transitions. Then

F =
(
λXY

)
1×1 and V =

(
µY +

q2Y H
Y +D2

)
1×1

.

At the infection-free equilibrium point ξ3 = (X3,0,H3,P3), the transmission matrix F̂ and the
transition matrix V̂ associated with system (5.2) are given by

F =

[
∂F

∂Y

]
ξ3=(X3,0,H3,P3)

= λX3, and V =

[
∂V

∂Y

]
ξ3=(X3,0,H3,P3)

= µ +
q2H3

D2
.

The corresponding next generation matrix becomes

K = FV−1 =

(
λX3D2

µD2 +q2H3

)
1×1

.

Hence, the basic reproduction number of the system (5.2), which is the spectral radius of the
next generation matrix K [291], is given by

R0 =
λX3D2

µD2 +q2H3
.

5.3.3 Stability of the equilibrium points

We use the following terminologies to facilitate the stability analysis. The pure growth rate (Ξ,
say) of the healthy fish, having biomass X , is measured by Ξ = rX [183]. This type of growth
is also known as Malthusian growth. At the disease-free and endemic equilibria, this value
becomes ΞD = rX3 and ΞE = rX̄ , respectively.
The maximum harvesting (Π) when healthy fish population is too large is

Π = lim
X→∞

q1XH
X +D1

= q1H.
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Thus, the maximum harvesting of healthy fish at the disease-free and endemic equilibrium
states are given by ΠD = q1H3 and ΠE = q1H̄, respectively.
The price elasticity of demand measures how the fish quantity demanded changes in response
to fish price variation. If ϒ is the price elasticity of demand for healthy fish, then

ϒ =−P
D

dD
dP

=− BP
1+BP

[306].

At the infection-free and endemic equilibrium states, this quantity is given by ϒD = − BP3
1+BP3

and ϒE =− BP̄
1+BP̄ , respectively.

The variational matrix of the system (5.2) at an arbitrary equilibrium point ξ̂ = (X̂ ,Ŷ , Ĥ, P̂)
is given by

J =



r
(
1− 2X+Y

K

)
−λY − q1H

X+D1
+ q1XH

(X+D1)
2 −

( r
K +λ

)
X − q1X

X+D1
0

λY λX −µ − q2H
Y+D2

+ q2Y H
(Y+D2)

2 − q2Y
Y+D2

0
φ1q1(P−τ)H

X+D1
− φ1q1(P−τ)XH

(X+D1)
2

φ1q2(p−τ)H
Y+D2

− φ1q2(p−τ)Y H
(Y+D2)

2 φ1[
q1(P−τ)X

X+D1
+ φ1q1XH

X+D1
q2(p−τ)Y

Y+D2
− c]

φ2q1HP
X+D1

− φ2q1XHP
(X+D1)

2 0 φ2q1XP
X+D1

φ2

(
A

1+BP−

ABP
(1+BP)2 −

q1XH
X+D1

)


(X̂ ,Ŷ ,Ĥ,P̂)

. (5.6)

It is easy to show that the variational matrices evaluated at the trivial equilibrium point ξ0

have two positive eigenvalues, namely r and φ2A, making it always unstable. Similarly, the
equilibrium points ξ1(K,0,0,0) and ξ2(

µ

λ
, r(λK−µ)

λ (λK+r) ,0,0) are also unstable as the correspond-
ing Jacobian matrices always have a positive eigenvalue of the form φ2A (> 0). Hence, the
following theorem is true.

Theorem 5.2. The trivial equilibrium point ξ0(0,0,0,0), the only healthy fish equilibrium

ξ1(K,0,0,0), and the healthy and infected fishes equilibrium ξ2 = (µ

λ
, r(λK−µ)

λ (λK+r) ,0,0) are al-

ways unstable.

Theorem 5.3. The disease-free equilibrium point ξ3 = (X3,0,H3,P3), whenever it exists, is lo-

cally asymptotically stable if λ3(X3+D1)
2

b44b13φ1(P3−τ)D1
< ΠD <

[
ΞD
K + µD2+q2H3

D2
(1−R0)−φ2D(P3)ϒD

]
(X3+D1)

2

X3
, ϒD > (b13b41−b11b43)b34

φ2D(P3)b31b13
,R0 < 1, and ΞD > K

[
b22(b11+b44)−b43b34−b13b31−B2

2−B0B3
φ2D(P3)ϒDB0B2

+

ΠDX3
(X3+D1)2

]
hold simultaneously, where B0, B1, B2 and B3 are defined in (5.9).

Proof. At the disease-free equilibrium point ξ3 = (X3,0,H3,P3), one can evaluate the varia-
tional matrix as

J(X3,0,H3,P3) =


b11 b12 b13 0
0 b22 0 0

b31 b32 0 b34

b41 0 b43 b44

 , (5.7)
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where
b11 = − rX3

K + q1X3H3
(X3+D1)2 , b12 = − rX3

K − λX3, b13 = − q1X3
X3+D1

, b22 = λX3 − µ − q2H3
D2

, b31 =

φ1q1(P3−τ)H3
X3+D1

− φ1q1(P3−τ)X3H3
(X3+D1)2 , b32 =

φ1q2(p−τ)H3
D2

, b34 =
φ1q1X3H3

X3+D1
, b41 =

φ2q1H3P3
X3+D1

− φ2q1X3H3P3
(X3+D1)2 , b43

= φ2q1X3P3
X3+D1

, b44 =− φ2ABP3
(1+BP3)2 .

The corresponding characteristic equation reads

β
4 +B0β

3 +B1β
2 +B2β +B3 = 0, (5.8)

where

B0 = −b11 −b22 −b44, B1 = b11b22 +b22b44 +b11b44 −b43b34 −b13b31,

B2 = b22b43b34 +b13b22b31 −b11b22b44 +b11b44b34 +b31b44b13 −b13b34b41, (5.9)

B3 = b13b34b41b22 −b31b44b13b22 −b11b22b34b43.

The characteristic equation (5.8) will have roots with negative real parts iff [259] B0 > 0,B2 >

0,B3 > 0 and B0B1B2 > (B2
2 +B2

0B3). Now B0 > 0,B2 > 0,B3 > 0 and B0B1B2 > (B2
2 +B2

0B3)

respectively gives

ΠD <

[
ΞD

K
+

µD2 +q2H3

D2
(1−R0)−φ2D(P3)ϒD

]
(X3 +D1)

2

X3
,

ΠD >
λ3(X3 +D1)

2

b44b13φ1(P3 − τ)D1
,

ϒD >
(b13b41 −b11b43)b34

φ2D(P3)b31b13
& R0 < 1 , and

ΞD > K
[

b22(b11 +b44)−b43b34 −b13b31 −B2
2 −B0B3

φ2D(P3)ϒDB0B2
+

ΠDX3

(X3 +D1)2

]
,

where λ3 = b13(b34b41 −b22b31)−b22(b43b34 +b11b44)−b11b44b34. Hence the theorem.

Theorem 5.4. The disease-free equilibrium ξ3 of system (5.2), if it exists, is globally asymptot-

ically stable if the basic reproduction number is less than unity (i.e., R0 < 1).

Proof. To prove the global stability of ξ3, we consider a Lyapunov function

Θ̂(X ,Y,H,P) = Y.

It is zero at ξ3, and positive for all feasible values of (X ,Y,H,P)∈R+
4 Its time derivatives along

the solution of (5.2) gives

dΘ̂

dt
=

[
λX −µ − q2H

Y +D2

]
Y.
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Therefore, [
dΘ̂

dt

]
ξ3

=

[
λ X̄ −µ − q2H̄

D2

]
Θ̂ =

[{
µ +

q2H̄
D2

}
(R0 −1)

]
Θ̂. (5.10)

Clearly, if R0 < 1 then dΘ̂

dt < 0. Therefore, following Lyapunov stability theorem [307], ξ3 is
globally asymptotically stable if R0 < 1.

Theorem 5.5. The endemic equilibrium point ξ4 = (X̄ ,Ȳ , H̄, P̄) of system (5.2), if it exists, is

locally asymptotically stable under the conditions ΞE > K
[

q1X̄H̄
(X̄+D1)2 +

q2Ȳ H̄
(Ȳ+D2)2 +φ2D(P̄)ϒE

]
,

γ2(X̄+D1)
φ2q1X̄a22a31D(P̄) <ϒE < γ1(X̄+D1)

φ2q1X̄D(P̄)a31
, and ΠE < (X̄+D)2

X̄

(
rX̄
K −a22−a44−

A2
2+A2

0A3
A1A2

)
, where A0, A1,

A2 and A3 are given in (5.12).

Proof. The Jacobian matrix of system (5.2) at the co-existing equilibrium ξ4 = (X̄ ,Ȳ , H̄, P̄) is
evaluated as

J(X̄ ,Ȳ , H̄, P̄) =


a11 a12 a13 0
a21 a22 a23 0
a31 a32 0 a34

a41 0 a43 a44

 ,

where
a11 = − rX̄

K + q1X̄H̄
(X̄+D1)2 , a12 = − rX̄

K − λ X̄ , a13 = − q1X̄
X̄+D1

, a21 = λȲ , a22 = q2Ȳ H̄
(Ȳ+D2)2 , a23 =

− q2Ȳ
Ȳ+D2

, a31 =
φ1q1(P̄−τ)H̄

X̄+D1
− φ1q1(P̄−τ)X̄H̄

(X̄+D1)2 , a32 =
φ1q2(p−τ)H̄

Ȳ+D2
− φ1q2(p−τ)Ȳ H̄

(Ȳ+D2)2 , a34 =
φ1q1X̄H̄
X̄+D1

, a41 =

φ2q1H̄P̄
X̄+D1

− φ2q1X̄H̄P̄
(X̄+D1)2 , a43 =

φ2q1X̄ P̄
X̄+D1

, a44 =− φ2ABP̄
(1+BP̄)2 .

The corresponding characteristic equation is represented by

β
4 +A0β

3 +A1β
2 +A2β +A3 = 0, (5.11)

where

A0 = −a11 −a22 −a44,

A1 = a11a22 +a22a44 +a11a44 −a43a34 −a13a31 −a32a23 −a12a21,

A2 = a22a43a34 +a13a22a31 −a11a22a44 +a11a43a34 +a31a44a13 −a13a32a21 +

a11a23a32 +a12a23a31 +a23a44a32 −a11a22a44 −a13a34, (5.12)

A3 = a13a34a41a22 −a31a44a13a22 −a11a22a34a43 +a13a32a44a21 −a32a44a11a23 −

a12a23a31a44 +a12a21a34a43 −a12a34a41.
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Observe that A0 > 0 whenever the condition

ΞE > K
[

q1X̄H̄
(X̄ +D1)2 +

q2Ȳ H̄
(Ȳ +D2)2 +φ2D(P̄)ϒE

]
(5.13)

is satisfied. A2 > 0 implies

ϒE <
γ1(X̄ +D1)

φ2q1X̄D(P̄)a31
, (5.14)

where
γ1 = −a22a43a34 − a13a22a31 + a11a22a44 − a11a43a34 + a13a32a21 − a11a23a32 − a12a23a31 −
a23a44a32 +a11a22a44 +a13a34.

Next, A3 > 0 gives

ϒE >
γ2(X̄ +D1)

φ2q1X̄a22a31D(P̄)
, (5.15)

where
γ2 = a13a34a41a22−a11a22a34a43+a13a32a44a21−a32a44a11a23−a12a23a31a44+a12a21a34a43−
a12a34a41.

Again, the relation A0A1A2 > A2
2 +A2

0A3 provides

ΠE <
(X̄ +D)2

X̄

(
rX̄
K

−a22 −a44 −
A2

2 +A2
0A3

A1A2

)
. (5.16)

Following Routh-Hurwitz criterion [259] and applying Eq. (5.13), (5.14), (5.15), and (5.16),

one must have the required stability condition as ΞE > K
[

q1X̄H̄
(X̄+D1)2 +

q2Ȳ H̄
(Ȳ+D2)2 +φ2D(P̄)ϒE

]
,

γ2(X̄+D1)
φ2q1X̄a22a31D(P̄) < ϒE < γ1(X̄+D1)

φ2q1X̄D(P̄)a31
and ΠE < (X̄+D)2

X̄

(
rX̄
K − a22 − a44 −

A2
2+A2

0A3
A1A2

)
. Hence the

theorem.

Theorem 5.6. The interior equilibrium point ξ4 =(X̄ ,Ȳ , H̄, P̄) of the system (5.2), whenever ex-

ists, is globally asymptotically stable if ΞE > 1
c2

23
[KX̄{2(c13c14c34+c12c13c23)−c11c2

34}], and

0 < Π2
E < 1

c2
23F2

1
[4(X̄ +D1)

2(F1F2F3 −F2
3 −F2

1 c2
12c2

34)] hold simultaneously, where F1, F2, F3,

and F4 are in (5.19).

Proof. To prove the global stability of ξ4, we consider the Lyapunov function

Θ(X ,Y,H,P) =

[
(X − X̄)− X̄ ln

(
X
X̄

)]
+h
[
(Y − Ȳ )− Ȳ ln

(
Y
Ȳ

)]
+ i
[
(H − H̄)− H̄ ln

(
H
H̄

)]
+ j
[
(P− P̄)− P̄ ln

(
P
P̄

)]
,

for some suitable choice of the positive constants h, i, and j. At the interior equilibrium point
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ξ4 = (X̄ ,Ȳ , H̄, P̄), Θ is zero and positive for all feasible values of (X ,Y,H,P) ∈ R+
4 . One can

write the time derivative of Θ along the solution of (5.2) as

Θ̇ =

(
X − X̄

X

)
Ẋ +h

(
Y − Ȳ

Y

)
Ẏ + i

(
H − H̄

H

)
Ḣ + j

(
P− P̄

P

)
Ṗ

= (X − X̄)

(
r
(

1− X +Y
K

)
−λY − q1H

X +D1

)
+(Y − Ȳ )

(
λX −µ − q2H

Y +D2

)
+φ1(H − H̄)(

q1(P− τ)X
X +D1

+
q2(p− τ)Y

Y +D2
− c

)
+φ2(P− P̄)

(
A

1+BP
− q1XH

X +D1

)
(where h = i = j = 1)

= (X − X̄ ,Y − Ȳ ,H − H̄,P− P̄)⊺ Q (X − X̄ ,Y − Ȳ ,H − H̄,P− P̄),

where

Q =


c11 c12 c13 c14

c12 0 c23 0
c13 c23 0 c34

c14 0 c34 0

 . (5.17)

The matrix Q is symmetric, having coefficients c11 = − r
K , c12 = −1

2
r
K , c13 = 1

2

(
− q1

X̄+D1
+

φ1q1(P̄−τ)
X̄+D1

)
, c14 = − q1H̄

2(X̄+D1)
, c23 = 1

2

(
− q2

Ȳ+D2
+ φ1q2(p−τ)

Ȳ+D2

)
, c34 = 1

2

(
φ1q1X̄
X̄+D1

+ φ2q1X̄
X̄+D1

)
, and

therefore, its roots are real. To show Θ̇ < 0 for all (X ,Y,H,P) ̸= (X̄ ,Ȳ , H̄, P̄), the matrix Q

should be negative definite [308]. Since the matrix Q is symmetric, it will be negative definite
if all roots are negative [309]. The characteristic equation of the matrix Q is expressible in the
form

η
4 +F1η

3 +F2η
2 +F3η +F4 = 0, (5.18)

where

F1 =
r
K
, F2 =−(c2

14 + c2
34 + c2

13 + c2
23 + c2

12),

F3 = c11c2
23 −2(c13c14c34 + c12c13c23)+ c11c2

34 (5.19)

F4 = c2
14c2

23 + c2
12c2

34.

Observe that F1 is always positive, F3 > 0 under the condition ΞE >
KX̄ [2(c13c14c34+c12c13c23)−c11c2

34]

c2
23

,
F4 > 0 implies

Π
2
E >

−4(X̄ +D1)
2c2

12c2
34

c2
23

and F1F2F3 > (F2
3 +F2

1 F4) gives Π
2
E <

4(X +D1)
2(F1F2F3 −F2

3 −F2
1 c2

12c2
34)

c2
23F2

1
.
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So, the roots of (5.18) will be real negative if pure growth rate at endemic equilibrium point (ξ4) satisfies

ΞE >
KX̄ [2(c13c14c34 + c12c13c23)− c11c2

34]

c2
23

,

and maximum harvested healthy species at the endemic equilibrium state ΠE satisfies

0 < Π
2
E <

4(X̄ +D1)
2(F1F2F3 −F2

3 −F2
1 c2

12c2
34)

c2
23F2

1
.

Thus, the theorem is proven.

5.3.4 Bifurcations analysis

In this section by using Sotomayor’s theorem [119], we will obtain the existence condition of
saddle-node bifurcation at the disease-free equilibrium point ξ3 = (X3,0,H3,P3).

Theorem 5.7. Whenever the set of condition
{

b41 −b11 −b31 = 0, − b11b43
b13

− b31b44
b34

+b41(b12b43b34+b13b32b44
b13b22b34

)
= 0, and ŵ1 f̃1 + ŵ2 f̃2 + ŵ3 f̃3 + f̃4 ̸= 0

}
is satisfied, the system (5.2) ex-

hibits a saddle-node bifurcation at A = ASN , where ASN is given in Eq. (5.21).

Proof. Observe that the characteristic equation (5.8) can be rewritten in the form

(β −b22)
(
β

3 + J1β
2 + J2β + J3

)
= 0, (5.20)

where J1 =−b11−b44, J2 = b11b44+b13b31−b34b43, J3 = b13b31b44+b11b34b43−b13b34b41.
Observe that the Eq. (5.20) will have a simple zero root, i.e., the Jocobian matrix (5.7) contains
a simple zero eigenvalue if

J3 = b13b31b44 +b11b34b43 −b13b34b41 = 0

or, A =
(1+BP3)

2

φ2b13b31P3
(b11b34b43 −b13b34b41) = ASN (say). (5.21)

At A = ASN , the other three roots of the Eq. (5.20) can be given by 1
2(−J1 ±

√
J2

1 −4J2),

and λX3 − µ − q2H3
D2

. Clearly, λX3 − µ − q2H3
D2

< 0 as at ξ3 = (X3,0,H3,P3), R0 < 1, and the
negativity conditions of other two roots will be J1 < 0 and J2 > 0. Presume that the right and
left eigenvector of the matrix J(X3,0,H3,P3) are v̂ and ŵ, respectively. Then those vectors can
be expressed as follows:

v̂ =


v̂1

v̂2

v̂3

v̂4

=


1
0

−b11
b13

−b31
b34

 , and ŵt =


ŵ1

ŵ3

ŵ2

ŵ4

=


−b43

b13
b12b43b34+b13b32b44

b13b22b34

−b44
b34

1

 ,
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under the conditions b41 − b11 − b31 = 0 and −b11b43
b13

− b31b44
b34

+ b41

(
b12b43b34+b13b32b44

b13b22b34

)
= 0,

respectively. Now assume the set of differential equation
(dX

dt ,
dY
dt ,

dH
dt ,

dP
dt

)
= ( f̄1, f̄2, f̄3, f̄4) =

A and define

B1 = ŵ
dA

dA

∣∣∣∣
(ξ3,ASN)

=− φ2ASNBP3

(1+BP3)2 ̸= 0.

Also,

B2 = ŵ
[
D2A (v̂, v̂)

]∣∣
(ξ3,ASN)

= ŵ( f̃1, f̃2, f̃3, f̃4)
t |(ξ3,ASN)

= ŵ1 f̃1 + ŵ2 f̃2 + ŵ3 f̃3 + f̃4, (5.22)

where DA indicates the Jacobian of A and f̃1 =
(
−2r

K + q1D1H3
(X3+D1)3

)
v̂1

2 − 2
( r

K +λ
)

v1v2 −
2q1v̂1v̂3D1
(X3+D1)2 , f̃2 = 2λ v̂1v̂2 +

q2D2H3v̂2
2

(D2)3 − 2q2D2H3v̂2v̂3
(D2)2 , f̃3 =−φ1q1(P3−τ)v̂1

2H3D1
(X3+D1)3 + 2φ1q1(P3−τ)v̂1v̂3D1

(X3+D1)2 +

2φ1q1v̂1v̂4H3D1
(X3+D1)2 − φ1q2(p−τ)v̂2

2H3D2
(D2)3 + 2φ1q2(p−τ)v̂2v̂3D2

(D2)2 + 2φ1q1X3v3v4
(X3+D1)

, f̃4 =
2φ2q1P3D1v1v3

(X3+D1)2 − φ2q1P3H3D1v2
1

(X3+D1)3 −
2φ2q1H3D1v1v4

(X3+D1)2 − 2φ2q1H3v3v4
(X3+D1)

− φ2ASNBv̂4
2

(1+BP3)3 .
Thus following Perko [119], one can state that the model system (5.2) manifests saddle-node

bifurcation when A = ASN iff the set of condition
{

b41 − b11 − b31 = 0, − b11b43
b13

− b31b44
b34

+

b41

(
b12b43b34+b13b32b44

b13b22b34

)
= 0, and ŵ1 f̃1 + ŵ2 f̃2 + ŵ3 f̃3 + f̃4 ̸= 0

}
is satisfied. Hence the proof.

Following the line of [119], one can similarly obtain the Hopf and transcritical bifurcation
points with respect to several important system parameters. However, we ignore the analytical
computation, but numerically show the existence of all local bifurcations.

5.4 Optimal taxation policy

As we mentioned earlier that taxation has both the positive and negative effects on the fishery.
In the one hand, it helps to control overexploitation and generate revenue. On the other hand,
higher taxation may negatively affect the fishing. Fishermen may lost interest if the imposed
tax is significantly high, which, in turn, may increase the infected fish population due to low
harvesting. The system might also become unstable, causing a non-constant yield, if the fishing
tax is high. So, a balanced tax should be implemented by the regulatory agency to maximize
the societal benefit. The societal benefit is defined here as the sum of revenues generated by the
fishermen by selling fish, and the revenue earned by the agency from the levied tax. If Γ1 and
Γ2 are, respectively, the earnings from fishing excluding tax and the earning of the regulatory
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agency form tax revenue, then the societal revenue (Γ(X ,Y,H,P,τ)) is

Γ(X ,Y,H,P,τ) = Γ1(X ,Y,H,P,τ)+Γ2(X ,Y,H,P,τ)

=

(
q1(P− τ)X

X +D1
+

q2(p− τ)Y
Y +D2

)
H +

(
q1τX

X +D1
+

q2τY
Y +D2

)
H

=

(
q1PX

X +D1
+

q2 pY
Y +D2

)
H. (5.23)

If δ is the annual discount rate, then the optimal taxation problem may be defined as

ϒ =
∫

∞

0
e−δ t

Γ(X ,Y,H,P,τ)dt, (5.24)

subject to the state variables (5.2), and Γ is the economic rent defined in (5.23). The control
variable τ is subject to the constraints 0 < τ < τmax, where τmax is the upper cap of the imposed
tax. Our objective is to find the optimal value of τ which will maximize Γ. By virtue of the
Pontryagin’s maximum principle, one can write the Hamiltonian

ℑ(X ,Y,H,P,τ) = e−δ t
(

q1PX
X +D1

+
q2 pY

Y +D2

)
H + ε1

[
rX
(

1− X +Y
K

)
−λXY − q1XH

X +D1

]
+

ε2

[
λXY −µY − q2Y H

Y +D2

]
+ ε3φ1

((
q1(P− τ)X

X +D1
+

q2(p− τ)Y
Y +D2

)
H − cH

)

+ε4φ2P
(

A
1+BP

− q1XH
X +D1

)
. (5.25)

Here ε1,ε2,ε3 and ε4 are the adjoint variables to be determined. To maximize ℑ, the optimal
control variable τ has to satisfy the following conditions:

∂ℑ

∂τ
= 0,

dε1

dt
=−∂ℑ

∂X
,

dε2

dt
=−∂ℑ

∂Y
,

dε3

dt
=− ∂ℑ

∂H
,

dε4

dt
=−∂ℑ

∂P
. (5.26)

At any arbitrary equilibrium point ξ̂ (X̂ ,Ŷ , Ĥ, P̂), ∂ℑ

∂τ
= 0 gives ε3φ1

(
− q1X̂

X̂+D1
− q2Ŷ

Ŷ+D2

)
Ĥ = 0.

For non trivial solution, one needs

ε3 = 0. (5.27)

Again, dε4
dt =−

[
∂ℑ

∂P

]
(X̂ ,Ŷ ,Ĥ,P̂) gives

dε4

dt
= G1e−δ t +G2ε4,

where

G1 =− q1X̂Ĥ
X̂ +D1

, G2 =−φ2

(
A

1+BP̂
− q1X̂Ĥ

X̂ +D1

)
+

φ2ABP̂
(1+BP̂)2

.
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Solving this first order differential equation in ε4, one gets

ε4 =− G1

G2 +δ
e−δ t . (5.28)

Now, dε3
dt =−

[
∂ℑ

∂H

]
(X̂ ,Ŷ ,Ĥ,P̂) provides

ε1 =
G3(X̂ +D1)

q1X̂
e−δ t − q2Ŷ (X̂ +D1)

q1X̂(Ŷ +D2)
ε2. (5.29)

Putting this value of ε1 in dε2
dt =−

[
∂ℑ

∂Y

]
(X̂ ,Ŷ ,Ĥ,P̂), one gets

ε2 =− G4

G5 +δ
e−δ t , (5.30)

where G3 =
q1P̂X̂
X̂+D1

+ q2 pŶ
Ŷ+D2

+ q1φ2G1X̂ P̂
(X̂+D1)(G2+δ )

, G4 =

(
− q2 p

Ŷ+D2
+ q2 pŶ

(Ŷ+D2)2

)
Ĥ+

G3(X̂+D1)
(

r
K +λ

)
q1

and

G5 =−λ X̂ +µ + q2Ĥ
Ŷ+D2

− q2Ŷ Ĥ
(Ŷ+D2)2 −

q2Ŷ Ĥ
(Ŷ+D2)2 −

q2Ŷ (X̂+D1)
(

r
K +λ

)
q1(Ŷ+D2)

.
The following optimal tax equation can be obtained by substituting the values of ε1,ε2,ε3, and
ε4 in dε1

dt =−
[

∂ℑ

∂X

]
(X̂ ,Ŷ ,Ĥ,P̂) for a suitable choice of annual discount rate (δ ) at any equilibrium

point:

q1D1ĤP̂X̂
(X̂ +D1)2

+

(
r
(

1− 2X̂ + Ŷ
K

)
−λŶ − q1D1Ĥ

(X̂ +D1)2

)(
G3(X̂ +D1)

q1X̂
+

G4q2Ŷ (X̂ +D1)

q1X̂(G5 +δ )(Ŷ +D2)

)
− λŶ G4

G5 +δ
− G1D1φ2q1ĤP̂

(G2 +δ )(X̂ +D1)2
−δ

(
G3(X̂ +D1)

q1X̂
+

G4q2Ŷ (X̂ +D1)

q1X̂(G5 +δ )(Ŷ +D2)

)
= 0. (5.31)

The positive solution of Eq. (5.31) provides the optimal tax, τ̂ , of τ . The optimal societal
revenue Γ̂ evaluated at the equilibrium (X̂ ,Ŷ , Ĥ, P̂) is then obtained by substituting τ = τ̂ in
(5.23). A similar method has to be applied if one wants to find the optimal societal revenue for
an another equilibrium point.

5.5 Simulation results

For an illustration of the analytical results, the parameter values mentioned in Table 5.1 will
be considered as the baseline values and will remain fixed unless it is mentioned. It is to be
mentioned that these parameters follow some rules/criteria to be meaningful for ecological
systems, as prescribed in [310]. We carefully selected four system parameters K,λ ,A and
τ to observe their variational effects on the system dynamics. The parameter K is selected
from the ecological point of view. A population model can show the well-known paradox

of enrichment phenomenon and can make a system unstable with large amplitude oscillations
from its stable state if the system is enriched by increasing its carrying capacity [264]. The
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disease transmission rate parameter, λ , which plays a vital role in disease persistence, is chosen
from the epidemic point of view. The spread and control of infectious diseases depend on this
parameter [252]. The parameter A is vital from the point of view of open market theory. It
gives an upper cap in the market demand even when the price is low. The parameter τ has two
types of importance. First, it regulates the overfishing of renewable resources and ensures fish
persistence for sustainable use. Secondly, the revenue generated from the imposed tax can be
used for the welfare of fishermen and the aquatic environment. We first presented the dynamic
changes observed due to the change in a single parameter while keeping other parameter values
unchanged and then showed their combined effects.
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Figure 5.1: Global stability of the (a) disease-free equilibrium ξ3 = (4.72,0,0.54,0.57) and (b)
the endemic equilibrium ξ4 = (3.14,1.26,0.51,0.81). In each case, the system started from the
initial values (2,1.5,0.8,0.5), (3,2.5,1.8,1.5), (5,3.5,2.8,2.5), (4,2.7,1.2,1.8) and converged
to the respective equilibrium points after initial fluctuations, depicting the global stability of
the equilibrium points ξ3 (Fig. (a)) and ξ4 (Fig. (b)). The black, red, blue, and green curves
indicate X , Y, H, and P. Here λ = 0.02 and 0.04 for the figures (a) and (b), respectively. Other
parameters are as in Table 5.1 with K = 5,A = 0.9,τ = 0.45.

At the lower value of the transmission rate (λ = 0.02), the basic reproduction number R0

goes below 1 (R0 = 0.62) and the system stabilizes globally to the disease-free equilibrium
ξ3 = (4.72,0,0.54,0.57) (Fig. 5.1a), following Theorem 5.4. Healthy fish stock in this state
is high, 4.72 metric tonnes, causing a compensatory decrease in the fish price. The harvesting
effort is also high because of the availability of fish stock. On the contrary, if the transmission
rate is high, say 0.04, the system converges to the endemic state ξ4 (Fig. 5.1b) with equilibrium
population levels X̄ = 3.14,Ȳ = 1.26, H̄ = 0.51, P̄ = 0.81. It is to be mentioned that parameter
values satisfy the global stability conditions of Theorem 5.6. At the equilibrium state ξ4, the
net fish stock (X̄ + Ȳ ) is around 4.40 units, in which 3.14 units are salubrious and the other
1.26 units are insalubrious. Total fish stock in this state decreases to 4.40 units from 4.72
units in the infection-free state. Due to low fish production in the stable endemic state, supply
cannot completely fulfill the demand, and the equilibrium market price goes high (0.81 per unit
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biomass of fish from its previous price 0.57). The harvesting effort, however, is comparatively
low here (around 0.51 units) because of reduced stock level. It is important to note that the
income from infected fish is negative in this case as the tax (τ) to be paid per unit biomass
of infected fish is higher than its fixed selling price (p). Still, the fishers may be interested in
fishing and profit is earned because of the higher price of healthy fish.

5.5.1 One parameter bifurcation results

We here explored the switching phenomena of the system under the variation of the parameters
A,λ , and K. We varied the demand parameter, A, in some stipulated range, 0 < A < 5, and
observed four distinct dynamic regions, viz. R1, R2, R3 and R4, as shown in Fig. 5.2.

Figure 5.2: Bifurcation results when the maximum demand A varies in the ranges 0 < A < 5.
Black lines are the stable equilibrium points of the system (5.2). Green, red, blue and cyan
dotted lines indicate the unstable equilibrium points ξ0, ξ1, ξ2, and ξ3. Magenta dotted lines
give the maxima and minima of the stable limit cycle. The endemic equilibrium ξ4 is unstable
in 0 < A < 0.345 and stable in 0.345 < A < 1.191. One disease-free equilibrium ξ3 is stable in
1.191 < A < 4.59, while the other is unstable. The stable and unstable disease-free equilibria
are annihilated through a saddle-node bifurcation at A = 4.59. The price becomes unbounded
when A > 4.59 due to the scarcity of fish. High harvesting effort persists as fish demand and
price are high. Parameters are as in Table 5.1 with K = 5,λ = 0.04,τ = 0.45.

A transition from the unstable oscillatory state at the lower value of A to the stable coexis-
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tence state occurs through a Hopf bifurcation in the backward direction at A = 0.345. Then a
transcritical bifurcation arises at A = 1.191, where the endemic equilibrium ξ4 coalesces with
the disease-free equilibrium ξ3 and exchanges their stabilities. Two disease-free equilibrium
points exist in the region R3, one stable and the other unstable. These two equilibria approach
each other with increasing A and are annihilated at A = 4.59 through a saddle-node bifurcation
by satisfying the conditions of Theorem 5.7.

Following the open market theory, the fish price grows as its market demand grows. The
increased price causes harvesting efforts to increase, which causes a steady decline in the fish
biomass. As demand exceeds and crosses the critical threshold A = 4.59, the fish cost becomes
unbounded in the region R4, causing excessive harvesting pressure and eventual regime shift.
A number of equilibrium points exist in this region (ξ0, ξ1 and ξ2), but all of them are unstable.

Figure 5.3: Time evolutions of the system (5.2) for some fixed values of A taken one from each
zone of Fig. 5.2. (a) The endemic equilibrium ξ4 is unstable for A = 0.2. (b) ξ4 is stable for
A = 0.75. (c) The disease-free equilibrium ξ3 is stable for A = 2. (d) The price is unbounded
for A = 4.7. Other parameters are as in Fig. 5.2.

The four distinct behaviours of the system for four fixed values taken one each from the four
regions of Fig. 5.2 are represented by time series solutions in Fig. 5.3. It is observable that
the harvesting effort continuously grows with the increasing demand. The fishers put a higher
effort into fishing to meet the growing demand, which causes a steady decline in the healthy
fish stock. A catastrophic shift of the system’s state occurs when the market demand crosses
some upper threshold value, A = 4.59, due to the excessive gap between demand and supply.
The fish population sharply declines to near extinction as the harvesting effort grows to meet
the high demand for fish (see Fig. 5.3d). The existence of unbounded fish price is also visible
if one looks at the last equation of the model system (5.2). For the existence of equilibrium,
one obtains from Eq. (5.2)d A

1+BP − q1XH
X+D1

= 0 for nonzero P. If any of X or H is zero, then
A

1+BP has to be zero to hold the equality. This would be possible only when P becomes very
large, as A and B are positive finite. Such demand-induced regime shift from a harvesting to a
non-harvesting state was unreported earlier, as far as our knowledge goes.
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Similar bifurcation analysis with respect to the parameters λ (the transmission rate) and
K (the environmental carrying capacity) reveal that the system remains disease-free for the
lower values of these parameters (Fig. 5.4). A stable endemic equilibrium appears in each
case through a transcritical bifurcation when λ and K cross their respective critical values,
λ = 0.032 and K = 4.25. In the endemic stable region of λ , healthy fish stock steadily decreases
as the infection rate increases (Fig. 5.4a). The infected fish stock initially increases with
increasing λ but then decreases slowly for further increases in λ . This is due to the lack of
sufficient numbers of susceptible fishes to be newly infected at the higher value of λ . The price
increases very slowly as healthy fish becomes scarce. Fishermen, therefore, put extra effort
into harvesting, and a gradual increment is observed in the harvesting effort, H. On the other
hand, a moderate system enrichment supports the increased production of the harvested stock.
However, a significant increment in the equilibrium infected fish stock may occur if the system
is too enriched (Fig. 5.4b). As the price of infected fish is low, fishing may not be profitable
even though the gross fish production is high at a higher value of K. So a steady decline in the
harvesting effort may occur with increasing K, causing a gradual increase in fish price.

Figure 5.4: Bifurcation diagrams with respect to (a) the transmission rate, λ , and (b) environ-
mental carrying capacity, K. Other parameters are as in Table 5.1 with (a) A = 0.9,K = 5,τ =
0.45, and (b) A = 0.9,λ = 0.04,τ = 0.45.

Tax (τ) per unit biomass of the landed fish is a regulatory measure imposed by the control-
ling authority to restrict over-harvesting. Figure 5.5 illustrates three changes in the dynamical
states due to the variation in τ . The disease-free equilibrium is stable in the region 0< τ < 0.26,
and then the endemic equilibrium (ξ4) becomes stable in the range 0.26 < τ < 0.64 through a
transcritical bifurcation at τ = 0.26. For further increment in the tax (τ > 0.64), the endemic
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equilibrium becomes unstable through a forward Hopf bifurcation. It reveals that a disease can
invade the fish population if the imposed tax crosses some threshold value. The system even
can lose its stable state and exhibit unstable periodic behavior if the levied tax exceeds some
upper threshold value.

Figure 5.5: Effect of taxation on the system dynamics: (a) The infection-free equilibrium is
stable in the lower range of τ , (0 < τ < 0.26). In the intermediate range 2.6 < τ < 0.64, the
endemic equilibrium ξ4 is stable and unstable for τ > 0.64. A Hopf bifurcation is realized
at τ = 0.64. (b) The time evaluations of the state variables X , Y, H, and P show limit cycle
oscillations for τ = 0.7(> 0.64). Other parameters are as in Table 5.1 with A = 0.9,K = 5,λ =
0.04.

5.5.2 Two parameter bifurcation results

We present two-parameter bifurcation results to demonstrate the more extensive dynamical
behavior of the system. Fig. 5.6 delineates the system’s dynamic state when two parameters
vary simultaneously. Figure 5.6a shows that there is a large stable parametric domain in the
A−λ plane, where the endemic equilibrium ξ4 is stable. The stable disease-free equilibrium
ξ3 dominates the region where the transmission rate is low. The system can tolerate a higher
transmission rate and maintains a disease-free state if the demand is also high. However, for
too higher values of A, the system enters into the price-unbounded region. In the latter area, the
fish price overgrows due to high demand and the nonavailability of the fish stock. For a more
extended range of λ , the endemic equilibrium ξ4 is unstable (oscillatory), provided the demand
is low.
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Figure 5.6: System dynamics when two parameters are varied simultaneously. (a) Four dif-
ferent dynamic regimes may be observed in the A− λ parametric plane. (b, c) In the A−K
and A− τ planes, there are also four different dynamic behaviors of the system. (d) Three
dynamic behaviors are observed when λ and τ simultaneously vary. The red and blue colors
represent the stable regions for the endemic equilibrium ξ4 and the disease-free equilibrium ξ3,
respectively. The green region is the unstable (oscillatory) region of ξ4, whereas the white area
represents the region of the disease-free state with the unbounded price hike. Parameters are as
in Table 5.1 with K = 5,τ = 0.45 for Fig. (a), λ = 0.04,τ = 0.45 for Fig. (b), λ = 0.04,K = 5
for Fig. (c) and K = 5,A = 0.9 for Fig. (d).

There are four different dynamic regimes for the simultaneous variation of demand (A) and
environmental carrying capacity (K) (Figure 5.6b). The stable disease-free region separates the
stable endemic region from the price-unbounded area. The endemic state is unstable for the
extended range of K if the demand is deficient. Such instability, which causes large amplitude
oscillations in the system populations due to eutrophication, is driven through the enrichment
of the system and known as the paradox of enrichment in the ecological literature [264, 311,
312]. Thus, a bioeconomic system may also show the paradox of enrichment only when the
demand is deficient. However, these oscillations are suppressed, and the system backs to a
stable state through a backward Hopf bifurcation if demand increases. Further increase in
demand may push the system into a price-unbounded region. More or less, similar dynamics
are observed for simultaneous variations in the parameters A and τ (Figure 5.6c). It is clear
from this diagram that for a given maximum demand A, it is possible to choose a level of
taxation that stabilizes the fishery and eliminates infection. The dynamics are relatively more
straightforward in the λ − τ plane. Here the system shows three types of dynamic behaviors.
Infection cannot persist, and the system becomes disease-free for any tax if the transmission
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rate is low (Figure 5.6d). The disease, however, persists if the transmission rate increases. In
this case, the endemic equilibrium is either stable or unstable, depending on the fishing tax.
The coexistence equilibrium is stable for low to intermediate tax and unstable if the tax is high.
A similar behavior is observed in the system dynamics when K and τ are varied simultaneously
(figure not shown). Thus, tax may have both stabilizing and destabilizing effects on the system
dynamics. Thus, Fig. 5.6 demonstrates that an additional dynamic regime, where the price is
unbounded, may appear only in the presence of the demand parameter. Fish stock rapidly goes
extinct due to intensive harvesting led by the high demand. The fishery system may collapse
due to the non-availability of the fish, making the price unbounded in response to the fish
demand.

We here compare the maximum societal revenue at different equilibrium states where fish-
ing is possible. For this, we search for the optimal tax from Eq. (5.23) for the parameter values
of Fig. 5.5. The optimal value of τ is determined as τopt = 0.64 at the endemic equilibrium ξ4

with an annual discount rate δ = 0.08, and the same at the disease-free equilibrium ξ3 is ob-
tained as τopt = 0.26. It is to be recalled that the societal benefit (Γ) is the sum of the revenues
earned by the fishermen from the harvested fish after paying the tax (Γ1), and the income earned
by the regulatory authority from the taxation imposed on the harvested fish (Γ2). The fisher-
men’s income (Γ1) comes from the selling of healthy and infected fish, making Γ1 = Γ

′
1 +Γ

′′
1.

The societal benefit is therefore computed as

Γ = Γ1 +Γ2 = Γ
′
1 +Γ

′′
1 +Γ2.

It is worth mentioning that the societal revenue (Γ) coincides with the fishermen’s earnings (Γ1)
in the absence of fishing tax (i.e., Γ = Γ1 when τ = 0), otherwise they are different.

Earlier, we demonstrated (see Fig. 5.5) how the stability of the equilibrium points ξ3 and
ξ4 change with the variation of τ . It shows that steady harvesting is possible in 0 < τ < 0.64,
where the system is stable around the equilibrium points ξ3 and ξ4. Figure 5.7 shows all types
of revenues evaluated at these stable equilibrium points. Observe that Γ = Γ1 at τ = 0, Γ1 = Γ

′
1

in the disease-free range, 0 < τ < 0.26, and Γ1 = Γ
′
1 +Γ

′′
1 for 0.26 < τ > 0.64. These revenue

curves show that fishermen’s earnings are maximum and the societal benefit is minimum when
there is no fishing tax. The fishermen’s income (Γ1) decreases with the increasing tax. The
revenue (Γ2) earned by the regulating agency as fishing tax is an increasing function of τ . In
the range 0.26 < τ < 0.64, the fishermen’s revenue comes from selling susceptible and infected
fish. Though the fishermen incur a loss (see the red dashed line Γ

′′
1) by selling the infected fish

at a lower fixed price than the tax paid, the net income (Γ1) is positive because of higher
income from the healthy fish (red dotted line, Γ

′
1). Note that the healthy fish stock gradually

declines (see Fig. 5.5) in the range 0.26 < τ < 0.64, but the revenue earned by selling them
still increases due to increasing fish price in this stable range of the endemic equilibrium point,
ξ4. Thus, the total revenue becomes positive by compensating for the loss incurred from the
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infected fish. The societal revenue is maximum (Γ = 0.167 M$/year) at τ = 0.64 M$/metric
tonne. Furthermore, the revenue earned by selling the healthy fish and the maximum loss
incurred from the infected fish occurs at the same value of τ . Stability is lost if τ exceeds this
optimal value. Noticeably, there is no trade-off between the fishing tax and revenue earnings. A
comparative study showing equilibrium points and revenues under various heads is presented
in Table 5.2.

Figure 5.7: Plots of the societal revenue Γ (solid black line), revenue from fishing Γ1 (solid red
line), and revenue earned from the fishing tax Γ2 (solid blue line) for different values of τ . Red
dotted, and red dashed lines indicate the fishermen’s earnings from the susceptible fish (Γ

′
1) and

infected fish (Γ
′′
1), respectively. Parameters are as in Fig. 5.5.

Table 5.2: This table compares various earnings from the fishery at the equilibrium states ξ3 and
ξ4 for some particular fishing taxes with annual discount rate δ = 0.08. Other parameters are
as in Fig. 5.7. Observe that maximum societal benefit occurs in the endemic state at τ = 0.64
M$/MT. For the disease-free equilibrium, the societal benefit is maximum at τ = 0.26 M$/MT,
and the same for the endemic equilibrium occurs at τ = 0.64 M$/MT.

τ X̂ Ŷ Ĥ P̂ Γ
′
1 Γ

′′
1 Γ1 = Γ

′
1 +Γ

′′
1 Γ2 Γ = Γ1 +Γ2

M$/MT MT MT SFU M$/MT M$/year M$/year M$/year M$/year M$/year
0 4.27 0 1.36 0.12 0.068 0 0.068 0 0.068
0.02 4.32 0 1.27 0.14 0.063 0 0.063 0.011 0.074
0.15 4.53 0 0.91 0.27 0.045 0 0.045 0.058 0.103
0.26 4.63 0 0.72 0.38 0.036 0 0.036 0.082 0.118
0.35 3.66 0.81 0.60 0.58 0.054 -0.023 0.031 0.108 0.139
0.5 2.96 1.42 0.47 0.92 0.068 -0.044 0.024 0.129 0.153
0.64 2.61 1.74 0.39 1.25 0.076 -0.056 0.020 0.147 0.167
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5.6 Discussion

Fish harvesting is a social-ecological interaction where human and nonhuman species (includ-
ing the harvested and non-harvested species) interact. Such social-ecological systems are dy-
namic and complex [204]. The complexity may multiply if the social-ecological phenomenon
of interest is connected with the economic ingredients. In this work, we have studied such an
extended social-ecological-economic interaction by coupling the social-ecological interaction
of fish harvesting in the presence of infection with the fish market price, where the demand and
supply of the fish determine the latter. The objective is deciphering how market demand con-
trols fish, fisheries and infection. Whether there is any emerging dynamic due to the extension
of the social-ecological system to the social-ecological-economic system is another important
objective of this chapter.

For this, we have considered a bioeconomic fishery model, where an infectious disease of
SI type circulates. Various assumptions are made to make the model realistic and to reduce the
knowledge gap. For example, we have considered nonlinear saturated harvesting, a nonlinear
price-dependent saturated demand function, different prices for healthy and infected fish from
the actual market scenario, and fishing tax. A fishing tax levied on landed fish is an effective
control measure against overfishing. The regulatory tax helps to reduce harvesting pressure and
can help maintain a sustainable fishery with healthy fish. Our one-parameter bifurcation result
shows (see Fig. 5.5) that increasing the fishing tax may help disease spreading by reducing the
harvesting effort. An increased fish price may also cause periodic oscillations in the fish stock
and its price. Such periodic solutions are undesirable because they provoke periods of minimal
fish density close to extinction and weak fishing activity.

The two-parameter bifurcation results of the tax, τ , plotted with the maximum demand A

and the transmission rate λ , demonstrate the broader dynamics of the system. It reveals that for
a given maximum demand A or transmission rate λ , it would be possible to choose a level of
taxation that stabilizes the fishery and eliminates infection. The bifurcation results thus provide
insights into how to deal with the multi-difficulties of fisheries and how economic dynamics
can significantly affect maintaining a sustainable fishery with healthy fish.

Furthermore, an increased fishing tax may negatively affect the fishery if it is excessively
high. Income from fishery may reduce significantly, and the fishers may opt out of the fishery
due to overfishing tax. This may aggravate the poor socioeconomic condition of the local
people, particularly in low-income countries, where an alternative livelihood is challenging
to find. Therefore, the regulatory authority should levy a tax more scientifically rather than
imposing it abruptly. An optimal tax calculation may be helpful in such a decision-making
process. Some studies demonstrate that there exists a trade-off between fishing tax and revenue
generation [91]. However, this study shows that there is no such trade-off. The tax revenue
levied by the regulating authority and the societal revenue increase with increasing tax. Fisher’s
income, however, decreases with increasing fishing tax. It is minimum at the disease-free state
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when there is no tax, but the former two earnings are maximum at the endemic state before
the system shifts to the unstable state. The nonexistence of a trade-off between fishing tax and
revenue generation is attributed to the saturated type demand.

Overharvesting is the primary cause of uncontrolled fishing. It is reported that such over-
harvesting may cause a regime shift in many fisheries [136]. Some studies have shown an-
thropogenic causes as the driver of the marine regime shifts [138]. These studies, however,
do not consider the economic concept of demand and supply. Some recent papers [182, 232]
have reported catastrophic changes in fish stock when the price is considered a time-varying
state equation. In these studies, the price is considered in a fast time scale, allowing the price
to quickly adjusted and settle at the equilibrium value. Such a slow-fast time scale reduces
the system dimension. One can perform a similar slow-fast study for our model. In this case,
however, the system may arrive at an equilibrium where fish biomass is zero, but the effort is
nonzero. And the reduced system will not have an equilibrium where fish biomass is nonzero,
but the effort is zero. This happens due to the system’s transformation to a slow time scale
treating price as a constant. The equilibrium price will then grow unboundedly as the fish
biomass tends to zero. However, one may find it challenging to think of a natural fishery where
an equilibrium of the form (X = 0,H ̸= 0) exists and becomes stable, but an equilibrium of the
form (X ̸= 0,H = 0) never exists. Our study is a generalization of these studies [182, 232] and
does not allow such equilibria.

The demand parameter A plays a vital role in the dynamics of social-ecological-economic
interaction. Demand can make the system stable from its unstable state. It also plays a role
in removing the infection from the system. Increasing demand corresponds to increased har-
vesting effort, which helps eliminate the disease. On the contrary, the negative side of high
demand could be severe. There may be a drastic change in the system’s behaviour. A regime
shift from a harvested state to a non-harvested state may occur in the system, causing an im-
balance between demand and supply and the people’s socioeconomic condition associated with
the fishery. The non-harvesting regime, where the price is unbounded, is not observed in any
other bifurcation results where A is not one of the bifurcation parameters. Overexploitation is
known to cause a regime shift in a fishery. But demand may also contribute to such regime
shift was unreported earlier. One reason is that earlier harvesting models were not coupled
with the economic concept of demand and supply. Thus, reducing harvesting pressure may
not be sufficient to protect fisheries from collapse if other mechanisms also contribute to the
process. Therefore, understanding and managing regime shift is a global challenge [313]. The
controlling agency should take appropriate measures to minimize the socioeconomic imbal-
ance caused by excessive demand. Such a demand-induced regime shift could be avoided if
the gap between demand and supply is minimized, which is a fundamental economic problem.
Understanding various causes or mechanisms of sudden shifts in the system’s state will help
us protect and sustain our renewable marine resources. However, translating the regime shift
theory for its application may be an arduous task [314].
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There is a major drawback to the chapter since it only examines a single species of fish-
ery, but the majority of fisheries contain predator and prey species. Predator-prey fisheries are
important for ecological significance, promoting biodiversity, maintaining ecological balance,
and triggering trophic cascades. It also has economic value, sustains fisheries, and provides es-
sential ecosystem services. Understanding and managing these interactions are vital for marine
ecosystem health and human well-being. Therefore, in Chapter 6, we present and analyze a har-
vesting model that integrates ecological interactions of predators and prey fish with ecotourism
and open market economies.



6
An ecological-economic fishery model:

Maximizing the societal benefit through an
integrated approach of fishing and

ecotourism1

6.1 Introduction

Ecotourism is one of the leading and potential branches of the tourism industry because of its
significant role in sustainable development [194, 195, 196]. Ecotourism was advocated in 1968
when Hetzer [197] integrated culture, education, and tourism in a string, later becoming a pillar
of conservation and sustainable development. According to The International Ecotourism So-
ciety (TIES), ecotourism is a liable excursion into the natural environment that must conserve
the area’s ecology, maintain the territorial inhabitant’s prosperity, and the consciousness to pre-
serve the ecosystem [198]. Recreational fishing and non-extractive recreational activities may
be an integral part of ecotourism. Coral reef ecotourism and fishing are one of the most impor-
tant nature-based tourism having potential ecological and economic value [199, 200]. Marine
wildlife, including marine mammals, may be another potential player in the modern fishery that
could play a significant role in achieving the goal of fishery-based ecotourism [201, 202, 203].

1The bulk of this chapter has been published in Mathematical Methods in the Applied Sciences, DOI:
https://doi.org/10.1002/mma.9356, (2023).
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One of the ecotourism principles is providing direct financial benefits for conservation. For this,
tourist entry fees at the ecotourism spot may be one step forward to maintaining the preservation
of the tourist spot and the economic development of the people associated with such program
[8].

Fishing is a major and sustainable livelihood. According to the recent report of the Food and
Agriculture Organization (FAO) [294], almost 38.98 million people make a living by fishing,
and the 7% source of global protein comes from seafood. Over the last fifty years, the produc-
tion of fish has become quadruplicated, and the average fish consumption reaches almost twice
that compared to half a century ago. About 38 fish species with 90 fish stock faced rapid col-
lapse in the last five years of the 20th century [128]. International Ocean Management (IOM)
was established by the United Nations Sustainable Development Goals (UNSDG) to ensure a
healthy and wealthy sea for the sustainable use of marine resources [315]. A prime objective
of today’s global fishery is to support the blue economy, which advocates the use of marine
ecosystems sustainably for economic development, improvement of livelihood of local people,
and overall national development while preserving the marine health [316, 317, 318, 319]. The
fishermen usually exhibit consolidated interest in economic incentives rather than taking care
of the species depletion. It is, therefore, essential for the controlling agency to impose some
kinds of restrictions for regulated harvesting. For instance, many developed countries applied
to catch share management systems (CSMS) to bring flexibility and accountability in fisheries
involving the stakeholders [320, 321, 322]. Enforcement of a fishing tax is a significant foot-
step toward CSMS [189]. Such policy is effectively implemented in Iceland for both the inland
and marine fishes [192].

6.1.1 Empirical example

Chilika, located in Odisha state of eastern India between the latitude 19◦20
′
13.06

′′−19◦54
′
47.02

′′

to longitude 85◦06
′
49.15

′′−85◦35
′
32.87

′′
, is the largest lagoon in Asia. This lagoon is fed with

freshwater by three rivers and connected with the salty water of the Bay of Bengal [323]. De-
pending on the season, this brackish water lagoon extends over an area between 906 and 1165
km2 and contains a large variety of 318 fish species and a home for migratory birds [323]. Chi-
lika lagoon provides the livelihood of 200000 fishers [324]. The actual fin fish catch from 2011
to 2015 is 7456.02, 7114.3, 7699.71, and 7146.77 tonnes, giving an average fish catch of 7354.2
tons per year [325]. However, the total fish production has decreased from 12714.95 tonnes in
2016-17 to 9406.0 tonnes in 2020-21 [326]. Irrawaddy dolphin (Orcaella brevirostris), enlisted
as endangered species globally, is a resident of this lagoon and is a top predator of this species-
enriched ecosystem. According to the 2007 census, there are 138 dolphins in this lagoon. Out
of them, 115 were adults, 17 adolescents, and six calves [327]. Chilika lagoon is only 37 km
away from Puri, one of the holiest places of Hindu pilgrimages, and the most attractive sea
beaches in India [113]. Due to its geographical advantage, the Chilika lagoon is a hotspot for
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ecotourism. Dolphin watching in a boat is an attraction for tourists in Chilika, and many visitors
take a boat ride to watch dolphins. Local cooperatives regulate this tourism [328]. According
to a survey report conducted during 2010-2011, the average charge for dolphin-watching was
US$7 per person for an average watching time of 2 hr 55 minutes [329]. The average annual
tourist number was 154,036 in the survey period [329], making a revenue of US$1,078,000
annually. Similar empirical phenomena are also observed in many fishery-related ecotourism
spots [330, 114]. However, such combined activities always lack proper management for re-
source sustainability and revenue generation [115]. Therefore, a scientific evaluation of the
integrated ecological-economic issues is vital for the maximum economic benefit while pre-
serving aquatic resources.

Different theoretical models are studied to explore the effect of tourism on an open-access
fishery [110, 331, 332, 91]. Some other models [268, 267, 270, 90, 282] consider the opti-
mal fishing tax to restrict the over-harvesting of renewable resources. Coupling fishing-based
tourism with the optimal fishing tax may be more challenging and essential from a socioeco-
nomic viewpoint. Here we integrated a harvested predator-prey model with prey harvesting
and ecotourism activity involving the predatory fish. From a realistic viewpoint, we assume
that fish harvesting is nonlinear and saturates at higher fish density. The variation in the fish-
ing effort and fish price depends on the market’s demand and supply of the harvested fish. A
fishing tax regulates overfishing. The tourist entry depends on the recreational fish abundance
and the entrance fee. Our stability analysis shows that three equilibrium states are ecologically
and economically important. We provide their local stability and prove the global stability of
the most crucial interior equilibrium point. Using Pontryagin’s maximum principle, the tax
was optimized for maximizing the equilibrium societal revenue. It is shown that there exists an
optimal tax level where every stakeholder will be in a win-win situation.

The rest of the chapter follows the following order. A two-species ecological-economic
predator-prey harvesting model is proposed in the next Section 6.2. Mathematical results like
positivity, boundedness of the solutions, and local & global stability of the equilibrium points
are presented in Section 6.3. It also contains the optimal fishing tax determination result. The
simulation results are given in Section 6.4. The chapter ends with a discussion in Section 6.5.

6.2 Model construction

Consider the interaction between prey and its generalist predator, where the predators are the
marine mammals (dolphins, sharks, whales) and prey is the smaller fish (like krill, shrimp,
squid, mackerel, catfish, etc.). The growth equation of such interacting species in the absence
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of harvesting and ecotourism can be represented by [91]

dX
dt

= ρ1X
(

1− X
K1

)
−η1XY, (6.1)

dY
dt

= ρ2Y
(

1− Y
K2

)
+η2XY,

where (X ,Y ), respectively, indicate the biomass of prey fish and predatory fish at time t, (ρ1,ρ2)

are their respective intrinsic growth rates and (K1,K2) are the levels of carrying capacities
supported by the environment. The marine predator is usually of generalist type [91], who feeds
on other prey, including the focal prey. In the absence of focal prey, the predator maintains
its growth logistically. The focal prey’s consumption contributes to the predator’s additional
growth, as represented in the model system (6.1).

Per unit effort harvesting may not be infinite even when there is plenty of fish. So we
assume that the prey fish harvest reaches a finite value when fish stock is large and, therefore,
consider a nonlinear saturated catch function. In such a case, the amount of harvested stock per
unit of time can be represented by [142]

H (X ,H) =
ξ XH

X +D1
,

where ξ is the catchability coefficient and D1 as the half-saturation level.
The tourist number N is presumed to depend on the level of predatory fish Y and tourist

entry fee, b. It is usually assumed that the number of tourists exponentially decays with the
entry fee [333]. Then the number of tourists N at any time t can be expressed as [110]

N (Y ) = N0Y ae−bg,

where N0 is a proportionality constant and g is a sensitivity parameter, which measures the
tourist’s sensitivity to the entry fee. Here a is a controlling parameter, which determines how
the tourist number depends on the predatory fish level. For example, a = 0,1,> 1,< 1 imply,
respectively, no dependency on the predatory fish level, depends linearly on the predatory fish
level, Y , or at a faster rate than Y , or a slower rate than the level Y . Then the growth equation
of each species in the presence of harvesting and ecotourism can be written as

dX
dt

= ρ1X
(

1− X
K1

)
−η1XY −H (X ,H), (6.2)

dY
dt

= ρ2Y
(

1− Y
K2

)
+η2XY −βN (Y )Y.

We now further assume that the harvesting effort H applied to catch prey fish at any time
t varies with the profit margin, which is defined by the income from fish selling minus the
incurred cost for making use of an effort H. If M is the per unit market price of fish and τ is
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the fixed fishing tax levied on the per unit of landed fish, then the per unit net selling price of
fish is (M − τ). In an open market, the per capita fish price at any time t is balanced by the
difference between demand and supply of fish at that time. If Φ is the maximum demand and r

is the rate at which demand decreases linearly with increasing price, then the demand (D) has
a mathematical expression [139]

D(M) = Φ− rM.

Based on these assumptions, one can formulate the following predator-prey fishery model in
the presence of ecotourism and prey fish harvesting with a fishing tax:

dX
dt

= ρ1X
(

1− X
K1

)
−η1XY −H (X ,H),

dY
dt

= ρ2Y
(

1− Y
K2

)
+η2XY −βN (Y )Y,

dH
dt

= α1

(
H (X ,H)(M− τ)−κH

)
, (6.3)

dM
dt

= α2M
(

D(M)−H (X ,H)

)
.

All parameters are positive from ecological and economic viewpoints. The assumptions of
this model well-fit the ecological and economic interface of Chilika lagoon. The system (6.3)
involving only the first two equations with catch per unit effort (CPUE) harvesting H (X ,H) =

qXH was considered in [91] to describe the importance of optimal tourist entrance fee for
sustainable development. Predator-prey model with CPUE harvesting has been considered in
other studies [334]. Krishna et al. [183] studied a similar version of the above model involving
the first three equations with the underline modified Lotka-Volterra type predator-prey model
to maximize the income from fishing through optimal taxation. They did not consider the
effect of ecotourism and variation in the market price following open market policy. Using the
method of aggregation of variables, Auger et al. [139] studied the effects of market price on the
dynamics of a reduced dimension fishery model with a price equation without considering the
tax policy and ecotourism. Bioeconomic models of a fishery with saturated catch and variable
price were considered in many other studies [142, 184, 208]. These papers, however, ignored
the concept of ecotourism and its effect on socioeconomic development. Here we integrate the
idea of taxation, ecotourism, and market-based price variation of the harvested fish and then
analyze it to demonstrate the ecological and economic effects of fishing tax and some other
parameters.
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6.3 Mathematical results

6.3.1 Positivity and boundedness

The following positivity and boundedness results of the system (6.3) can be proved as in lemma
2.1.

Lemma 6.1. Under the initial value (X0,Y0,H0,M0)∈R4,0
+ , every solution (X(t),Y (t),H(t),M(t))

of the system (6.3) is positive and uniformly bounded in GL , where

GL = {(X ,Y,H,M) : 0<X < ζ + ε̂, 0<M < ζ̂ + ε̃, 0< S(X ,Y,H,M)< s2
s1
+ε, for any positive

ε̂, ε̃,ε}, where s1 = min{ ρ1
K1
,
(

ρ2
K2

+η1
)
,α2ξ ,α2r}, s2 = ρ1 +ρ2 +α2Φ+η2ζ + ξ ζ̂ and ζ =

max{X0,K1}, ζ̂ = max{M0, K̂1}.

6.3.2 Equilibrium points and their local stabilities

System (6.3) contains nine equilibrium points:

1. The zero equilibrium E0 = (0,0,0,0).

2. The only market price equilibrium E1 = (0,0,0, Φ

r ).

3. The only predatory fish equilibrium E2 = (0,Y2,0,0), where Y2 is the positive root of the
equation

βN0Y (a+1)e−bg +
Y
K2

−1 = 0. (6.4)

4. Predatory fish and price equilibrium E3 = (0,Y3,0, Φ

r ), where Y3 is again the positive root
of (6.4).

5. The only prey equilibrium E4 = (K1,0,0,0).

6. The prey species and its market price equilibrium E5 = (K1,0,0, Φ

r ).

7. The predatory fish-free equilibrium E6 = (X6,0,H6,M6), where

H6 =
ρ1(X6 +D1)(K1 −X6)

ξ K1
,M6 =

1
r

(
Φ−ρ1X6

(
1− X6

K1

))
,

and X6 is the positive root of the equation

ξ ρX3
6 −ξ ρX2

6 +(ξ Φ−κK1r−ξ rτK1)X6 −κrK1D1 = 0.

Note that there is a unique positive root of X6 if ξ Φ−κK1r−ξ rτK1 < 0.
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8. The harvesting effort-free equilibrium E7 = (X7,Y7,0, Φ

r ), where

X7 =

(
1+

Y7η1

ρ1

)
K1,

and Y7 is the positive root of the equation

ρ1N0βK2e−bgY a
7 − (ρ1ρ2 +η1η2K1K2)Y7 +ρ1K2(ρ2 −η2K1) = 0.

9. The coexisting equilibrium point E∗ = (X∗,Y ∗,H∗,M∗), where

X∗ =
1

η2

{
ρ2

(
Y ∗

K2
−1
)
+N0Y ∗a

β e−bg
}
,

M∗ = τ +
κ

ξ

 D1 η2

ρ2

(
Y ∗
K2

−1
)
+N0Y ∗a β e−bg

+1

 ,

H∗ =
(M∗− τ)

κ

Φ− r

τ +
κ

ξ

 D1 η2

ρ2

(
Y ∗
K2

−1
)
+N0Y ∗a β e−bg

+1


,

and Y ∗ is the positive root of the equation

C1Y ∗(3a)−C2Y ∗(2a+1)−C3Y ∗(2a)+C4Y ∗(a+2)−C5Y ∗(a+1)+C6Y ∗(a)+C7Y ∗3

−C8Y ∗2 −C9Y ∗−C10 = 0, (6.5)

where
C1 = K2

3N0
3β 3ρ1ξ , C2 = K2

2 N0
2 β 2 ξ ebg(3ρ1 ρ2 +K1 K2 η1 η2), C3 = ρ1β 2N2

0 ξ K3
2 ebg

(K1η2 +3ρ2), C4 = K2N0βρ2ξ e2bg(3ρ1ρ2 +2K1K2 η1 η2), C5 = 2K2
2 N0 βρ2ξ e2bg

(3ρ1ρ2+ K1K2 η1 ρ2+ K1 η2 ρ1), C6 = K2
3 N0 βe2bg(3ρ1 ρ2

2 ξ +K1 Φη2
2 ξ −K1 η2

2 κ r+

2K1 η2 ρ1 ρ2 ξ −K1 η2
2 r τ ξ ), C7 = ξ e3bg ρ2

2(ρ1ρ2K1 K2 η1 η2), C8 =K2ρ2
2 ξ e3bg(3ρ1ρ2+

K1 η2 ρ1+2K1 η1 η2),C9 =K2
2 ρ2e3bg+K1 η2

2 κ r−2K1 η2 ρ1ρ2 ξ −K1 Φη2
2 ξ −3ρ1 ρ2

2 ξ −
K1 K2 η1 η2 ρ2 ξ +K1 η2

2 r τ ξ , C10 =K2
3 e3bg+ ρ1 ρ2

3 ξ +K1 η2 ρ1 ρ2
2 ξ +D1 K1 η2

3 κ r+

K1 Φη2
2 ρ2 ξ −K1 η2

2 κ r ρ2 −K1 η2
2 r ρ2 τ ξ .

Acknowledging the analytical complexities for the nontrivial solutions of the equations (6.4)
and (6.5), we will go for the numerical computations of these equations in the simulation sec-
tion. Note that the equilibrium components of E∗ contain the fishing tax parameter τ . Once we
determine the optimal tax value τ = τ∗, then the equilibrium E∗(τ∗) is said to be an optimal
equilibrium [183].

The equilibrium point should be locally stable for obtaining a viable optimal policy with
respect to some equilibrium. We use the linearization technique to determine the local stability
of these equilibrium points. The Jacobian matrix of the nonlinear system (6.3) evaluated at an
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arbitrary equilibrium point Ê = (X̂ ,Ŷ , Ĥ,M̂) is evaluated as

J =



− ξ D1H
(D1+X)2 −ρ1

(
2X
K1

−1
)

−X η1 − X ξ

D1+X 0

−Y η1

Y η2 X η2 −ρ2

(
2Y
K2

−1
)

0 0

−N0 Y a β e−bg (a+1)

α1

(
H D1 ξ (M−τ)

(D1+X)2

)
0 −α1

(
κ − X ξ (M−τ)

D1+X

)
H X α1 ξ

D1+X

− ξ α2D1HM
(D1+X)2 0 −M X α2 ξ

D1+X −α2
(
Mr−Φ+

ξ XH
D1+X

)
−α2rM


(X̂ ,Ŷ ,Ĥ,M̂)

.(6.6)

From the eigenvalues of this matrix, one can easily prove the following theorem.

Theorem 6.2. (i) The equilibrium points E0 = (0,0,0,0), E1 = (0,0,0, Φ

r ), E2 = (0,Y2,0,0),
E4 = (K1,0,0,0), E5 = (K1,0,0, Φ

r ), and E6 = (X6,0,H6,M6) are always unstable.

(ii) The equilibrium E3 = (0,Y3,0, Φ

r ) is locally asymptotically stable if the relation ρ1 < Y3 η1

is satisfied, otherwise it is unstable.

(iii) The equilibrium E7 = (X7,Y7,0, Φ

r ) is locally asymptotically stable if the condition κ >
X7 ξ (Φ

r −τ)
D1+X7

holds.

(iv) Whenever the equilibrium point E∗ = (X∗,Y ∗,H∗,M∗) exists, it is locally asymptotically

stable if B1 > 0,B3 > 0,B4 > 0 and B1B2B3 > (B2
3 +B2

1B4), where B1,B2,B3 and B4

are given in (6.11).

Proof. (i) At the zero equilibrium point E0 = (0,0,0,0), the Jacobian matrix (6.6) becomes

J(0,0,0,0) =


ρ1 0 0 0
0 ρ2 0 0
0 0 −α1 κ 0
0 0 0 Φα2

 . (6.7)

There exists three positive eigenvalues corresponding to the Jacobian matrix (6.7), namely,
ρ1,ρ2 and Φα2 and hence, the equilibrium point E0 = (0,0,0,0) is always unstable. Similarly,
there exists two positive eigenvalues ρ1,ρ2 for the equilibrium point E1 = (0,0,0, Φ

r ), one pos-
itive eigenvalue α2Φ for both the equilibrium points E2 = (0,Y2,0,0) and E4 = (K1,0,0,0),
making these equilibrium points unstable. Each of the equilibrium point E5 = (K1,0,0, Φ

r ) and
E6 = (X6,0,H6,M6) has one positive eigenvalue ρ2+X6 and ρ2+X7, respectively. Hence, each
of these equilibrium points is always unstable.

(ii) The variational matrix at the equilibrium E3 = (0,Y3,0, Φ

r ) is

J(0,Y3,0,
Φ

r
) =


ρ1 −Y3 η1 0 0 0

Y3 η2 −ρ2Y3
K2

−aN0Y a
3 β e−bg 0 0

0 0 −α1 κ 0
0 0 0 −Φα2

 .
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Here eigenvalues are −Φα2(< 0), −α1 κ(< 0), − ρ2Y3
K2

−aN0Y a
3 β e−bg(< 0), and ρ1−Y3 η1.

Thus, the equilibrium point E3 = (0,Y3,0, Φ

r ) is locally asymptotically stable if ρ1 < Y3 η1,
otherwise it is unstable.

(iii) At the equilibrium E7 = (X7,Y7,0, Φ

r ), one can obtain the Jacobian matrix as

J(X7,Y7,0,
Φ

r
) =


−ρ1X7

K1
−X7 η1 − X7 ξ

D1+X7
0

Y7 η2 −ρ2Y7
K2

−aN0Y a
7 β e−bg 0 0

0 0 −α1

(
κ − X7 ξ (Φ

r −τ)
D1+X7

)
0

0 0 − ΦX7 α2 ξ

r(D1+X7)
−Φα2

 .

Two eigenvalues of the above matrix are λ1 = −Φα2 and λ2 = −α1

(
κ − X7 ξ (Φ

r −τ)
D1+X7

)
. Here

λ1 is always negative, and λ2 < 0 if κ >
X7 ξ (Φ

r −τ)
D1+X7

. The other two eigenvalues are the roots of
the equation

λ
2 +A1λ +A2 = 0, (6.8)

where

A1 =
e−bg (K2 X7 ρ1 ebg +K1Y7 ρ2 ebg +K1 K2 N0Y a

7 aβ
)

K1 K2
,

A2 =
X7 e−bg (Y7 ρ1 ρ2 ebg +K2 N0Y a

7 aβ ρ1 +K1 K2Y7 η1 η2 ebg)
K1 K2

.

Since A1 and A2 are positive, both roots of the Eq. (6.8) are either real negative or complex
conjugates with negative real part. Therefore, the equilibrium point E7 =(X7,Y7,0, Φ

r ) is locally

asymptotically stable under the condition κ >
X7 ξ (Φ

r −τ)
D1+X7

.
(iv) Suppose an interior equilibrium E∗ = (X∗,Y ∗,H∗,M∗) of the system (6.3) exists. The

corresponding Jacobian matrix is evaluated as

J(X∗,Y ∗,H∗,M∗) =


a11 a12 a13 0
a21 a22 0 0
a31 0 0 a34

a41 0 a43 a44

 , (6.9)

where
a11 =− ξ X∗H∗

(D1+X∗)−
ρ1X∗

K1
,a12 =−X∗η1,a13 =− X∗ ξ

D1+X∗ ,a21 =Y ∗η2,a22 =−ρ2Y ∗

K2
−aN0Y ∗a β e−bg,

a31 =α1

(
H∗ D1 ξ (M∗−τ)

(D1+X∗)2

)
,a34 =

H∗X∗α1 ξ

D1+X∗ ,a41 =−ξ α2D1H∗M∗

(D1+X∗)2 ,a43 =−M∗ X∗ α2 ξ

D1+X∗ ,a44 =−α2rM∗.
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The characteristic equation then reads

λ
4 +B1λ

3 +B2λ
2 +B3λ +B4 = 0, (6.10)

where

B1 = −(a11 +a22 +a44),

B2 = a11 a22 −a12 a21 −a13 a31 +a11 a44 +a22 a44 −a34a43, (6.11)

B3 = a13 a22 a31 −a11 a22 a44 +a12 a21 a44 +a13 a31 a44 −a13 a34a41 +a11a34a43 +a22a34a43,

B4 = −a13 a22 a31 a44 +a13 a22 a34 a41 −a11a22a34a43 +a12a21a34a43.

All roots of (6.10) have negative real parts [259] and the locally asymptotically stability of E∗

is assured if B1 > 0,B3 > 0,B4 > 0 and B1B2B3 > (B2
3 +B2

1B4).

6.3.3 Global stability of E∗

In this section, we want to observe the basin of attraction of the most significant equilibrium
point E∗, where all state variables coexist. If R4,0

+ is the basin of attraction of E∗, it is said to
be globally asymptotically stable. The method of Lyapunov function [260] is the most well-
known scheme for the global study of an equilibrium point. But there are several constraints
to constructing a Lyapunov function and its subsequent analysis to show that the considered
function is negative definite for a complex system, like (6.3). The high-dimensional Bendixson
criterion [261] may be an alternative method for such a study. If the conditions of the following
theorem hold, then the equilibrium E∗ is globally asymptotically stable.

Theorem 6.3. Suppose the equilibrium E∗ exists. If

ν = max
{

β11 +
β14ω1

ω4
, β22 +β23ω2 +

β24ω2

ω4
,

β32

ω2
+β33 +

β35

ω4
+

β36

ω5
,

β41ω3

ω1
+

β42ω3

ω2
+

β44ω2

ω3
+

β45ω3

ω4
,
β51ω4

ω1
+β53ω4 +

β54ω4

ω3
+β55,

β62ω5

ω2
+β63ω5 +β66

}
< 0, (6.12)

then the system (6.3) can not exhibit any non-trivial periodic solution. Furthermore, the coex-

isting equilibrium point E∗ is globally asymptotically stable in R4,0
+ .

Proof. Let us assume O be an open subset of R4,0
+ and consider the function F : X →

F (X ) ∈ R4,0
+ which is a differentiable and have continuous gradient on X ∈ O. Presume

the system (6.3) as

dX

dt
= F (X ), (6.13)
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where X =(X ,Y,H,M)T and F (X )=

[
ρ1X

(
1− X

K1

)
−η1XY −H (X ,H), ρ2Y

(
1− Y

K2

)
+

η2XY −βN (Y )Y, α1

(
H (X ,H)(M− τ)−κH

)
, α2M

(
D(M)−H (X ,H)

)]T

.

One can utilize the high-dimensional Bendixson criterion by showing that the second addi-
tive compound matrix

dZ

dt
=

∂F

∂X

[2]

(X (t,X0))(Z (t)) (6.14)

at a solution X (t,X0) ∈ O of Eq. (6.13) is equi-uniformly asymptotically stable [262, 263].
The second additive compound matrix for the variational matrix

∂F

∂X
=


α11 α12 α13 0
α21 α22 0 0
α31 0 α33 α34

α41 0 α43 α44

 ,

where
α11 =− ξ D1H

(D1+X)2 −ρ1

(
2X
K1

−1
)
−Y η1, α12 =−X η1, α13 =− X ξ

D1+X , α21 =Y η2, α22 =X η2−

ρ2

(
2Y
K2

−1
)
−N0Y a β e−bg (a+1), α31 =α1

(
H D1 ξ (M−τ)

(D1+X)2

)
, α33 =−α1

(
κ − X ξ (M−τ)

D1+X

)
, α34 =

H X α1 ξ

D1+X , α41 =−ξ α2D1HM
(D1+X)2 , α43 =−M X α2 ξ

D1+X , α44 =−α2

(
Mr−Φ+ ξ XH

D1+X

)
−α2rM,

will be a
(4C2 ×4 C2

)
= (6×6) matrix and that can be represented as [208]

∂F

∂X

[2]

=



α11 +α22 0 0 −α13 0 0
0 α11 +α33 α34 α12 0 0
0 α43 α11 +α44 0 α12 α13

−α31 α21 0 α22 +α33 α34 0
−α41 0 α21 α43 α22 +α44 0

0 −α41 α31 0 0 α33 +α44


.

The region contained in any compact two-dimensional space in O falls exponentially if the
system (6.13) exhibits equi-uniform asymptotic stability nature. However, there can’t exist
any invariant simple closed rectifiable curve within O, including periodic orbits, if O is simply
connected. Thus, one can obtain the following proposition.

Proposition 6.4. Consider a simply connected region O ⊂ R4,0
+ . Assume that the family of

nonlinear system (6.13) is equi-uniformly asymptotically stable. Then, if O is positively invari-

ant and contains a unique coexisting equilibrium point E∗, then E∗ is globally asymptotically

stable in O.
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One can write the second compound system (6.14) as

(ζ̇1, ζ̇2, ζ̇3, ζ̇4, ζ̇5, ζ̇6)
T =

∂F [2]

∂X
(ζ1,ζ2,ζ3,ζ4,ζ5,ζ6)

T ,

where

ζ̇1 =

[
ρ1

(
1− 2X

K1

)
− ξ D1H

(D1 +X)2 −Y η1 +X η2 +ρ2

(
1− 2Y

K2

)
−N0Y a

β e−bg (a+1)
]

ζ1 −[
X ξ

D1 +X

]
ζ4,

ζ̇2 =

[
ρ1

(
1− 2X

K1

)
− ξ D1H

(D1 +X)2 −Y η1 −α1

(
κ − X ξ (M− τ)

D1 +X

)]
ζ2 +

[
H X α1 ξ

D1 +X

]
ζ3 − [X η1]ζ4,

ζ̇3 =

[
−M X α2 ξ

D1 +X

]
ζ2 +

[
ρ1

(
1− 2X

K1

)
− ξ D1H

(D1 +X)2 −Y η1 −α2

(
Mr−Φ+

ξ XH
D1 +X

)
−α2rM

]
ζ3 − [η1X ]ζ5 −

[
ξ X

X +D1

]
ζ6,

ζ̇4 = −

[
α1

(
H D1 ξ (M− τ)

(D1 +X)2

)]
ζ1 +[Y η2]ζ2 −

[
X η2 −ρ2

(
2Y
K2

−1
)
−N0Y a

β e−bg (a+1) (6.15)

−α1

(
κ − X ξ (M− τ)

D1 +X

)]
ζ4 +

[
H X α1 ξ

D1 +X

]
ζ5,

ζ̇5 =

[
ξ α2D1HM
(D1 +X)2

]
ζ1 +[Y η2]ζ3 −

[
M X α2 ξ

D1 +X

]
ζ4 +

[
X η2 −ρ2

(
2Y
K2

−1
)
−N0Y a

β e−bg (a+1)−

α2

(
Mr−Φ+

ξ XH
D1 +X

)
−α2rM

]
ζ5,

ζ̇6 =

[
ξ α2D1HM
(D1 +X)2

]
ζ2 +

[
α1

(
H D1 ξ (M− τ)

(D1 +X)2

)]
ζ3 +

[
−α1

(
κ − X ξ (M− τ)

D1 +X

)
−α2

(
Mr−Φ+

ξ XH
D1 +X

)
−α2rM

]
ζ6.

Construct the set

W (Z ) = max{ω1|ζ1|,ω2|ζ2|, |ζ3|,ω3|ζ4|,ω4|ζ5|,ω5|ζ6|}.

Then at the coexisting equilibrium point E∗(X∗,Y ∗,H∗,M∗), the succession of system (6.15)
can be written in the following inequality forms

d+

dt
ω1|ζ1| ≤ β11ω1|ζ1|+

β14ω1

ω4
ω4|ζ4|,

d+

dt
ω2|ζ2| ≤ β22ω2|ζ2|+β23ω2|ζ3|+

β24ω2

ω4
ω4|ζ4|,

d+

dt
|ζ3| ≤

β32

ω2
ω2|ζ2|+β33|ζ3|+

β35

ω4
ω4|ζ5|+

β36

ω5
ω5|ζ6|, (6.16)



6.3. Mathematical results 151

d+

dt
ω3|ζ4| ≤

β41ω3

ω1
ω1|ζ1|+

β42ω3

ω2
ω2|ζ2|+

β44ω2

ω3
ω3|ζ4|+

β45ω3

ω4
ω4|ζ5|,

d+

dt
ω4|ζ5| ≤

β51ω4

ω1
ω1|ζ1|+β53ω4|ζ3|+

β54ω4

ω3
ω3|ζ4|+β55ω4|ζ5|,

d+

dt
ω5|ζ6| ≤

β62ω5

ω2
ω2|ζ2|+β63ω5|ζ3|+β66ω5|ζ6|,

where d+

dt indicates the right-hand derivative, and
β11 =− ξ X∗H∗

(D1+X∗) −
ρ1X∗

K1
+−ρ2Y ∗

K2
−aN0Y ∗a β e−bg,β14 =

X∗ ξ

D1+X∗ ,β22 =− ξ X∗H∗

(D1+X∗) −
ρ1X∗

K1
,

β23 =
H∗X∗α1 ξ

D1+X∗ ,β24 =−X∗η1, β32 =−M∗ X∗ α2 ξ

D1+X∗ ,β33 =− ξ X∗H∗

(D1+X∗) −
ρ1X∗

K1
+−α2rM∗,

β35 =−X∗η1,β36 =− X∗ ξ

D1+X∗ , a21 = Y ∗η2,β41 =−α1

(
H∗ D1 ξ (M∗−τ)

(D1+X∗)2

)
,β42 = Y ∗η2,β44

=−ρ2Y ∗

K2
−aN0Y ∗a β e−bg,β45 =

H∗X∗α1 ξ

D1+X∗ , β51 =
ξ α2D1H∗M∗

(D1+X∗)2 , β53 = Y ∗η2, β54 =−M∗ X∗ α2 ξ

D1+X∗ ,

β55 =−ρ2Y ∗

K2
−aN0Y ∗a β e−bg−α2rM∗, β61 = 0, β62 =

ξ α2D1H∗M∗

(D1+X∗)2 , β63 = α1

(
H∗ D1 ξ (M∗−τ)

(D1+X∗)2

)
,

β66 =−α2rM∗.

It implies
d+

dt
W (Z (t))≤ νW (Z (t)),

where

ν = max
{

β11 +
β14ω1

ω4
, β22 +β23ω2 +

β24ω2

ω4
,

β32

ω2
+β33 +

β35

ω4
+

β36

ω5
,

β41ω3

ω1
+

β42ω3

ω2
+

β44ω2

ω3
+

β45ω3

ω4
,

β51ω4

ω1
+β53ω4 +

β54ω4

ω3
+β55,

β62ω5

ω2
+β63ω5 +β66

}
.

We have already shown that the system (6.3) is bounded. Hence, whenever the parametric
condition ν < 0 is satisfied, one can get a positive constant ν̂ such that ν ≤ −ν̂ < 0. Which
gives

W (Z (t))≤ W (Z ((t̂))exp(−ν̂(t − t̂)), t ≥ t̂ > 0.

This guarantees the equi-uniform asymptotic stability of the second compound system (6.14)
and hence, following Proposition (6.4), the coexisting equilibrium point of the system (6.3) is
globally asymptotically stable. This completes the proof.

6.3.4 Optimum tax determination

Imposing a fishing tax helps to control drastic harvesting, protect renewable resources from
extinction, and support the long-term availability of this renewable resource. On the other
hand, an abundance of prey fish provides the required food for the predatory fish to maintain
their growth. These predatory fish, in turn, attract recreation tourists and generate revenue for
society. However, the fishers may lose interest and abstain from fishing if the imposed tax on
the landed fish is too high. So, it is essential to follow an optimal tax policy to help maintain a
balance between fishing tax and societal benefit.
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The societal revenue corresponding to the system (6.3) can be obtained by summing the
fisher’s income from selling the fish (Ω1), earnings from ecotourism (Ω2), and the earnings
from fishing tax (Ω3). These three earning components are expressed as

Ω1(X ,Y,H,M,τ) = (M− τ)

(
ξ XH

X +D1

)
, (6.17)

Ω2(X ,Y,H,M,τ) = bN0Y ae−bg, (6.18)

Ω3(X ,Y,H,M,τ) =
τξ XH
X +D1

. (6.19)

Then the societal revenue (Ω(X ,Y,H,M,τ)) is the sum of above three and is given by

Ω(X ,Y,H,M,τ) =
ξ XHM
X +D1

+bN0Y ae−bg. (6.20)

We intend to find the optimum fishing tax to provide optimum societal revenue. For this, the
objective function is defined as

Ξ =
∫

∞

0
e−ιt

Ω(X ,Y,H,M,τ)dt, (6.21)

subject to the constraints (6.3). Here ι is the discount rate that includes inflation and time-value
of money. The control variable τ is bounded by 0 and τmax, where τmax indicates the upper
limits of the imposed tax.

Following Pontryagin’s maximum principle, one gets the Hamiltonian of the system as

Ψ(X ,Y,H,M,τ) = e−ιt
(

ξ XHM
X +D1

+bN0Y ae−bg
)
+ ε1

(
ρ1X

(
1− X

K1

)
−η1XY − ξ XH

X +D1

)
+

ε2

(
ρ2Y

(
1− Y

K2

)
+η2XY −βN0Y a+1e−bg

)
+ ε3

(
α1

(
ξ XH

X +D1
(M− τ)

−κH
))

+ ε4

(
α2M

(
Φ− rM− ξ XH

X +D1

))
, (6.22)

where ε1,ε2,ε3 and ε4 are the adjoint variables. To optimize the societal revenue Ω, the fol-
lowing conditions on the Hamiltonian have to be satisfied:

∂Ψ

∂τ
= 0,

dε1

dt
=−∂Ψ

∂X
,

dε2

dt
=−∂Ψ

∂Y
,

dε3

dt
=−∂Ψ

∂H
,

dε4

dt
=−∂Ψ

∂M
. (6.23)

Recall that fish harvesting with the existence of both species is possible in the coexisting state
only, so we are interested in examining the optimality at this equilibrium. The first condition of

(6.23) evaluated at the equilibrium point E∗(X∗,Y ∗,H∗,M∗) gives ε3α1

(
− ξ X∗H∗

X∗+D1

)
= 0. For

the non-trivial solution, one have

ε3 = 0.
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Now, dε4
dt =−

[
∂Ψ

∂M

]
(X∗,Y ∗,H∗,M∗) gives

dε4

dt
= G1e−ιt +G2ε4,

where
G1 =−H∗X∗ ξ

D1 +X∗ and G2 = α2

(
2M∗ r−Φ+

H∗X∗ ξ

D1 +X∗

)
.

Solving this ordinary differential equation, one gets

ε4 =− G1

G2 + ι
e−ιt .

Substituting the value of ε3 and ε4 in dε3
dt =−

[
∂Ψ

∂H

]
(X∗,Y ∗,H∗,M∗), we have

ε1 = M∗
(

1+
G1

G2 + ι

)
e−ιt .

Similarly, substituting the value of ε1 in dε2
dt =−

[
∂Ψ

∂Y

]
(X∗,Y ∗,H∗,M∗), one have

ε2 =− G3

G4 + ι
e−ιt , where

G3 = −M∗X∗
η1

 H∗X∗ ξ(
δ +α2

(
2M∗ r−Φ+ H∗ X∗ ξ

D1+X∗

))
(D1 +X∗)

−1

−N0Y ∗(a−1) abe−bg,

G4 = ρ2

(
2Y ∗

K2
−1
)
−X∗

η2 +N0Y ∗a
β e−bg (a+1).

Then, putting the values of ε1,ε2,ε3, and ε4 in dε1
dt = −

[
∂Ψ

∂X

]
(X∗,Y ∗,H∗,M∗), one can reach the

following optimal tax equation for a fixed choice of annual discount rate (ι) at the coexisting
equilibrium point:

ϒ(τ) =
G1 G7

G2 +δ
−G5 −M∗ (G6 −δ )

(
G1

G2 +δ
+1
)
+

G3Y ∗η2

G4 +δ
= 0, (6.24)

where

G5 =
D1 H∗M∗ ξ

(D1 +X∗)2 , G6 =−Y ∗
η1 −ρ1

(
2X∗

K1
−1
)
− D1 H∗ ξ

(D1 +X∗)2 , G7 =−D1 H∗M∗α2 ξ

(D1 +X∗)2 .

Note that (X∗,Y ∗,H∗,M∗) contains τ and the optimum fishing tax τ∗ is the positive solution of
Eq. (6.24). Then the corresponding optimal societal revenue may be obtained from (6.20) at
the coexisting equilibrium point for the optimum tax τ = τ∗.
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6.4 Simulation results

For the visual paradigm, the parameter values given in Table 6.1 will be considered as the base-
line values and will remain fixed unless it is mentioned. Considering K1 = 30, Φ = 2.5, τ =

Table 6.1: Variables and parameters with their descriptions

State Variables Descriptions Units
X(t) Prey fish biomass at time t MT∗

Y (t) Predator fish biomass at time t MT
H(t) Fishing effort for prey species at time t SFU⊙

M(t) Market price per unit biomass of prey species at time t M$⊗/MT
Dependent Functions Descriptions Units

H (X ,H) Harvested prey fish biomass at time t MT/year
(a function of prey fish biomass and fishing effort)

N (Y ) Number of visiting tourist at time t million/year
(a function of predatory fish)

D(M) Per capita demand rate at time t MT/year
(a function of prey fish price)

Parameters Descriptions Default Values Reference
(ρ1,ρ2) Intrinsic growth rate of prey fish and its predators (4,2)/year [91]
(K1,K2) Environmental carrying capacity of prey fish and predatory variables MT Estimated

η1 Predation rate of predatory fish 0.7 /MT/year [91]
η2 Biomass transformation rate 0.6 /MT/year [335]
ξ Catchability coefficient of prey fish 0.14 MT/SFU/year [336]
D1 Half saturation level of prey fish 2 MT Assumed
β Predator mortality rate due to tourism activities 0.3 /million Assumed
N0 Baseline number of tourists 2.5 million/year/(MT)a [91]
a Tourist sensitivity parameter 0.3 unit-less Assumed
b Tourist entrance fee 0.4 M$/million tourist [337]
g Cost sensitivity parameter 0.02 million tourist/M$ Assumed
κ Cost per unit of fishing effort 0.14 M$/SFU/year Assumed
Φ Maximal demand variable MT/year Estimated
r The rate at which the demand decrease 0.6 MT2/M$/year [208]
τ Regulatory tax imposed on per unit of landed fish variable M$/MT Estimated
α1 Stiffness parameter 0.6 SFU/M$ Assumed
α2 Proportionality constant 0.5 /MT Assumed

∗MT represents metric tons, ⊙ SFU stands for Standardized Fishing Unit [242, 243] and ⊗ M$
indicates million USD.

0.5 and K2 = 4, the conditions given in Theorem 6.2(iv) are satisfied, and therefore all the
state variables coexist in a stable state at their equilibrium values X∗ = 2.26,Y ∗ = 4.39,H∗ =

13.27,M∗ = 1.82 (See Fig. 6.1a). Note that all the state variables have considerable levels and
may be ideal for fishing and ecotourism. Observe that the harvesting effort is around 13.27
units in this state which is high enough. Since the harvesting effort is proportional to the profit
margin, fishing will be profitable in this state. The predatory fish biomass (around 4.39 units)
also has a reasonable level to encourage tourists. However, at the higher values of the preda-
tory fish carrying capacity (K2 = 13), the coexisting state loses its stability, and the system
stabilizes to the harvesting effort-free equilibrium E7(0.21,5.66,0,4.16). A higher value of K2

allows the predatory fish to grow. This higher level of predatory fish consumes most prey fish,
and the remaining fish is insufficient to support harvesting. Consequently, the market price
of fish becomes high (M = 4.16 units) due to its unavailability. Suppose the predatory fish is
further allowed to increase by enhancing its carrying capacity. In that case, the prey fish also
goes to extinction due to predation pressure (see Fig. 6.1c), causing the system to converge



6.4. Simulation results 155

Figure 6.1: Time series solution of the model (6.3) with initial value (2,0.2,0.8,0.5). (a) The
interior equilibrium E∗(2.26,4.39,13.27,1.82) is locally asymptotically stable for K2 = 4. (b)
The equilibrium E7(0.21,5.66,0,4.16) is locally asymptotically stable for K2 = 13. (c) The
equilibrium E3(0,5.88,0,4.17) is locally asymptotically stable for K2 = 16. Parameter values
are as in Table 6.1 with K1 = 30, Φ = 2.5, τ = 0.5.

at the equilibrium E3(0,5.88,0,4.17), where prey fish and its harvesting is not possible. If we
compute the societal benefit at these equilibrium points for the fixed fishing tax τ = 0.5, one ob-
tains from Eq. (6.20), Ω(E∗(2.26,4.39,13.27,1.82)) = 4.11, Ω(E7(0.21,5.66,0,4.16)) = 1.66
and Ω(E3(0,5.88,0,4.17)) = 1.69. Note that the societal benefit is highest at the coexisting
equilibrium E∗, where prey fish harvesting is possible. Therefore, the governing agency will
try to maintain the circumstances so that the system remains stable at E∗. One way to preserve
the stability of E∗ is to keep the predatory fish level low, and this would be further ascertained
in the bifurcation analysis.

Considering the parameter values as in Fig. 6.1a and selecting ω1 = 3, ω2 = 2, ω3 =

4, ω4 = 0.5, and ω5 = 0.1, one can verify the global stability condition given in (6.12) as
ν = max{−1.9839, − 5.0319, − 4.3718, − 2.0309, − 4.3871, − 0.5202} = −0.5202 < 0.
Hence, following Theorem 6.3, the interior equilibrium E∗ is globally asymptotically stable
in R4

+. Figure 6.2 shows that the solutions of the system (6.3) with different initial popula-
tions converge asymptotically to the coexisting equilibrium point E∗(2.26,4.39,13.27,1.82),
implying the independency of the solution’s starting value.

6.4.1 Single parameter bifurcation

Four important system parameters K1, Φ, K2, and τ are selected to observe their variational
impacts on the system behavior. The parameter Φ has economic significance and is considered
for appraising the market sensitivity of prey fish. Fish harvesting and price depend very much
on its demand, φ . The parameters K1 and K2 have their ecological significance. The enhanced
value of the system’s carrying capacity can make a stable predator-prey interaction unstable
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Figure 6.2: Global stability of the interior equilibrium point E∗. Solutions starting
from the initial points (2,0.2,0.8,0.5),(5,7,4,9),(10,4,10,5) and (0.2,10,8,8) converge to
E∗(2.26,4.39,13.27,1.82).

through large amplitude oscillations, the phenomenon known as the paradox of enrichment

[264]. Secondly, these parameters maintain how many prey or predator species are essential to
maintain the equipoise between harvesting and ecotourism. The fishing tax parameter τ also
has two significant importance. First, it regulates the overfishing of renewable resources and
ensures their sustainable use [338, 339]. Secondly, the revenue generated from the imposed
tax can be used for the welfare of fishermen, and the aquatic environment [192, 340]. The
importance of these parameters may be further justified by the sensitivity analysis of the system
parameters by calculating their PRCC (partial ranked correlation coefficients) values (see Fig.
6.3).

We first look at the switching phenomena of the system due to the solo variation in the pa-
rameters mentioned above. The one-parameter bifurcation diagram with respect to the demand
parameter φ (Fig. 6.4) shows three distinct dynamical switchings of the system due to demand
variation. If the demand is low (0 < Φ < 0.99), there is no harvesting, and the harvesting-free
equilibrium E7 becomes stable. As the demand increases, fish harvesting is initiated, and the
interior equilibrium becomes stable for 0.99 < Φ < 3.7. However, this equilibrium becomes
unstable, and the oscillations appear as φ exceeds the value 3.7. A transcritical bifurcation and
a Hopf bifurcation occur at the critical values Φ= 0.99 and Φ= 3.7, respectively. Interestingly,
the predatory fish population declines once harvesting is initiated and maintains the downtrend
with increasing demand. This is reasonable because increasing demand causes increased har-
vesting, which forces the prey fish population to reduce. This lower prey fish population can
only support a lower predatory fish. However, for much higher demand (Φ > 3.70), the system
losses its stability, and there are regular ups and downs in all the state variables.

Fig. 6.5 provides similar kind of bifurcation diagrams when the environmental carrying
capacity of predatory fish K2 (Fig 6.5a), fishing tax τ (Fig 6.5b) and the environmental carrying
capacity of prey fish K1 (Fig 6.5c) are varied. The fish harvesting is possible for 0 ≤ τ < 3 (see



6.4. Simulation results 157

Figure 6.3: Global sensitivity analysis (GSA) of model parameters using the partially ranked
correlation coefficients (PRCC) technique. All parameters mentioned in Table 6.1 with K1 =
30, Φ = 2.5, τ = 0.5 have been varied two times up and down. It shows that K1, Φ, K2, and τ

are the most sensitive parameters with p value less than 0.05. The stiffness parameter α1 and
the proportionality constant α2 were kept outside this study as they should be small enough and
cannot be enhanced two times.

Figure 6.4: Bifurcation diagram of the state variables when the demand parameter Φ varies in
the ranges 0 < Φ < 6. The fishing effort-free equilibrium E7 is stable in 0 < Φ < 0.99. The
coexisting equilibrium E∗ is stable in the 0.99 < Φ < 3.70 and unstable for Φ > 3.70. Other
parameters remain the same as in Fig. 6.1a.
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Figure 6.5: Bifurcation diagrams with respect to (a) the environmental carrying capacity of the
predatory fish population, K2, (b) fishing tax, τ , and (c) the environmental carrying capacity of
prey fish population, K1. Other parameters are as in Table 6.1 with Φ = 2.5, τ = 0.5, K1 = 30
for Fig. (a); Φ = 2.5, K1 = 30, K2 = 4 for Fig. (b); and Φ = 2.5, τ = 0.5, K2 = 4 for Fig. (c).

Fig. 6.5b), and therefore, the upper bound of τ is set to τmax = 3. Three different dynamical
states arise when the parameter K2 varies. The coexisting state E∗ is stable at the lower values of
K2 (0<K2 < 11.05). It is noticeable that harvesting effort initially increases but then diminishes
to zero as K2 is high. The growing population of predatory fish sends the prey fish to extinction,
and the harvesting stops much before the fish become extinct. The increasing trend of H is
observed for the variation of K1, and its higher value supports populations to coexist in a stable
state. Interestingly, no paradox of enrichment is observed here due to the enrichment of the
system by increasing the carrying capacities.

6.4.2 Two parameter bifurcation

A broader dynamic behavior of the system is unveiled through the two-parameter bifurcation
analysis, presented in Fig. 6.6. Its upper row shows that the parametric plane τ −K1 is differ-
entiated by the stability regions of the equilibrium points E∗ and E7, whereas the parametric
planes K2 −K1 and τ −K2 are delineated by the stability domains of E∗,E7 and E3. No oscil-
latory existence of the interior equilibrium is observed in these cases. The lower row of this
figure indicates that there are two stability regions and one oscillatory coexistence region in
the τ −φ and K1 −φ planes. The dynamics are richer in the K2 −φ plane, where three stable
regimes and one oscillatory regime are noticed. In each parametric plane, the coexisting equi-
librium E∗ contains the largest stability domain, and whenever this equilibrium oscillates, the
corresponding domain of attraction occupies the least space. The stable coexisting state E∗ and
the harvesting-free equilibrium E7 are the only states in every bifurcation diagram. Observe
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Figure 6.6: Stability and instability regimes of different equilibrium points of the system (6.3)
due to the variation of a pair of parameters. These figures show that there may exist two, three,
and four isolated dynamic regimes for the simultaneous variations of two parameters. The blue,
cyan, and green colors indicate, respectively, the stable regions for the coexisting equilibrium
(E∗), the harvesting-free equilibrium (E7), and the predatory fish and price equilibrium (E3).
The oscillatory (unstable) state of the steady state E∗ has been shown in red color. Here (a) Φ =
2.5,K2 = 4, (b) Φ = 2.5,τ = 0.5, (c) Φ = 2.5,K1 = 30, (d) K1 = 30,K2 = 4, (e) τ = 0.5,K2 = 4
and (f) K1 = 4,τ = 0.5. Other parameters are as in Table 6.1

that the equilibrium E3 appears in the parametric plane only when there is a variation in the
parameter K2. It follows that if predator species carrying capacity is not allowed to increase
significantly, then the equilibrium point E3(0,Y,0,

φ

r ) will not be stable. On the other hand, the
oscillatory coexistence state never appears if the demand is not high.

For the numerical computation of the optimal tax, we consider the parameter values given
in Table 6.1 with K1 = 30, Φ = 2.5, K2 = 4, ι = 0.7 and solve the equation (6.24) for τ .
Figure 6.7a shows that the optimal tax value evaluated at the coexisting equilibrium point E∗

is τ∗ = 0.83 M$/MT. The corresponding societal revenue at this optimal equilibrium E∗(τ∗),
computed from (6.20), is Ω(τ∗) = 4.167 M$/year, which is maximum (see Fig. 6.7b, top
magenta colour curve). If one wants to find the optimal value of τ that will maximize the
incomes from fishing tax or ecotourism, then Ω(X ,Y,H,M) of Eq. (6.21) has to be replaced
by Ω3(X ,Y,H,M) or Ω2(X ,Y,H,M), respectively, and then perform the subsequent analysis to
obtain an equation similar to Eq. (6.24). Figure 6.7b indicates that the income from fishing tax,
Ω3, is maximum (1.29 M$/year) for the optimal tax value τ∗ = 1.53 M$/MT. The income from
ecotourism (Ω2) shows a little change due to the variation in fishing tax because its change
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Figure 6.7: (a) Plot of ϒ(τ) under the variation of the parameter τ . It shows that the Eq. (6.24)
has only one solution, i.e., there is a single optimal value of τ , viz., τ∗ = 0.83, for which
ϒ(τ) = 0. (b) Magenta, red, blue and black lines, respectively, indicate the societal revenue,
income from fishing after tax, earning from ecotourism and income from fishing tax. The
optimal societal revenue (Ω(τ∗) = 4.167 M$/year) is attained at τ∗ = 0.83, M$/MT and the
optimal revenue earned from the imposed tax (Ω3 = 1.29 M$/year) is obtained at the optimal
tax τ∗

Θ3
= 1.53 M$/MT. The parameters are as in Table 6.1 with K1 = 30, Φ = 2.5, K2 = 4 and

the annual discount rate ι = 0.7.

occurs through the change in the equilibrium level of Y ∗ only and does not depend directly on
τ . It is worth mentioning that the income from fishing after tax (Ω1) is a decreasing function
of tax, and it is maximum when τ = 0. Whereas, the earning from tourism after tax (Ω2) is
an increasing function of τ , and attains its optimal value at its highest value. One can observe
that each income component attains its maximum value at different tax levels. Interestingly,
the maximum societal revenue is earned at the lowest non-zero optimal fishing tax τ = 0.83
M$/MT. Further comparison in income components can be made at different values of τ (see
Table 6.2). It shows that the societal revenue is maximum (Ω = 4.167 M$/year) when τ = 0.83
M$/MT. The income from fishing after tax (Ω1 = 2.32 M$/year) is maximum at τ = 0, and the
earning from fishing tax (Ω3 = 1.29 M$/year) is maximum at τ = 1.53 M$/MT.

6.5 Discussion

One of the goals of the blue economy is to protect marine species for sustainable use and
improve the local people’s livelihood and economy while preserving the marine ecosystem’s
health or blue resources. A scientific integration of fishery and ecotourism may be one way
to reduce pressure on fish and fisheries as well as improve the economic and social develop-
ment of coastal people on a long-term basis. Intermingling a market-based fishing strategy in
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Table 6.2: This table reports the societal revenue (Ω), income from fishing after tax (Ω1),
income from ecotourism (Ω2), tax from fishing (Ω3) at some fixed values of fishing tax with
an annual discount rate ι = 0.7. The optimum tax and the corresponding optimal revenue are
marked in boldface. The parameters are as in Fig. 6.7.

τ X∗ Y ∗ H∗ M∗ Ω1 Ω2 Ω3 Ω = Ω1 +Ω2 +Ω3
(M$/MT) (MT) (MT) (SFU) (M$/MT) (M$/year) (M$/year) (M$/year) (M$/year)
0 2.03 4.16 16.54 1.39 2.32 1.522 0 3.84
0.25 2.16 4.29 14.85 1.60 2.08 1.535 0.39 4
0.5 2.26 4.40 13.27 1.82 1.86 1.547 0.70 4.11
0.75 2.36 4.50 11.77 2.04 1.65 1.558 0.96 4.15
0.83 2.39 4.53 11.31 2.12 1.58 1.561 1.02 4.167
1.25 2.53 4.67 8.94 2.51 1.25 1.576 1.25 4.07
1.53 2.61 4.76 7.42 2.77 1.04 1.584 1.29 3.91
1.75 2.68 4.83 6.26 2.97 0.88 1.591 1.25 3.72
2 2.74 4.90 4.96 3.21 0.69 1.598 1.15 3.44
2.25 2.81 4.97 3.69 3.45 0.52 1.605 0.97 3.09
2.75 2.93 5.09 1.20 3.93 0.17 1.617 0.39 2.18
3 2.98 5.15 0.06 4.15 0.001 1.622 0.02 1.64

a multi-species fishery with a fair taxation policy may provide long-term sustainable growth.
Fishery-based ecotourism is another potential component that may contribute significantly to
the financial improvement of the local people by preserving the aquatic ecosystem. An entry
tax may be levied on tourists to develop the ecotourism locality. Here we have proposed and
analyzed a harvesting model that integrates the ecological interaction of a predator and prey fish
with ecotourism and the open market economy theory. In the ecological interaction, the prey
fish is harvested commercially, whose market price is determined by the demand-supply rela-
tionship. The harvesting effort employed on the prey fish is proportional to the profit margin.
The generalist predatory fish (dolphin, shark, whale) is restricted from commercial harvesting
but used for recreation purposes for the visitors as a part of the ecotourism. The mentioned
social-ecological-economic interaction may match various commercial and fishery-based eco-
tourism sites, including the Chilika lagoon.

The regulatory authority imposes a fishing tax on landed fish as a controlling measure to
restrict overfishing. Tax levied on per unit of landed fish sometimes may negatively affect the
fishery. If the charged tax is high, fishers may avoid fishing and go for other occupations. This
may have serious socioeconomic consequences, particularly for the people of underdeveloped
and developing countries, where fewer options exist for alternative livelihood. Another appar-
ent negative effect of the increasing fishing tax is an imbalance between supply and demand in
this global food item, which may cause a hike in the market price as a cascading effect of the
nonavailability of fish even when there is high demand. Of course, the harvested species will
get relief from overexploitation if there is no harvesting. It is worth mentioning that such a situ-
ation is not desirable for a fishery. On the contrary, the fishers’ income will be maximum when
there is no fishing tax but will steadily decline with increasing tax. However, none of the above
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cases is worthwhile for sustainable development. A balance between harvesting and fishing tax
may be a more suitable solution. Therefore, defining an optimal fishing tax is imperative to
benefit fishers, fish species, and regulatory authorities for a win-win situation.

Our model analysis revealed that the system has nine equilibrium points. Out of which, six
equilibrium points are always unstable, and the rest three are conditionally stable. The interior
equilibrium point is ecologically and economically more important. We have proven the global
stability of this equilibrium using the high-dimension Bendixson criterion. To illustrate the
dynamic features of the system, we selected four important system parameters based on their
ecological & economic importance and PRCC analysis. One-and-two-parameter bifurcation
results of these parameters revealed that the system might switch among the equilibrium points
E∗,E7,E3 due to the variation of the identified parameters. Oscillations in the interior equilib-
rium E∗ may occur if the bifurcation involves the demand parameter, Φ. Even the two carrying
capacities (K1,K2) cannot produce sustained oscillations unless the fish demand is significantly
high. Thus, there is a mere chance of occurring the paradox of enrichment in this integrated
system due to enrichment.

The societal revenue is an ensemble income, including the fishers’ income from fish selling
after paying the tax, income from the entrance fee of ecotourism, and the fishing tax. Each
individual earning may be optimal for different optimal taxes, and the optimal tax that max-
imizes the societal revenue may also be unlike the others. So, we searched for an optimum
tax level to maximize the overall earnings for maximal social benefit. Our analysis revealed
that the optimal tax corresponding to the maximum societal revenue is much lower than in the
other two cases. Effective management for fishery-based ecotourism is more crucial because
fish & fishery industries overlap the tourism industry. One cannot overlook the influence of one
over the other. This chapter shows that a justified taxation policy may significantly improve
the overall health of fish & fishery and may contribute to the blue economy, as mentioned in
the different sustainable development goals (SDG-3, SDG-8, and SDG-14-17). However, there
are further avenues for the extension of this chapter. For example, we have here optimized the
fishing tax only. One can optimize the fishing tax and tourist entrance fee so that the societal
benefit can be further maximized. Secondly, harvesting in a marine environment is a stochas-
tic process; therefore, one can go for the stochastic optimization of various incomes for more
realistic outcomes.



7
Conclusions and future work

World fisheries have increased tremendously in the last fifty years due to the high demand
for fishery products, the use of sophisticated fishing gear & vessel technology, and growing
trade [92]. Millions of people live on fishing, and many fisheries are stressed due to intense
harvesting and emerging diseases. A proper management policy with a scientific understanding
of species interaction is a footstep in a long-term sustainable fishery. In this thesis, we present
a theoretical study that clubs species interaction in the presence and absence of infection and
the demand-supply theory based on open market policy.

In conclusion, this thesis has addressed several critical issues that have not been extensively
explored in previous bioeconomic modelling. Listed below are some key findings associated
with each chapter of this thesis.

• Chapter 2 reveals a two-dimensional bioeconomic model with a variable market price,
which depends on supply and demand. Notably, this chapter identified previously over-
looked aspects in bioeconomic modelling and addressed several vital socio-ecological-
economic issues. Furthermore, the analysis considered various demand-supply interac-
tions, observing that certain equilibria rely on market demand to exist. For instance,
the fish-free equilibrium only occurs when demand functions follow polynomial or log-
arithmic types. We also identified several demand-supply relationships that play a role
in catastrophic regime shifts, while the occurrence of an economic trade-off is solely
dependent on the demand function. This study further reveals that for the traditional
CPUE harvesting function, the MEY can indeed be achieved with the least amount of im-
posed fishing effort whenever an economic trade-off exists. This finding underscores the

163



164 Chapter 7. Conclusions and future work

significance of understanding the complexities of demand-supply interactions in achiev-
ing sustainable fishery management practices and optimizing economic outcomes while
maintaining fishery health.

• Chapter 3 delves into the critical investigation of the environmental carrying capacity
(K) required to sustain harvesting. This chapter explores the potential for harvesting the
maximum number of fish and generating maximum revenue across different enrichment
levels. The one-parameter bifurcation analysis uncovers that harvesting becomes feasible
only when the environmental carrying capacity surpasses a specific threshold, allowing
for a higher fish population. Moreover, it is observed that infection diminishes once
harvesting is initiated, leading to an infection-free system over an extended range of en-
vironmental carrying capacities. The ecological parameter exhibits multiple equilibrium
point switches as it transitions from lower to higher values. Additionally, the equilib-
rium harvest demonstrates an upward trend with increased carrying capacity. Notably,
the harvested stock consistently exceeds the infection-free equilibrium at lower values of
K while remaining lower than the interior equilibrium at higher values of K.

• Chapter 4 uncovers significant implications related to fish disease and taxation in the
system dynamics, with potential impacts on revenue generation. While taxation can help
control overfishing, it may inadvertently contribute to disease spread and price increases
if set at high levels. A critical finding is the potential for a regime shift, wherein an
excessively high regulatory tax leads to a transition from a harvesting regime to a non-
harvesting one. Moreover, we identify existing trade-offs between revenue generation
and regulatory tax. The overall societal revenue reaches its peak at the optimal tax level.
However, it is crucial to note that individual earnings in these aspects vary across differ-
ent tax levels. This underscores the complex interplay between taxation policies, revenue
streams, and overall system dynamics, highlighting the importance of carefully calibrat-
ing regulatory measures to achieve sustainable outcomes.

• Chapter 5 presents intriguing findings from various socio-economic viewpoints. It re-
veals that by appropriately selecting a level of taxation, the fishery can be stabilized,
and infection can be eliminated, providing valuable insights into addressing the complex
challenges of fisheries and their sustainability amidst economic dynamics. However, an
excessively high fishing tax could negatively impact the fishery, reducing fishers’ income
and potential opt-outs from the fishery, especially in low-income countries. To avoid
such consequences, the regulatory authority should levy taxes more judiciously, and op-
timal tax calculations can aid in informed decision-making. This chapter further unveils
that there is no trade-off between fishing tax and revenue generation, contrary to pre-
vious assumptions. Tax and societal revenues increase with rising taxes, while fisher’s
income decreases. Notably, the saturated type of demand plays a crucial role in negating
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the trade-off. Additionally, the chapter investigates the contribution of the open mar-
ket philosophy to regime shifts in the fishing industry, revealing a novel reason for such
shifts, i.e., high demand for fish can hasten regime shifts when considering the interplay
between aquatic ecology and market dynamics.

• Chapter 6 explores the integration of commercially harvested fishery and recreational
fishery to alleviate fisheries pressure and promote economic and social development in
coastal communities. The analysis reveals that the optimal tax for maximum societal rev-
enue is considerably lower than the individual revenues of fishers, tourism organizations,
and tax authorities. Effective management of fishery-based ecotourism is crucial due to
the overlap of fish & fishery industries with tourism. This thesis emphasizes that a well-
justified taxation policy can significantly enhance the overall health of fish & fishery and
contribute to the blue economy, aligning with sustainable development goals (SDG-3,
SDG-8, and SDG-14-17).

These findings highlight the importance of considering various ecological, economic, and so-
cial factors when modelling and managing fisheries. By addressing these issues, the thesis
contributes a more comprehensive understanding of fishery dynamics and provides valuable
insights for sustainable fishery management and conservation efforts.

Despite the many exciting results in this thesis, a few limitations will require further explo-
ration, which are some areas of future research. A noteworthy limitation in each chapter of this
thesis is the deterministic nature of the model systems, where all parameters are assumed to
be constant. However, this does not accurately represent natural environments, as birth, death,
growth, infection, and tax fluctuate around average values. To address this crucial aspect, it
is essential to incorporate environmental stochasticity into the model systems. By studying
the corresponding stochastic models for each considered model, we can capture natural sys-
tems’ inherent randomness and variability. The extension to stochastic modelling holds signif-
icant promise in providing a more realistic representation of the complexities and uncertainties
present in marine environments. Accounting for environmental fluctuations and stochastic pro-
cesses will lead to more robust and reliable predictions, allowing us to understand better the
resilience and dynamics of fish populations, ecosystems, socio-economic interactions, and sus-
tainable fishery management strategies.

In Chapters 2, 4, 5, and 6, our focus was on optimizing a single parameter, either the
fishing effort or the fishing tax. However, a promising avenue for further exploration involves
optimizing coupled parameters, such as the fishing tax and tourist entrance fee, to maximize
societal benefits further. Considering the interplay between these variables, we can unlock
additional opportunities to enhance overall outcomes.

This thesis has focused on the non-selective harvesting of certain commercial species. How-
ever, in the future, we aim to delve into sustainable fishery management, focusing on age-
specific harvesting, driven by two critical reasons. Firstly, we have witnessed numerous species
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extinction instances resulting from excessive juvenile fish harvesting. Addressing this issue is
crucial for ensuring fish populations’ long-term health and viability. Secondly, harvesting fish
stock beyond a certain age allows species to reach their maximum body size, leading to optimal
economic returns from the harvested stock. With these objectives in mind, each chapter of this
thesis can be expanded to explore the intricacies of age-specific harvesting and its implications
on sustainable fishery management. By understanding the age-specific dynamics and incorpo-
rating age-related factors into our analysis, we can develop more comprehensive and practical
strategies to ensure the preservation and sustainable use of fish resources for the benefit of both
ecosystems and coastal communities. Despite such limitations, this thesis may give valuable
insights into managing socio-ecological-economic interactions towards sustainability.
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