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Preface

This doctoral thesis is devoted to study of some almost complex and com-

plex manifolds under certain conditions. The thesis is divided into six chap-

ters. The first chapter deals with some prerequisites that, in our opinion,

are crucial for comprehending the core of the entire thesis.

In the second chapter, we investigate weakly symmetric Kähler mani-

folds that exhibit properties of being pseudo-projectively flat and quasi- con-

formally flat. Moreover, we examine weakly pseudo-projectively symmetric

and quasi-conformally symmetric Kähler manifolds, which are further char-

acterised as Einstein manifolds. Additionally, we establish the existence of

pseudo-projectively flat weakly symmetric Kähler manifolds and quasi- con-

formally flat weakly symmetric Kähler manifolds, for which the Ricci tensor

satisfies a certain relation.

In the third chapter, we conduct a comprehensive study and derive pre-

cise expressions for several curvature identities pertaining to a nearly Kähler

manifold exhibiting con-circular and projective flatness. Furthermore, we at-

tain intriguing findings concerning a 6-dimensional nearly Kähler manifold,

and we present a detailed example to illustrate these results.

In fourth chapter, we examine different types of curvature identities

present in Kähler-Norden manifolds, such as quasi-conformal flatness, pseudo-

projective flatness, Weyl-conformal flatness, and Bochner flatness. We show
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that a Kähler-Norden manifold exhibits pseudo-projective symmetric if and

only if it demonstrates local symmetric. Moreover, we explore semi-symmetric

Kähler-Norden manifolds and prove that a Kähler-Norden manifold is semi-

symmetric if and only if it possesses locally semi-symmetic.

In the fifth chapter, we study some curvature identities on a locally

symmetric hyperKähler manifold. Next, we explore the concepts of conformal

flatness and Bochner flatness of a hyperKähler manifold. Additionally, we

prove that if M is a conformally flat hyperKähler manifold, then M is locally

flat when the dimension of M is greater than 4 and M is locally symmetric

with vanishing scalar curvature if the dimension of M is 4. Furthermore,

we establish that a conformally flat and Bochner flat hyperKähler manifold

of dimension 4n is an Einstein manifold. Later, we introduce the generalised

W2-curvature tensor and the study quasi-W2-curvature tensor, and using these

we develop that a generalised W2-flat hyperKähler manifold and quasi-W2-flat

hyperKähler manifold are Ricci flat. Finally, we present some examples of

hyperKähler manifolds.

In the sixth chapter, we carry out an investigation on various curva-

ture properties in paraKähler manifolds that possess characteristics such as

pseudo-quasi-conformal flatness, pseudo-projective flatness, W2-flatness, and

Bochner flatness. Moreover, we explore significant findings concerning the

sectional curvature within the paraKähler manifolds. Additionally, we ana-

lyz the behavior of paraKähler space-time in the presence of a perfect fluid.

Furthermore, we examine the behavior of weakly symmetric and weakly Ricci

symmetric perfect fluids in the context of paraKähler space-time. Our study

also encompasses the study of curvature identities in paraKähler space-time,

specifically focusing on flatness properties related to the previously mentioned

curvature tensors. Finally, we expand upon crucial properties associated with

sectional curvature in paraKähler space-time.
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1
Introduction

1.1 Introduction to almost complex manifold

Assume that M is a smooth manifold. An almost complex structure F on M is a linear

complex structure or a linear map that squares to−1 on each tangent space of the manifold

and varies smoothly on the manifold. In other words, we have a smooth tensor field F

of degree (1, 1) that is isomorphic to the tangent bundle when considered as a vector

bundle. An almost complex manifold refers to a manifold that possesses an inherent

structure known as an almost complex structure.

So, an almost complex structure refers to a smooth surface that exhibits a smooth linear

complex structure on each of its tangent spaces. While it is true that every intricate

manifold can be considered as an almost complex manifold, it should be noted that not

all almost complex manifolds can be classified as complex manifolds. Applications in the

symplectic geometry of almost complex structures are significant.

M must be even-dimensional if it ensures an almost complex structure. This can be

understood as follows: Let us assume M is n-dimensional and F : TM → TM is an

almost complex structure, where TM denotes the tangent bundle of the manifold. If

F 2 = −1 then (detF )2 must also be (−1)n. However, if M is a real manifold, then detF

is a real number, and as a result, n must be even if M has an almost complex structure.

Any even-dimensional vector space permits a linearly complex structure, as demonstrated

by a simple exercise in linear algebra. As a result, a (1, 1)-rank tensor pointwise which is

essentially a linear transformation on each tangent space is always admissible on an even-

dimensional manifold such that F 2
p = −1 at each point p. The pointwise linear complex
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structure only generates an almost complex structure, which is subsequently confirmed to

be unique, when this local tensor can be connected to be described globally. It is analogous

to changing the structure group of the tangent bundle from GL(2n,R) to GL(n,C) for

this patching to be possible and consequently, for an almost complex structure to exist on

the manifold M . Therefore, the existence query is exclusively algebraic-topological and

is most well known.

Almost complex structures have important applications in symplectic geometry. The

concept is due to Charles Ehresmann and Heinz Hopf [70] in the 1940.

Example 1.1.1. Let M be an n-dimensional manifold. A structure on M given by a

non-null tensor field f that satisfies f 3 + f = 0, is called an f -structure. If the rank of f

(denoted as r) is a constant, i.e., r = n, then the f -structure provides an almost complex

structure for the manifold M . In this case, n is even.

Nijenhuis Tensor

Definition 1.1.1. [18] (Nijenhuis Tensor) Let F be an almost complex structure in an

almost complex manifolds Mn, where n is an even integer. Nijenhuis tensor in terms of F

is a vector valued bilinear function N defined by NF (X1, Y1) = [FX1, FY1]−F [FX1, Y1]−
F [X1, FY1]− [X1, Y1], where for X1, Y1 ∈ χ(M) and [ , ] stand for Lie bracket.

Theorem 1.1.1. [18] In an even-dimensional almost complex manifold Mn

(i) N(X1, FY1) = N(FX1, Y1) = −F (N(X1, Y1)) = F (N(FX1, FY1)),

(ii) N(FX1, FY1) = −N(X1, Y1) = −F (N(FX1, Y1)) = −F (N(X1, FY1)),

where X1, Y1 ∈ χ(M).

1.2 Introduction to complex manifold

An atlas of charts to the open unit disc and holomorphic transition maps are the char-

acteristics of a complex manifold in differential geometry and complex geometry. Alter-

native definitions of the term “complex manifold” include an almost complex manifold

and the complex manifold described above which can be expressed as an integrable com-

plex manifold. The theories of smooth and complex manifolds have quite different flavors
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because holomorphic functions are substantially more rigid than smooth functions, com-

pact complex manifolds are much more similar to algebraic varieties than to differentiable

manifolds.

Definition 1.2.1. [18] (Complex manifolds) A manifold that is almost complex and has

a vanishing Nijenhuis tensor is referred to as a complex manifold.

Example 1.2.1. Consider Cn as the complex vector space that contains a collection of

complex number sets, each consisting of n elements, with the notation z = (z1, z2, ..., zn).

If we put zt = xt+iyt, xt, yt ∈ R, t = 1, 2, ..., n, then Cn can be associated with the real vec-

tor space R2n containing 2n-tuples of real numbers (x1, x2, ..., xn, y1, y2, ..., yn). The iden-

tification of Cn with Rn will always be done through the correspondence (z1, z2, ..., zn) →
(x1, x2, ..., xn, y1, y2, ..., yn). The complex structure of R2n induced from that of Cn maps

(x1, x2, ..., xn, y1, y2, ..., yn) into (y1, y2, ..., yn,−x1,−x2, ...,−xn) and is known as the canon-

ical complex structure of R2n. According to the natural basis of R2n, it is given by the

matrix F0 =

 0 In

−In 0

. Then F 2
0 = −I. As N( δ

δx
, δ
δy
) = 0, this is an example of a

complex manifold.

1.2.1 Weakly symmetric manifold

In 1992, L. Tamassy and T. Q. Binh [69] introduced the concepts of the weakly symmetric

and the weakly Ricci-symmetric manifolds. Aside from that, M. Prvanovic [52], U. C. De,

and S. Bandyopdhayay [15] provided instances to clarify their points. Intriguing findings

about the weakly symmetric and the weakly Ricci-symmetric Kähler manifolds were also

discovered by L. Tamassy, U. C. De, and T. Q. Binh [68].

Definition 1.2.2. [69] (Weakly symmetric manifold) A non-flat Riemannian manifold

(Mn, g) (n > 2) is called weakly symmetric manifold if its curvature tensor R of type

(0, 4) satisfies the condition

(∇X1R)(Y1, Z1, U1, V1) = A(X1)R(Y1, Z1, U1, V1) +B(Y1)R(X1, Z1, U1, V1)

+C(Z1)R(Y1, X1, U1, V1) +D(U1)R(Y1, Z1, X1, V1)

+E(V1)R(Y1, Z1, U1, X1), (1.2.1)
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and the manifold is called weakly Ricci symmetric if the Ricci tensor S satisfies

(∇X1S)(Y1, Z1) = A(X1)S(Y1, Z1) +B(Y1)S(X1, Z1) + C(Z1)S(Y1, X1), (1.2.2)

where A,B,C,D,E are simultaneously non-vanishing 1-forms and X1, Y1, Z1, U1, V1 are

vector fields and ∇ be the covariant differentiation operator associated with the Rieman-

nian metric g.

The 1- forms are referred to as the associated 1-forms of the manifold, and an n-

dimensional manifold with such properties is represented as (WS)n.

M. Prvanovic [52] and P. Pandey [50] demonstrated that in a weakly symmetric manifold

B = C = D = E holds. If we consider B = C = D = E = ω (say) and then (1.2.1) and

(1.2.2) becomes

(∇X1R)(Y1, Z1, U1, V1) = A(X1)R(Y1, Z1, U1, V1) + ω(Y1)R(X1, Z1, U1, V1)

+ω(Z1)R(Y1, X1, U1, V1) + +ω(U1)R(Y1, Z1, X1, V1)

+ω(V1)R(Y1, Z1, U1, X1), (1.2.3)

and

(∇X1S)(Y1, Z1) = A(X1)S(Y1, Z1) + ω(Y1)S(X1, Z1) + ω(Z1)S(Y1, X1), (1.2.4)

where g(X1, ρ) = ω(X1) and g(X1, α) = A(X1). where ρ and α are vector fields.

In 2002, Prasad [53] defined and studied a tensor field P within the framework of a

manifold possessing Riemannian geometry, with the dimension represented as (n > 2).

This tensor field encompasses the projective curvature tensor P , thereby exploring its

properties and characteristics.

Definition 1.2.3. [53] (Pseudo-projective curvature tensor) On a Riemannian manifold

of dimension greater than 2, the pseudo-projective curvature tensor P is expressed by

P (X1, Y1)Z1 = aR(X1, Y1)Z1 + b[S(Y1, Z1)X1 − S(X1, Z1)Y1]

− r

n

[
a

n− 1
+ b

]
[g(Y1, Z1)X1 − g(X1, Z1)Y1], (1.2.5)

where a and b are constants, that are non-zero. In this expression, R denotes the curvature

tensor, S represents the Ricci tensor, and r stands the scalar curvature.
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A Riemannian manifold (Mn, g) with non-pseudo projective flatness, where the di-

mension n is greater than 2, is classified as weakly pseudo projectively symmetric manifold

if certain conditions are satisfied. These conditions involve the pseudo-projective curva-

ture tensor P of type (0, 4) and can be expressed as follows:

When acting on vector fields X1, Y1, Z1, U1, V1, the covariant derivative (∇X1P ) of the

pseudo-projective curvature tensor satisfies the equation

(∇X1P )(Y1, Z1, U1, V1) = A(X1)P (Y1, Z1, U1, V1) +B(Y1)P (X1, Z1, U1, V1)

+C(Z1)P (Y1, X1, U1, V1) +D(U1)P (Y1, Z1, X1, V1)

+E(V1)P (Y1, Z1, U1, X1), (1.2.6)

where, A,B,C,D,E are 1-forms that do not vanish. This characterization is denoted as

(WPPS)n for an n-dimensional manifold.

Yano and Sawaki [77] introduced the concept of the quasi-conformal curvature tensor,

which can be described in the following manner:

Definition 1.2.4. [77] (Quasi-conformal curvature tensor) The quasi-conformal curva-

ture tensor is represented by this tensor field C, which is given by

C(X1, Y1)Z1 = aR(X1, Y1)Z1 + b[S(Y1, Z1)X1 − S(X1, Z1)Y1

+g(Y1, Z1)QX1 − g(X1, Z1)QY1]

− r

n

[
a

n− 1
+ 2b

]
[g(Y1, Z1)X1 − g(X1, Z1)Y1], (1.2.7)

where a and b are non-zero constants. If a = 1 and b = − 1
n−2

, then quasi-conformal

curvature tensor is reduced to the Weyl-conformal curvature tensor [51], whose expression

is given by:

W (X1, Y1)Z1 = R(X1, Y1)Z1 −
1

n− 2
[g(Y1, Z1)QX1 − g(X1, Z1)QY1

+S(Y1, Z1)X1 − S(X1, Z1)Y1]

+
r

(n− 1)(n− 2)
[g(Y1, Z1)X1 − g(X1, Z1)Y1]. (1.2.8)

So a manifold is Weyl-conformal flat if W̃ (X1, Y1, Z1, U1) = g(W (X1, Y1)Z1, U1) = 0.

A curvature tensor, symbolised by W2, was first suggested by G. P. Pokhariyal and

R. S. Mishra [51] in 1970 and their relativistic implications were explored.
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Definition 1.2.5. [51] (W2-curvature tensor) The formula for the W2-curvature tensor

on a manifold of dimension greater than 2 can be stated as follows:

W2(X1, Y1)Z1 = R(X1, Y1)Z1 +
1

n− 1
[g(X1, Z1)QY1 − g(Y1, Z1)QX1]. (1.2.9)

When the condition W̃2(X1, Y1, Z1, U1) = g(W2(X1, Y1)Z1, U1) = 0 is satisfied, it indicates

that a manifold can be described as W2-flat.

The Bochner curvature tensor, introduced in 1949 by Bochner [6, 76], plays a similar

role in Kähler geometry to the Weyl curvature tensor on Riemannian manifolds.

Definition 1.2.6. [8] (Bochner curvature tensor) The notion of Bochner curvature tensor

is presented as:

B(X1, Y1)Z1 = R(X1, Y1)Z1 −
1

n+ 4
[g(Y1, Z1)QX1 − g(X1, Z1)QY1

+S(Y1, Z1)X1 − S(X1, Z1)Y1 + g(FY1, Z1)QFX1

−g(FX1, Z1)QFY1 + S(FY1, Z1)FX1 − S(FX1, Z1)FY1

−2S(FX1, Y1)FZ1 − 2g(FX1, Y1)QFZ1]

+
r

(n+ 2)(n+ 4)
[g(Y1, Z1)X1 − g(X1, Z1)Y1

+g(FY1, Z1)FX1 − g(FX1, Z1)FY1

−2g(FX1, Y1)FZ1], (1.2.10)

where Q represents the Ricci operator, defined by g(QX1, Y1) = S(X1, Y1) and n denotes

the dimension of the manifold. Additionally, a manifold is considered Bochner flat if

B̃(X1, Y1, Z1, U1) = g(B(X1, Y1)Z1, U1) = 0 is satisfied.

The concept of the pseudo-quasi-conformal curvature tensor Ṽ on a Riemannian

manifold of dimension ≥ 3 was constructed and explored by the authors in [66], and

it includes the projective, quasi-conformal, Weyl conformal, and concircular curvature

tensors as special cases.

Definition 1.2.7. [66] (Pseudo-quasi-conformal curvature tensor) A pseudo-quasi-conformal

curvature tensor is described as:

Ṽ (X1, Y1)Z1 = (p+ q)R(X1, Y1)Z1 + (q − d

n− 1
)[S(Y1, Z1)X1 − S(X1, Z1)Y1]

+q[g(Y1, Z1)QX1 − g(X1, Z1)QY1]−
r [p+ 2(n− 1)q]

n(n− 1)
[g(Y1, Z1)X1

−g(X1, Z1)Y1], (1.2.11)
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where X1, Y1, and Z1 ∈ χ(M), S is the Ricci tensor, r is the scalar curvature, Q

is the Ricci operator corresponding to the Ricci tensor S, i.e. g(QX1, Y1) = S(X1, Y1)

and p, q, and d are real constants such that p2 + q2 + d2 > 0 [16] and the manifold is

n-dimensional.

Particularly, if

(1) p = q = 0, d = 1,

(2) p ̸= 0, q ̸= 0, d = 0,

(3) p = 1, q = − 1
n−2

, d = 0,

(4) p = 1, q = d = 0,

then Ṽ reduces to the projective curvature tensor, quasi-conformal-curvature tensor, con-

formal curvature tensor, and con-circular curvature tensor, respectively [20]. A manifold

Mn, where n > 3, is called pseudo-quasi conformally flat if Ṽ = 0.

A con-circular transformation, which was introduced by K. Yano [79] in 1940, is a type

of transformation that maintains the shape of geodesic circles. This transformation is as-

sociated with a branch of geometry known as con-circular geometry. When a con-circular

transformation is applied, the con-circular curvature tensor C remains unchanged.

Definition 1.2.8. [79] (Con-circular curvature tensor) On an n-dimensional manifold

M , the con-circular curvature tensor C is given by

C(X1, Y1)Z1 = R(X1, Y1)Z1 −
r

n(n− 1)
[g(Y1, Z1)X1 − g(X1, Z1)Y1], (1.2.12)

where X1, Y1, and Z1 are arbitrady vector fields in χ(M).

Now, we introduce the concept of generalised W2-curvature tensor (n > 2) as follows:

Definition 1.2.9 (Generalised W2-curvature tensor). The generalised W2-curvature ten-

sor is defined by:

W2(X1, Y1)Z1 = aR(X1, Y1)Z1 +

(
b+

c

n− 1

)
[g(X1, Z1)QY1 − g(Y1, Z1)QX1], (1.2.13)

where a, b, and c ̸= 0. In particular, if a = 1, b = 0, and c = 1, then it reduces to a

W2-curvature tensor. Again, if b = 0, we call the W 2 tensor as a quasi-W2 tensor and is

denoted by W̃2. So a manifold is generalised W2-flat if g(W2(X1, Y1)Z1, U1) = 0.
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1.2.2 Weakly quasi-conformally symmetric manifold

Definition 1.2.10. [62] (Weakly quasi-conformally symmetric manifold) A Riemannian

manifold (Mn, g)(n > 2) is said to be weakly quasi-conformally symmetric manifold, de-

noted by (WQCS)n, if the quasi-conformally curvature tensor C of type (0, 4) satisfies

the condition

(∇X1C)(Y1, Z1, U1, V1) = A(X1)C(Y1, Z1, U1, V1) +B(Y1)C(X1, Z1, U1, V1)

+C(Z1)C(Y1, X1, U1, V1) +D(U1)C(Y1, Z1, X1, V1)

+E(V1)C(Y1, Z1, U1, X1), (1.2.14)

for all vectors fields X1, Y1, Z1, U1, V1 and A, B, C, D, E are non-vanishing 1-forms.

.

1.2.3 Almost Hermite manifold

Definition 1.2.11. [18] (Almost Hermite manifold) An almost complex manifold endowed

with a Riemannian metric g such that

g(FX1, FY1) = g(X1, Y1),

is called an almost Hermite manifold, while (F, g) is called an almost Hermite structure.

A Hermite metric thus defined a Hermitian inner product on TM w.r.t. the complex

structure F .

1.3 Introduction to Kähler manifolds

In mathematics, particularly differential geometry, a Kähler manifold is a manifold that

has three structures that are all mutually compatible: a complex structure, a Riemannian

structure, and a symplectic structure. Erich Kähler [39] first presented the concept in

1933, while Jan Arnoldus Schouten and David van Dantzig first explored it in 1930. By

André Weil, the terminology has been corrected. The study of Kähler manifolds, their

geometry, and topology is referred to as Kähler geometry, as is the study of the structures

and constructions that can be applied to Kähler manifolds, such as the existence of special
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connections like Hermitian Yang-Mills connections or special metrics like Kähler-Einstein

metrics. Every smooth, complex projective variety is a Kähler manifold. Utilizing Kähler

metrics, Hodge’s theory is a fundamental concept in algebraic geometry.

Definition 1.3.1. [10] (Kähler manifold) A Kähler manifold is an even-dimensional Rie-

mannian manifold M with complex structure F on each tangent space of M that satisfies

the following relations

F 2(X1) = −X1, g(X1, Y1) = g(X1, Y1), (∇X1F )(Y1) = 0,

where F (X1) = X1, g is the Riemannian metric, and ∇ is the connection of covariant

differentiation.

Theorem 1.3.1. [18] An almost Hermitian manifold is a Kähler manifold if and only if

∇X1F (Y1) = F (∇X1Y1).

Example 1.3.1. In the field of mathematics, we define the n-dimensional complex co-

ordinate space, also known as complex n-space, as the collection of all ordered n-tuples

consisting of complex numbers. This space, symbolized as Cn, corresponds to taking the

Cartesian product of the complex plane C with itself n times. Symbolically,

Cn = {(z1, z2, ..., zn) | zi ∈ C},

the variables zi are the complex coordinates on the complex n-space. Complex coordinate

space can be considered as a vector space over the complex numbers. Its addition and

scalar multiplication operations are performed component-wise. By associating the real

and imaginary parts of the coordinates, we can establish a one-to-one correspondence

between Cn and the 2n-dimensional real coordinate space, R2n. When equipped with the

usual Euclidean topology, Cn becomes a topological vector space over the complex numbers.

Therefore, the complex spaces Cn with standard Hermitian metric is a Kähler manifold.

1.3.1 Nearly Kähler manifold

Shun-ichi Tachibana [12] examined almost Tachibana manifolds, also referred to as nearly

Kähler manifolds, in 1959, and Alfred Gray [28] further explored them from 1970 onwards.
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Definition 1.3.2. [18] (Nearly Kähler manifold) On an almost Hermite manifold M , if

the almost complex structure F satisfies

(∇X1F )(Y1) + (∇Y1F )(X1) = 0, (1.3.15)

for arbitrady vector fields X1 and Y1 ∈ χ(M), then the manifold M is called a nearly

Kähler manifold or an almost Tachibana manifold.

Putting X1 for Y1 in (1.3.15), we get

(∇X1F )(X1) = 0.

If in an almost Tachibana manifold, Nijenhuis tensor vanishes, then it is called a Tachibana

manifold.

Proposition 1.3.1. [56] (i) For a nearly Kähler manifold

N(X1, Y1) = 2M̃(X1, Y1) = −4F ((∇X1F )(Y1)) = 4F ((∇Y1F )(X1)) = 4F ((∇F (X1)F )F (Y1)),

where M̃(X1, Y1) = ∇F (X1)F (Y1)−∇X1Y1 − F (∇F (X1)Y1)− F (∇X1F (Y1)).

(ii) If M is nearly Kähler manifold then N(X1, Y1) = F (∇X1F )Y1,

where 4N(X1, Y1) = [X1, Y1]− [FX1, FY1] + F [FX1, Y1] + F [X1, FY1].

The nearly Kähler manifolds are well known in smaller dimensions. M is Kähler

manifold if M is nearly Kähler with dimM ≤ 4. The following is true if dimM = 6 (see

[28], [27], [42], and [73]).

1.3.2 Kähler-Norden manifold

Definition 1.3.3. [7] (Kähler-Norden manifold) A Kähler-Norden manifold is an even-

dimensional connected differentiable manifold, denoted by M , with a dimension n = 2m,

where m is greater than or equal to 2. It is equipped with a (1, 1)-tensor field F and a

pseudo-Riemannian metric g. The conditions that define a Kähler-Norden manifold are

as follows:

F 2 = −I, g(FX1, FY1) = −g(X1, Y1), ∇F = 0,

these conditions holds for any vector fields X1, Y1 ∈ TM , which is the Lie algebra of

vector fields on M , ∇ is the covariant differentiation operator of g. Additionally, in the

given context, the symbol I represents the identity operator.
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Then the metric g has necessarily a neutral signature (m,m), and we can find a

holomorphic metric on the complex manifold Mn [21]. This fact gives us some topological

obstructions to an anti-Kähler manifold, for instance, all its odd Chern numbers vanish

because its holomorphic metric gives us a complex isomorphism between the complex

tangent bundle and its dual and a compact simply connected Kähler manifold cannot be

anti-Kähler because it does not admit a holomorphic metric. In a Kähler-Norden manifold

(M ,F ,g), the Riemannian curvature operator R, the Riemannian curvature tensor R̃, the

Ricci tensor S, the scalar curvature r and the r∗ curvature are defined by:

R(X1, Y1)Z1 = [∇X1 ,∇Y1 ]Z1 −∇[X1,Y1]Z1,

R̃(X1, Y1, Z1,W1) = g(R(X1, Y1)Z1,W1),

S(X1, Y1) = trace of {Z1 → R(Z1, X1)Y1},

r = trace S, (1.3.16)

r∗ = S(Fei, ei). (1.3.17)

1.3.3 Hyper Kähler manifold

A Riemannian 4n-manifold called a hyperKähler manifold [67] if it has a family of almost

complex structures that behave under composition like multiplication, purely imaginary,

unit quaternions, and are covariantly constant w.r.t. the operator of the covariant dif-

ferentiation. We acquire a quaternionic Kähler structure, at least if n ≥ 2, if all that is

required is for these almost complicated structures to exist locally and for the Levi-Civita

connection to typically retain this family. Thus, quaternionic Kähler manifolds are a par-

ticular instance of hyperKähler manifolds. However, note that the quaternionic Kähler

manifold is not required to be Kähler.

Definition 1.3.4. [67] (HyperKähler manifold) For n ∈ N a natural number, a 4n-

dimensional Riemannian manifold is a hyperKähler manifold if its holonomy group is a

subgroup of the quaternionic unitary group SPn.

Equivalently, a hyperKähler manifold is a Riemannian manifold with three complex struc-

tures which are Kähler with respect to the metric and satisfy the quaternionic identities

I2 = J2 = K2 = IJK = −1.
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1.3.4 ParaKähler manifold

Definition 1.3.5. [47] (ParaKähler manifold) A paraKähler manifold is an even dimen-

sional connected differentiable manifold, denoted by M , with a dimension n = 2m, where

m is greater than or equal to 2. It is equipped with a (1, 1)-tensor field F and a pseudo-

Riemannian metric g. The conditions that define a paraKähler manifold are as follows:

F 2 = I, g(FX1, FY1) = −g(X1, Y1),∇F = 0 (1.3.18)

these conditions holds for any vector fields X1, Y1 ∈ TM , which is the Lie algebra of

vector fields on M , ∇ is the covariant differentiation operator of g. Additionally, in the

given context, the symbol I represents the identity operator.

Example 1.3.2. [13] An example of paraKähler structure is given in on Rn by g =−In 0

0 −In

 and F =

 0 In

In 0

, where g is the pseudo-Euclidean metric, F is the

almost complex structure and both the matrices are taken with respect to the canonical

basis of Rn.

1.3.5 Kähler-Einstein manifold

Definition 1.3.6. [4] (Kähler-Einstein manifold) A Kähler manifold is called Kähler-

Einstein if the Ricci curvature tensor is equal to a constant λ times the metric tensor.

i.e., Ric = λg.

1.3.6 Perfect fluid space-time

In the context of a perfect fluid within the framework of general relativity, the Einstein

field equation [50], which incorporates the cosmological constant λ, can be expressed as

follows:

S(X1, Y1)−
r

2
g(X1, Y1) + λg(X1, Y1) = c[(σ + p̃)ω(X1)ω(Y1) + p̃g(X1, Y1)], (1.3.19)

where c represents the gravitational constant, σ corresponds the energy density, p̃ denotes

the isotropic pressure of the fluid, and ω represents the 1-form determined by ω(X1) =

g(X1, ρ), where ρ is the time-like vector field. The equation g(ρ, ρ) = −1 satisfies the

fluid velocity connected to the time-like vector field ρ.
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1.3.7 ParaKähler space-time

Spacetime is a conceptual framework in physics that merges the dimensions of space

and time into a unified four-dimensional structure. It is represented mathematically as

a manifold, enabling the visualization of relativistic phenomena, including the varying

perceptions of events by different observers. In earlier times, it was commonly believed

that the spatial geometry of the universe, defined by coordinates, distances, and directions,

existed independently from the temporal dimension. However, the renowned physicist

Albert Einstein played a fundamental role in introducing the notion of spacetime as an

integral component of his theory of relativity. In 1983, V. R. Kaigorodov [40] conducted

research on the curvature structure of space-time. Numerous differential geometers and

mathematicians continued to develop these concepts of general relativity of space-time

after that.

Definition 1.3.7. [50] (ParaKähler space-time) A space-time with four-dimensions is

classified as a paraKähler space-time if it meets the following criteria:

F 2(X1) = X1, (1.3.20)

g(FX1, FY1) = −g(X1, Y1), (1.3.21)

(∇X1F ) = 0, (1.3.22)

where, F represents a tensor of type (1, 1), g denotes a Riemannian metric, and ∇ stands

for the covariant differentiation operator.

Apart from the introductory chapter, this thesis consists of five chapters. A brief

summary is given of these chapters as follows:

In the second chapter, in our investigation, we explore weakly symmetric Kähler

manifolds that demonstrate characteristics of being both pseudo-projectively flat and

quasi-conformally flat. Furthermore, we analyze weakly pseudo-projectively symmetric

and quasi-conformally symmetric Kähler manifolds, which are also identified as Einstein

manifolds. Additionally, we prove the presence of pseudo-projectively flat weakly sym-

metric Kähler manifolds and quasi-conformally flat weakly symmetric Kähler manifolds,

where a specific relationship holds true for the Ricci tensor.
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In the third chapter, we complete a thorough investigation and develop exact for-

mulas for various curvature properties related to a nearly Kähler manifold that demon-

strates both con-circular and projective flatness. Additionally, we obtain a fascinating

result regarding a 6-dimensional nearly Kähler manifold, and we provide an example to

demonstrate these outcomes.

In fourth chapter, we analyze various forms of curvature identities found in Kähler-

Norden manifolds, including quasi-conformal flatness, pseudo-projective flatness, Weyl-

conformal flatness, and Bochner flatness. Our findings indicate that a Kähler-Norden

manifold displays pseudo-projective symmetric-ness if it exhibits local symmetric-ness

and conversely. Additionally, we investigate semi-symmetric Kähler-Norden manifolds

and establish that a Kähler-Norden manifold is semi-symmetric-ness if it possesses locally

semi-symmetric-ness and conversely.

In the fifth chapter, we investigate certain curvature identities pertaining to a

locally symmetric hyperKähler manifold. Additionally, we delve into the notions of con-

formal flatness and Bochner flatness in the context of hyperKähler manifolds. We suc-

cessfully demonstrate that if the dimension of a conformally flat hyperKähler manifold

exceeds 4, it is locally flat, whereas for a dimension of 4, it is locally symmetric with a

scalar curvature of zero. Moreover, we establish that a conformally flat and Bochner flat

hyperKähler manifold with a dimension of 4n qualifies as an Einstein manifold. Further-

more, we introduce a generalised W2-flat hyperKähler manifold characterised by Ricci

flatness, along with an equation relating the parameters a, b, and c as a ̸=
(
b+ c

4n−7

)
. We

also investigate the scenario of a quasi-W2-flat hyperKähler manifold, which is Ricci flat,

under the condition that c is non-zero. Finally, we provide several examples illustrating

the concepts discussed in hyperKähler manifolds.

In the sixth chapter, we conduct a study on several curvature identities in paraKähler

manifolds that are pseudo-quasi-conformally flat, W2-flat, pseudo-projectively flat, and

Bochner flat. Furthermore, we investigate significant results concerning sectional cur-

vature in paraKähler manifolds. Additionally, we examine the behavior of paraKähler

space-time in the presence of a perfect fluid. Moreover, we explore the weakly symmetric

perfect fluids and the weakly Ricci symmetric perfect fluids on paraKähler space-time.

We also delve into the aforementioned curvature identities along with generalised W2-
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flat curvature identitity on paraKähler space-time. Lastly, we expand upon important

properties associated with sectional curvature on paraKähler space-time.
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2
Some Weakly Symmetric Kähler Manifolds

2.1 Introduction

After the introduction of the concepts of the weakly symmetric and weakly projective

symmetric manifolds by L. Tamassy and T. Q. Binh [69] in 1989, M. Prvanovic [52], U.

C. De, and S. Bandyopadhyay [15] etc. showed keen interests on those manifolds. The

work of L. Tamassy, U. C. De, and T. Q. Binh [68] on the weakly symmetric and the

weakly Ricci symmetric Kähler manifolds also produced a few curious results.

This chapter is divided into five sections. The first two sections consist of an introduc-

tion and preliminaries. In the third section, we show that a weakly pseudo-projectively

symmetric Kähler manifold is an Einstein manifold with respect to vector field ρ satis-

fying the condition g(X1, ρ) = ω(X1). In the fourth section, we initiate in a pseudo-

projectively flat weakly symmetric Kähler manifold, the Ricci tensor follows the relation

S(Z1, α) + S(Z1, ρ) = −rω(Z1), where g(X1, α) = A(X1). In the fifth segment, we il-

lustrate that a weakly quasi-conformally symmetric Kähler manifold is again an Einstein

manifold with respect to vector field ρ, which is defined earlier. In the last section, we

show that in a quasi-conformally flat weakly symmetric Kähler manifold, the Ricci tensor

satisfies the relation which is mentioned above.

2.2 Preliminaries

Definitions and some basic characteristics of the Kähler manifold, the weakly symmetric

Kähler manifold, weakly pseudo-projectively symmetric Kähler and the weakly quasi-

16



conformally symmetric Kähler manifold are provided in the introductory chapter. Here,

we reflect on a few significant findings and apply them to our work.

In this context, we derive some formulae which will be essential to examine the behaviours

of weakly pseudo-projectively symmetric manifold and weakly quasi-conformally symmet-

ric manifold of dimension n. Let us consider an orthonormal basis {ei}ni=1, of each tangent

space of the manifold. Then from (1.2.5), we have the following:

(a)
n∑

i=1

P (ei, Y1, Z1, ei) = [a+ (n− 1)b][S(Y1, Z1)−
r

n
g(Y1, Z1)],

(b)
n∑

i=1

P (X1, Y1, ei, ei) = 0,

(c)
n∑

i=1

C(ei, Y1, Z1, ei) = [a+ (n− 2)b][S(Y1, Z1)−
r

n
g(Y1, Z1)],

(d)
n∑

i=1

C(X1, Y1, ei, ei) = 0.

Now, we have proved the following proposition:

Proposition 2.2.1. In a Riemannian manifold (M, g) with dimension greater than 2,

the pseudo-projective curvature tensor and quasi-conformally curvature tensor satisfy the

following relations:

(I) P (X1, Y1, Z1, U1) + P (Y1, Z1, X1, U1) + P (Z1, X1, Y1, U1) = 0,

(II) P (X1, Y1, U1, Z1) + P (Y1, Z1, U1, X1) + P (Z1, X1, U1, Y1) = 0,

(III) C(X1, Y1, Z1, U1) + C(Y1, Z1, X1, U1) + C(Z1, X1, Y1, U1) = 0,

(IV ) C(X1, Y1, U1, Z1) + C(Y1, Z1, U1, X1) + C(Z1, X1, U1, Y1) = 0.

2.3 Weakly pseudo-projectively symmetric Kähler man-

ifold

In this section, the following assertion is proved using the Kähler-Einstein metric of the

weakly pseudo-projectively symmetric Kähler manifold. At the end of this section, we

provide a corollary.

Theorem 2.3.1. A weakly pseudo-projectively symmetric Kähler manifold is an Einstein

manifold with respect to the vector field ρ satisfies g(X1, ρ) = ω(X1).
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Proof. If the manifold M is a weakly pseudo-projectively symmetric Kähler manifold,

then we have proved

P (Y1, Z1, U1, V1) = P (Y1, Z1, U1, V1). (2.3.1)

Considering the covariant derivative along with an arbitrady vector X1, we have

(∇X1P )(Y1, Z1, U1, V1) = (∇X1P )(Y1, Z1, U1, V1). (2.3.2)

Applying (1.2.3) and (1.2.6) in (2.3.2), we obtain

ω(Y1)P (X1, Z1, U1, V1) + ω(Z1)P (Y1, X1, U1, V1)

= ω(Y1)P (X1, Z1, U1, V1) + ω(Z1)P (Y1, X1, U1, V1). (2.3.3)

Setting Z1 = U1 = ei, 1 ≤ i ≤ n and summing over i, we get

(a− b)ω(Y1)S(X1, V1)−
(a− 1)br

n
ω(Y1)g(X1, V1)− aR(Y1, X1, V1, ρ)

+bg(Y1, V1)S(X1, ρ)− 2bg(X1, V1)S(Y1, ρ) +
2r

n

[
a

n− 1
+ b

]
g(X1, V1)g(Y1, ρ)

− r

n

[
a

n− 1
+ b

]
g(Y1, V1)g(X1, ρ)

= (a+ b)ω(Y1)S(X1, V1)−
r

n

[
a

n− 1
+ b

]
g(X1, V1)ω(Y1) + aR(Y1, X1, V1, ρ)

+
r

n

[
a

n− 1
+

(r − n)b

r

]
g(Y1, V1)S(X1, ρ). (2.3.4)

Putting X1 = V1 = ei, 1 ≤ i ≤ n and summing over i, we acquire

rg(Y1, ρ)

[
a(1− b) +

(
2− 1

n

)(
a

n− 1
+ b

)]
= S(Y1, ρ)

[
2a+ 2b(n− 1) +

ar

n(n− 1)
+

br

n

]
. (2.3.5)

We achieve

S(Y1, ρ) = fg(Y1, ρ).

This is an Einstein manifold for every vector field ρ.

Hence, the proof.

The above theorem leads to the following corollary:
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Corollary 2.3.1. For a weakly pseudo-projectively symmetric Kähler manifold if ρ is a

unit vector field, then the expression for scalar curvature is, r = 2nh[a+(n−1)b]
2na+(n−h−1)(a+b)

, provided

2na+(n− h− 1)(a+ b) ̸= 0, where h = S(ρ, ρ). In addition, if a+(n− 1)b = 0, then the

scalar curvature vanishes.

Proof. Setting Y1 = ρ, we obtain our desired result.

2.4 Pseudo-projectively flat weakly symmetric Kähler

manifold

In this section, the following result is proved by applying the flat curvature tensor property

of the weakly pseudo-projectively symmetric Kähler manifold as the Ricci tensor.

Theorem 2.4.1. In a pseudo-projectively flat weakly symmetric Kähler manifold, the

Ricci tensor obeys the relation S(Z1, α) + S(Z1, ρ) = −rω(Z1).

Proof. For pseudo-projectively flat curvature tensor, P (Y1, Z1, U1, V1) = 0, then

aR(Y1, Z1, U1, V1) + bS(Z1, U1)g(Y1, V1)− bS(Y1, U1)g(Z1, V1)

− r

n

[
a

n− 1
+ b

]
g(Z1, U1)g(Y1, V1) +

r

n

[
a

n− 1
+ b

]
g(Y1, U1)g(Z1, V1) = 0.

Then

R(Y1, Z1, U1, V1) = − b

a
[S(Z1, U1)g(Y1, V1)− S(Y1, U1)g(Z1, V1)]

+
r

an

[
a

n− 1
+ b

]
[g(Z1, U1)g(Y1, V1)− g(Y1, U1)g(Z1, V1)]. (2.4.1)

Taking covariant differentiation w.r.t. X1, we get

(∇X1R)(Y1, Z1, U1, V1) = − b

a
[g(Y1, V1)(∇X1S)(Z1, U1)− g(Z1, V1)(∇X1S)(Y1, U1)],

(2.4.2)

then (2.4.2) reduces to

A(X1)R(Y1, Z1, U1, V1) + ω(Y1)R(X1, Z1, U1, V1) + ω(Z1)R(Y1, X1, U1, V1)

+ω(U1)R(Y1, Z1, X1, V1) + ω(V1)R(Y1, Z1, U1, X1) = − b

a
[g(Y1, V1)A(X1)S(Z1, U1)

+ω(Z1)S(X1, U1) + ω(U1)S(Z1, X1)− g(Z1, V1)A(X1)S(Y1, U1) + ω(Y1)S(X1, U1)

+ω(U1)S(Y1, X1)]. (2.4.3)
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Putting Y1 = V1 = ei, 1 ≤ i ≤ n and summing over i, we obtain[
1 +

b

a
(n− 1)

]
[A(X1, U1) + ω(Z1)S(X1, U1) + ω(U1)S(Z1, X1)] = 0. (2.4.4)

Taking X1 = U1 = ei, 1 ≤ i ≤ n and summing over i, we acquire[
1 +

b

a
(n− 1)

]
[S(Z1, α) + rω(Z1) + S(Z1, ρ)] = 0, (2.4.5)

for any vector field ρ defined by g(X1, ρ) = ω(X1) and g(X1, α) = A(X1), then we have

S(Z1, α) + S(Z1, ρ) = −rω(Z1).

This completes the theorem.

2.5 Weakly quasi-conformally symmetric Kähler man-

ifold

In this section, the Kähler-Einstein metric of the weakly quasi-conformally symmetric

Kähler manifold is used to demonstrate the claim that follows. This section’s conclusion

is followed by a corollary.

Theorem 2.5.1. A weakly quasi-conformally symmetric Kähler manifold is an Einstein

manifold with respect to the vector field ρ which satisfies g(X1, ρ) = ω(X1).

Proof. If the manifold M is a weakly quasi-conformally symmetric Kähler manifold, then

we have proved

C(Y1, Z1, U1, V1) = C(Y1, Z1, U1, V1). (2.5.1)

Considering the covariant derivative along with an arbitrady vector X1, we have

(∇X1C)(Y1, Z1, U1, V1) = (∇X1C)(Y1, Z1, U1, V1). (2.5.2)

Using (1.2.7) in (2.5.2), we obtain

ω(Y1)C(X1, Z1, U1, V1) + ω(Z1)C(Y1, X1, U1, V1)

= ω(Y1)C(X1, Z1, U1, V1) + ω(Z1)C(Y1, X1, U1, V1). (2.5.3)
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By putting Z1 = U1 = ei, 1 ≤ i ≤ n and summing over i, we acquire

[a+ (n− 4)b]ω(Y1)S(X1, V1)−
r

n
[a+ (n− 2)b]ω(Y1)g(X1, V1)− aR(Y1, X1, V1, ρ)

+bg(Y1, V1)S(X1, ρ)− 2bg(X1, V1)S(Y1, ρ) + bg(X1, ρ)S(Y1, V1)

= (a+ 2b)ω(Y1)S(X1, V1)−
r

n

[
a

n− 1
+ 2b

]
ω(Y1)g(X1, V1)

+aR(Y1, X1, V1, ρ)− bg(Y1, V1)S(X1, ρ)

+
r

n

[
a

n− 1
+ 2b

]
g(Y1, V1)g(X1, ρ)− bg(X1, ρ)S(Y1, V1). (2.5.4)

Again, putting X1 = V1 = ei, 1 ≤ i ≤ n and summing over i, we get

−rg(Y1, ρ)

[
2b+

a

n(n− 1)
+

2b

n

]
= S(Y1, ρ)[2a− 3b+ 2bn]. (2.5.5)

We achieve

S(Y1, ρ) = fg(Y1, ρ).

This is again an Einstein manifold for every vector field ρ.

Therefore, the proof.

Theorem 2.5.1 gives raise to the following corollary:

Corollary 2.5.1. For a weakly quasi-conformally symmetric Kähler manifold if ρ is a unit

vector field, then the expression for scalar curvature is, r = −n(n−1)h[2a+(2n−3)b]
a+(n2−1)2b

, provided

a+ (n2 − 1)2b ̸= 0, where h = S(ρ, ρ). In addition, if 2a+ (2n− 3)b = 0, then the scalar

curvature vanishes.

Proof. Putting Y1 = ρ, we get our desired result.

2.6 Quasi-conformally flat weakly symmetric Kähler

manifold

This section uses the weakly quasi-conformally symmetric Kähler manifold’s flat curvature

tensor property as the Ricci tensor to present the following claim.

Theorem 2.6.1. In a quasi-conformally flat weakly symmetric Kähler manifold, the Ricci

tensor follows the relation S(Z1, α) + S(Z1, ρ) = −rω(Z1).
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Proof. For quasi-conformally flat curvature tensor, C(Y1, Z1, U1, V1) = 0, then

aR(Y1, Z1, U1, V1) + bS(Z1, U1)g(Y1, V1)− bS(Y1, U1)g(Z1, V1) + bg(Z1, U1)g(QY1, V1)

−bg(Y1, U1)g(QZ1, V1)−
r

n

[
a

n− 1
+ 2b

]
g(Z1, U1)g(Y1, V1)

+
r

n

[
a

n− 1
+ 2b

]
g(Y1, U1)g(Z1, V1) = 0. (2.6.1)

Then

R(Y1, Z1, U1, V1) = − b

a
[S(Z1, U1)g(Y1, V1)− S(Y1, U1)g(Z1, V1)

+g(Z1, U1)g(QY1, V1)− g(Y1, U1)g(QZ1, V1)]

+
r

an

[
a

n− 1
+ 2b

]
[g(Z1, U1)g(Y1, V1)

−g(Y1, U1)g(Z1, V1)]. (2.6.2)

Taking covariant differentiation w.r.t. X1, we get

(∇X1R)(Y1, Z1, U1, V1) = − b

a
[g(Y1, V1)(∇X1S)(Z1, U1)− g(Z1, V1)(∇X1S)(Y1, U1)],

(2.6.3)

then

A(X1)R(Y1, Z1, U1, V1) + ω(Y1)R(X1, Z1, U1, V1) + ω(Z1)R(Y1, X1, U1, V1)

+ω(U1)R(Y1, Z1, X1, V1) + ω(V1)R(Y1, Z1, U1, X1) = − b

a
[g(Y1, V1)A(X1)S(Z1, U1)

+ω(Z1)S(X1, U1) + ω(U1)S(Z1, X1)− g(Z1, V1)A(X1)S(Y1, U1)

+ω(Y1)S(X1, U1) + ω(U1)S(Y1, X1)]. (2.6.4)

By putting Y1 = V1 = ei, 1 ≤ i ≤ n and summing over i, we get[
1 +

b

a
(n− 1)

]
[A(X1)S(Z1, U1) + ω(Z1)S(X1, U1) + ω(U1)S(Z1, X1)] = 0. (2.6.5)

Again, taking X1 = U1 = ei, 1 ≤ i ≤ n and summing over i, we get[
1 +

b

a
(n− 1)

]
[S(Z1, α) + rω(Z1) + S(Z1, ρ)] = 0, (2.6.6)

for any vector field ρ defined by g(X1, ρ) = ω(X1) and g(X1, α) = A(X1), then we have

S(Z1, α) + S(Z1, ρ) = −rω(Z1). (2.6.7)

Hence the proof.

22



3
Some Curvature Identities on Nearly Kähler
Manifolds

3.1 Introduction

Gray [28] identified nearly Kähler manifolds while studying weak holonomy, whose Rie-

mannian curvature operators fulfil certain identities. These identities are only somewhat

more difficult than and similar to the related formula for the Riemannian curvature op-

erator of Kähler manifolds. These manifolds are referred to as nearly Kähler manifolds

by Gray, who was able to demonstrate that many findings regarding the topology and

geometry of Kähler manifolds generalise to nearly Kähler manifolds as well as identify

several new topological and geometric properties. Gray termed them almost Kähler man-

ifolds, and he was able to demonstrate that many topological and geometric conclusions

on Kähler manifolds generalised to nearly Kähler manifolds, as well as discover new topo-

logical and geometric aspects of these manifold.

In 2002, Nagy [44, 45] characterised nearly Kähler manifolds as an almost Hermitian

manifolds whose canonical Hermitian connection has parallel and totally skew-symmetric

torsion and displayed that any complete strict nearly Kähler manifold is finitely covered

by a product of homogeneous 3-symmetric manifolds, twistor spaces over quaternionic

Kähler manifolds with their canonical nearly Kähler structure and 6-dimensional strict

nearly Kähler manifolds.

We want to investigate various characteristics of curvature identities on nearly Kähler

manifolds, which is inspired by these publications ([28], [72], [44], and [45]).
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This chapter consists of six sections. The fist two sections contain an introduction and

preliminaries, respectively. In the third section, we discuss some results on the nearly

Kähler manifold. In the fourth section, we study and obtain expressions of some cur-

vature identities on nearly Kähler manifold that is con-circularly flat and projectively

flat. In the later section, we present interesting results on a 6-dimensional nearly Kähler

manifold. Lastly, we provide an example of a nearly Kähler manifold towards the results.

3.2 Preliminaries

In the introduction chapter, definition of the nearly Kähler manifold, conditions and prop-

erties of nearly Kähler manifold, are all discussed. We would like to take this occasion to

provide a few helpful findings that serve as evidence for the findings.

In this section, we explain our notation and write down some important curvature iden-

tities. For a connected almost Hermitian manifold (M ,g,F ), we have g(FX1, FY1) =

g(X1, Y1) for allX1 and Y1 in TM . Throughout this chapter we shall assume that (M ,g,F )

is nearly Kähler, that is (∇X1F )(X1) = 0 for all X1 ∈ TM . Let R denote the Riemannian

curvature tensor. Then we have the following identities [72], [28], and [27]:

(∇X1F )(Y1) + (∇FX1F )(F ) = 0, (3.2.1)

(∇X1F )(FY1) + F ((∇X1F )(Y1)) = 0, (3.2.2)

R(W1, X1, Y1, Z1)−R(W1, X1, FY1, FZ1) = g((∇W1F )(X1), (∇Y1F )(Z1)), (3.2.3)

and R(W1, X1, Y1, Z1) = R(FW1, FX1, FY1, FZ1). (3.2.4)

We now define linear transformations R1 and R∗
1 by

Ric(X1, Y1) = g(R1(X1), Y1) =
n∑

i=1

R(X1, ei, Y1, ei) and

Ric∗(X1, Y1) = g(R∗
1(X1), Y1) =

1

2

n∑
i=1

R(X1, FY1, ei, Fei)

respectively, where {e1, ..., en} denotes a local orthonormal basis. We shall call Ric the

Ricci tensor of the metric and Ric∗ the Ricci∗ tensor respectively. Now note that Ric−
Ric∗ is given by the formula

(Ric−Ric∗)(X1, Y1) =
n∑

i=1

g((∇X1F )ei, (∇Y1F )ei),
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for all vector fields X1 and Y1 on M [56]. Furthermore, Gray [27] proved that

n∑
i,j=1

(Ric−Ric∗)(ei, ej)(R(X1, ei, Y1, ej)− 5R(X1, ei, FY1, Fej)) = 0.

Proposition 3.2.1. [26] For a strict nearly Kähler manifold (M ,g,F ) of dimension 6,

we have for an arbitrady X1, Y1 ∈ χ(M)

(i) ∇F has a constant type, that is

g((∇X1F )(Y1), (∇X1F )(Y1)) =
r

30
(g(X1, X1)g(Y1, Y1)− g(X1, Y1)

2 − g(FX1, Y1)
2)

for any vector fields X1 and Y1,

(ii) the first Chern class of (M,F ) vanishes, and

(iii) M is Einstein manifold,

Ric =
r

6
g,Ric∗ =

r

30
g.

Furthermore, from this proposition, we have the following lemma (see [28], [27], and

[73]).

Lemma 3.2.1. [72] For any vector fields W1, X1, Y1, and Z1, we have

g((∇W1F )(X1), (∇Y1F )(Z1)) =
r

30
[g(W1, Y1)g(X1, Z1)− g(W1, Z1)g(X1, Y1)

−g(W1, FY1)g(X1, FZ1) + g(W1, FZ1)g(X1, FY1)]

and

g((∇W1∇Z1X1), Y1) =
r

30
[g(W1, Z1)g(FX1, Y1)−g(W1, X1)g(FZ1, Y1)+g(W1, Y1)g(FZ1, X1)].

The above results are useful to prove in the next sections.

3.3 Some results on nearly Kähler manifold

Theorem 3.3.1. A necessary and sufficient condition for an almost Hermite manifold to

be an almost nearly Kähler manifold is

∇X1F (Y1) +∇Y1F (X1) = F (∇X1Y1) + F (∇Y1X1).
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Proof. First, we suppose that an almost Hermite manifold is an almost nearly Kähler

manifold. Then

(∇X1F )(Y1) + (∇Y1F )(X1) = 0,

or, ∇X1F (Y1)− F (∇X1Y1) +∇Y1F (X1)− F (∇Y1X1) = 0,

or, ∇X1F (Y1) +∇Y1F (X1) = F (∇X1Y1) + F (∇Y1X1).

Conversely, we suppose that

∇X1F (Y1) +∇Y1F (X1) = F (∇X1Y1) + F (∇Y1X1),

or, ∇X1F (Y1)− F (∇X1Y1) +∇Y1F (X1)− F (∇Y1X1) = 0,

or, (∇X1F )(Y1) + (∇Y1F )(X1) = 0.

Hence, the manifold becomes an almost nearly Kähler manifold.

Theorem 3.3.2. If the Nijenhuis tensor vanishes on a nearly Kähler manifold, then the

manifold becomes a Kähler manifold.

Proof. From Proposition 1.3.1, we have

N(X1, Y1) = −4F ((∇X1F )(Y1)).

If N(X1, Y1) = 0, then F ((∇X1F )(Y1)) = 0. That is, F 2(∇X1F )Y1 = 0.

Hence, (∇X1F )(Y1) = 0.

Therefore, the manifold is a Kähler manifold.

Theorem 3.3.3. On a nearly Kähler manifold divF = 0.

Proof. On a nearly Kähler manifold, we obtain

(∇X1F )(Y1) + (∇Y1F )(X1) = 0.

Now contracting X1 and Y1, we have

(∇X1F )(X1) = 0.

That is, divF = 0.
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3.4 Curvature identities on nearly Kähler manifold

Here, we prove some properties of curvature identities on nearly Kähler manifold.

Theorem 3.4.1. For a con-circularly flat nearly Kähler manifold the following relation

holds

2g(F (R(X1, Y1)Z1,W1)) + g[(∇X1F )(∇Y1Z1),W1]− g[(∇Y1F )(∇X1Z1),W1]

=
r

n(n− 1)
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)].

Proof. Now, (1.2.12) can be written as

C̃(X1, Y1, Z1,W1) = R̃(X1, Y1, Z1,W1)−
r

n(n− 1)
[g(Y1, Z1)g(X1,W1)−g(X1, Z1)g(Y1,W1)],

(3.4.1)

where,

C̃(X1, Y1, Z1,W1) = g(C(X1, Y1)Z1,W1), R̃(X1, Y1, Z1,W1) = g(R(X1, Y1)Z1,W1)

and r is the scalar curvature.

Now for con-circularly flat manifold, we have C̃(X1, Y1, Z1,W1) = 0. Hence from (3.4.1),

we get

R̃(X1, Y1, Z1,W1) =
r

n(n− 1)
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)]. (3.4.2)

Now putting Z1 = F (Z1) in (3.4.2), we get

g(∇X1∇Y1F (Z1),W1)− g(∇Y1∇X1F (Z1),W1)− g(∇[X1,Y1]F (Z1),W1)

=
r

n(n− 1)
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)]. (3.4.3)

By using

∇X1F (Y1) = (∇X1F )Y1 + F (∇X1Y1),

and nearly Kähler condition

(∇X1F )(Y1) + (∇Y1F )(X1) = 0,

we have

−g[∇X1(∇Z1F )Y1,W1] + g[(∇X1F )(∇Y1Z1),W1] + g(F (∇X1∇Y1Z1),W1)

+g[∇Y1(∇Z1F )X1,W1]− g[(∇Y1F )(∇X1Z1),W1]− g(F (∇Y1∇X1Z1),W1)

−g[(∇[X1,Y1]F )Z1,W1]− g(F (∇[X1,Y1]Z1),W1)

=
r

n(n− 1)
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)],
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this implies

2g(F (R(X1, Y1)Z1,W1)) + g[(∇X1F )(∇Y1Z1),W1]− g[(∇Y1F )(∇X1Z1),W1]

=
r

n(n− 1)
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)].

Hence the proof.

Theorem 3.4.2. For a con-circularly flat nearly Kähler manifold the following expression

holds
n∑

i=1

g((∇eiF )(ei), (∇eiF )(ei)) = 0.

Proof. In a nearly Kähler manifold, the curvature tensor R̃ follows the following relations

[18]

R̃(X1, Y1, X1, Y1) = R̃(X1, Y1, F (X1), F (Y1)) + g((∇X1F )(Y1), (∇X1F )(Y1)),

where R̃(X1, Y1, X1, Y1) = g(R(X1, Y1)X1, Y1).

Also, for a con-circularly flat manifold, we have C̃(X1, Y1, Z1,W1) = 0. So

R̃(X1, Y1, Z1,W1) =
r

n(n− 1)
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)]. (3.4.4)

Now from (3.4.4) and putting X1 = Y1 = ei , 1 ≤ i ≤ n and summing over i, we obtain

n∑
i=1

g((∇eiF )(ei), (∇eiF )(ei)) = 0.

This completes the proof.

Note 3.4.1. For a conformally flat, projectively flat, con-harmonic flat, and Bochner flat

nearly Kähler manifold the following relations hold

n∑
i=1

g((∇eiF )(ei), (∇eiF )(ei)) = 0.

Theorem 3.4.3. If a nearly Kähler manifold with constant holomorphic sectional curva-

ture c at every point P is con-circularly flat, then

n∑
i=1

g((∇X1F )(Y1), (∇eiF )(ei)) = 0.
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Proof. We know that in a nearly Kähler manifoldM with a constant holomorphic sectional

curvature c at every point P in M , the Riemannian curvature tensor of M takes the

following form [18]

R̃(X1, Y1, Z1,W1) =
c

4
[g(X1,W1)g(Y1, Z1)− g(X1, Z1)g(Y1,W1)

+g(X1, F (W1))g(Y1, F (Z1))− g(X1, F (Z1))g(Y1, F (W1))

−2g(X1, F (Y1))g(Z1, F (W1))]

+
1

4
[g((∇X1F )W1, (∇Y1F )Z1)− g((∇X1F )Z1, (∇Y1F )W1)

−2g((∇X1F )Y1, (∇Z1F )W1)]. (3.4.5)

Also, for a con-circularly flat manifold, we have C̃(X1, Y1, Z1,W1) = 0. So

R̃(X1, Y1, Z1,W1) =
r

n(n− 1)
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)]. (3.4.6)

Now, from the equation (3.4.5) and putting Z1 = W1 = ei , 1 ≤ i ≤ n and summing over

i, we have
n∑

i=1

g((∇X1F )(Y1), (∇eiF )(ei)) = 0.

Hence the proof.

Note 3.4.2. For a conformally flat, projectively flat, con-harmonic flat, and Bochner flat

nearly Kähler manifold M with constant holomorphic sectional curvature c at every point

P in M , the following expression holds

n∑
i=1

g((∇X1F )(Y1), (∇eiF )(ei)) = 0.

3.5 Curvature identities in 6-dimensional nearly Kähler

manifold

For a 6-dimensional nearly Kähler manifold the con-circular curvature tensor represents

the form

C̃(X1, Y1, Z1,W1) = R̃(X1, Y1, Z1,W1)−
r

30
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)].

So, we deduce the following result:
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Result 3.5.1. For a con-circularly flat 6-dimensional nearly Kähler manifold, the ex-

pression of the Ricci curvature tensor is S(X1, Y1) =
r
6
g(X1, Y1). So the manifold is an

Einstein manifold.

3.6 Example of nearly Kähler manifold

A 6-dimensional unit sphere S6 has an almost complex structure F defined by the vector

cross product in the space of purely imaginary Cayley numbers. This almost complex

structure is not integrable and satisfies (∇X1F )(X1) = 0, for every vector field X1 on S6.

Hence, S6 is a nearly Kähler manifold which is not Kähler.

The results can be verified in the above example.
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4
Some Curvature Identities on
Kähler-Norden Manifolds

4.1 Introduction

Norden [46] was the first to study almost complex manifolds with his metric. In order

to classify an almost complex manifold with respect to the covariant derivative of the

almost complex structure, Ganchev et al. [21] used the Norden metric. Ganchev et al.

[22] classified the almost-contact manifolds with Norden-metric in 1993 and introduced

the geometry of these manifolds.

The criteria of the pseudosymmetry and semisymmetry types for the Riemann, Ricci, and

Weyl curvature tensors of Kählerian and paraKählerian manifolds were investigated in the

publications [35, 36, 48] and several others. Using a Kähler-Norden manifold, we expand

Sluka’s [64] result in this chapter. Sluka [65] created some illustrations of semisymmetric

and locally symmetric Kähler-Norden manifolds, as well as ones that are holomorphically

projectively flat.

This chapter contains five sections of which the first two sections are the introduction and

preliminaries. In the third section, we study some curvature identities on Kähler-Norden

manifolds, specifically focusing on quasi-conformally flat, pseudo-projectively flat, Weyl-

conformally flat, and Bochner flat. In the next section, we show that a Kähler-Norden

manifold is pseudo-projectively symmetric if and only if it is locally symmetric and proved

that Kähler-Norden manifolds are quasi-conformally symmetric, Weyl-conformally sym-

metric, and Bochner symmetric if and only if these are all locally symmetric. In the last
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section, we also conduct a study on semi-symmetric Kähler-Norden manifold and proved

that Kähler-Norden manifolds are pseudo-projectively semi-symmetric, quasi-conformally

semi-symmetric, Weyl-conformally semi-symmetric, and Bochner semi-symmetric if and

only if these are all semi-symmetric.

4.2 Preliminaries

Definitions and some basic characteristics of the Kähler-Norden manifold, various types

of curvature tensors, and r∗ curvature tensors are provided in the introductory chapter.

Here, we review several important findings from the previous and apply these to our

current work.

Now, within a Kähler-Norden manifold [14], the subsequent properties are fulfilled:

R(FX1, FY1)Z1 = −R(X1, Y1)Z1, (4.2.1)

R(FX1, Y1)Z1 = R(X1, FY1)Z1, (4.2.2)

S(FX1, Y1) = S(FY1, X1), (4.2.3)

S(FX1, FY1) = −S(X1, Y1). (4.2.4)

If we take Q as the Ricci operator then the Ricci tensor S in terms of Q is expressed as

S(X1, Y1) = g(QX1, Y1), (4.2.5)

where

rQY1 = −
∑
i

ϵiR(ei, Y1)ei,

and {ei}, 1 ≤ i ≤ n is an orthonormal basis and ϵi are the indicators of ei. The Riemannian

metric g in terms of ei and ϵi is given by

ϵi = g(ei, ei) = ±1, (4.2.6)

g(Fei, ei) = 0. (4.2.7)

Definition 4.2.1. [14] A Riemannian manifold is said to be locally symmetric if ∇R = 0,

where R is the Riemannian curvature tensor of the manifold.
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Definition 4.2.2. [14] A pseudo-projectively curvature tensor is said to be parallel if the

covariant derivative of pseudo-projective curvature tensor vanishes i.e. ∇P = 0, and this

type of manifold is called a pseudo-projectively symmetric manifold.

Definition 4.2.3. [58, 30] Let (M ,g) be a Riemannian or pseudo-Riemannian manifold

is called semi-symmetric if R(X1, Y1).R = 0, Ricci semi-symmetric if R(X1, Y1).S = 0,

where R(X1, Y1) denotes the derivation in the tensor algebra at each point of the manifold.

4.3 Some results on curvature identities on Kähler-

Norden manifold

In the following part, we take the manifold into consideration as a even-dimensional

Kähler-Norden manifold where the corresponding Ricci tensors fulfill the r∗ curvature

tensors.

Theorem 4.3.1. In a quasi-conformally flat Kähler-Norden manifold, the Ricci tensor

follows the relation S(Y1,W1) =
br∗

a−2b
g(FY1,W1), provided a ̸= 2b.

Proof. In an Kähler-Norden manifold of dimension n, the Ricci tensor S is expressed by

S(X1, Y1) =
n∑

i=1

ϵiR̃(F (ei), F (Y1), ei,W1). (4.3.1)

Considering the inner product of (1.2.7) with W1, we obtain

g(C(X1, Y1)Z1,W1) = aR̃(X1, Y1, Z1,W1) + b[S(Y1, Z1)g(X1,W1)

−S(X1, Z1)g(Y1,W1)

+g(Y1, Z1)S(X1,W1)− g(X1, Z1)S(Y1,W1)]

− r

n

[
a

n− 1
+ 2b

]
[g(Y1, Z1)g(X1,W1)

−g(X1, Z1)g(Y1,W1)]. (4.3.2)

Now, as the manifold is quasi-conformally flat, from (4.3.2) we get

aR̃(X1, Y1, Z1,W1) + b[S(Y1, Z1)g(X1,W1)− S(X1, Z1)g(Y1,W1)

+g(Y1, Z1)S(X1,W1)− g(X1, Z1)S(Y1,W1)]

− r

n

[
a

n− 1
+ 2b

]
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)] = 0. (4.3.3)

33



Setting X1 = Fei, Y1 = FY1, Z1 = ei in (4.3.3) and summing over i = 1, 2, ..., n, and

applying (4.3.1), (1.3.17), (4.2.3), (4.2.4) and (4.2.7), we have

(a− 2b)S(Y1,W1)− br∗g(FY1,W1) +
r

n

(
a

n− 1
+ 2b

)
g(Y1,W1) = 0. (4.3.4)

Taking Y1 = W1 = ei in (4.3.4) and summing over i = 1, 2, ..., n, and applying (1.3.16),

we obtain

anr = 0.

This implies

r = 0, provided a ̸= 0.

Then (4.3.4) becomes

(a− 2b)S(Y1,W1)− br∗g(FY1,W1) = 0.

This implies

S(Y1,W1) =
br∗

a− 2b
g(FY1,W1), provided a ̸= 2b.

This completes the proof.

Theorem 4.3.2. In a pseudo-projectively flat Kähler-Norden manifold, the Ricci tensor

obeys the relation S(Y1,W1) =
br∗

a−b
g(FY1,W1), provided a ̸= b.

Proof. Taking scalar product of (1.2.5) with W1 leads to

g(P (X1, Y1)Z1,W1) = aR̃(X1, Y1, Z1,W1) + b[S(Y1, Z1)g(X1,W1)− S(X1, Z1)g(Y1,W1)]

− r

n

[
a

n− 1
+ b

]
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)]. (4.3.5)

Now, as the manifold is pseudo-projectively flat, from (4.3.5) we get

aR̃(X1, Y1, Z1,W1) + b[S(Y1, Z1)g(X1,W1)− S(X1, Z1)g(Y1,W1)]

− r

n

[
a

n− 1
+ b

]
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)] = 0. (4.3.6)

Setting X1 = Fei, Y1 = FY1, Z1 = ei in (4.3.6) and summing over i = 1, 2, ..., n, and

applying (4.3.1), (1.3.17), (4.2.3), (4.2.4) and (4.2.7), we have

(a− b)S(Y1,W1)− br∗g(FY1,W1) +
r

n

(
a

n− 1
+ b

)
g(Y1,W1) = 0. (4.3.7)
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Taking Y1 = W1 = ei in (4.3.7) and summing over i = 1, 2, ..., n, and applying (1.3.16),

we obtain

anr = 0.

This implies

r = 0, provided a ̸= 0.

Then (4.3.7) becomes

(a− b)S(Y1,W1)− br∗g(FY1,W1) = 0.

This implies

S(Y1,W1) =
br∗

a− b
g(FY1,W1), provided a ̸= b.

Hence the proof.

Theorem 4.3.3. In a Weyl-conformally flat Kähler-Norden manifold, the Ricci tensor

follows the property S(Y1, U1) = − r∗

n
g(FY1, U1), provided n ̸= 0.

Proof. Considering the inner product of (1.2.8) with U1, we acquire

g(W (X1, Y1)Z1, U1) = R̃(X1, Y1, Z1, U1)−
1

n− 2
[g(Y1, Z1)S(X1, U1)− g(X1, Z1)S(Y1, U1)

+ S(Y1, Z1)g(X1, U1)− S(X1, Z1)g(Y1, U1)]

+
r

(n− 1)(n− 2)
[g(Y1, Z1)g(X1, U1)− g(X1, Z1)g(Y1, U1)]. (4.3.8)

Now, as the manifold is Weyl-conformally flat, from (4.3.8) we obtain

R̃(X1, Y1, Z1, U1)−
1

n− 2
[g(Y1, Z1)S(X1, U1)− g(X1, Z1)S(Y1, U1)

+S(Y1, Z1)g(X1, U1)− S(X1, Z1)g(Y1, U1)]

+
r

(n− 1)(n− 2)
[g(Y1, Z1)g(X1, U1)− g(X1, Z1)g(Y1, U1)] = 0. (4.3.9)

Setting X1 = Fei, Y1 = FY1, Z1 = ei in (4.3.9) and summing over i = 1, 2, ..., n, and

applying (4.3.1), (1.3.17), (4.2.3), (4.2.4) and (4.2.7), we get

n

n− 2
S(Y1, U1) +

r∗

n− 2
g(FY1, U1)−

r

(n− 1)(n− 2)
g(Y1, U1) = 0. (4.3.10)

Taking Y1 = U1 = ei in (4.3.10) and summing over i = 1, 2, ..., n, and also applying

(1.3.16), we have

nr = 0.
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This implies

r = 0, provided n ̸= 0

Then (4.3.10) becomes

n

n− 2
S(Y1, U1) +

r∗

n− 2
g(FY1, U1) = 0.

This implies

S(Y1, U1) = −r∗

n
g(FY1, U1), provided n ̸= 0.

This completes the proof.

Theorem 4.3.4. In a Bochner flat Kähler-Norden manifold, the Ricci tensor obeys the

relation S(Y1,W1) = − r∗

2(n+4)
g(FY1,W1), provided n+ 4 ̸= 0.

Proof. Considering the scalar product of (1.2.10) with W1, we achieve

g(B(X1, Y1)Z1,W1) = R̃(X1, Y1, Z1,W1)−
1

n+ 4
[g(Y1, Z1)S(X1,W1)

−g(X1, Z1)S(Y1,W1) + S(Y1, Z1)g(X1,W1)

−S(X1, Z1)g(Y1,W1) + g(FY1, Z1)S(FX1,W1)

−g(FX1, Z1)S(FY1,W1) + S(FY1, Z1)g(FX1,W1)

−S(FX1, Z1)g(FY1,W1)− 2S(FX1, Y1)g(FZ1,W1)

−2g(FX1, Y1)S(FZ1,W1)]

+
r

(n+ 2)(n+ 4)
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)

+g(FY1, Z1)g(FX1,W1)− g(FX1, Z1)g(FY1,W1)

−2g(FX1, Y1)g(FZ1,W1)]. (4.3.11)

Now, as the manifold is Bochner flat, from (4.3.11) we get

R̃(X1, Y1, Z1,W1) =
1

n+ 4
[g(Y1, Z1)S(X1,W1)− g(X1, Z1)S(Y1,W1)

+S(Y1, Z1)g(X1,W1)− S(X1, Z1)g(Y1,W1)

+g(FY1, Z1)S(FX1,W1)− g(FX1, Z1)S(FY1,W1)

+S(FY1, Z1)g(FX1,W1)− S(FX1, Z1)g(FY1,W1)

−2S(FX1, Y1)g(FZ1,W1)− 2g(FX1, Y1)S(FZ1,W1)]

− r

(n+ 2)(n+ 4)
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)

+g(FY1, Z1)g(FX1,W1)− g(FX1, Z1)g(FY1,W1)

−2g(FX1, Y1)g(FZ1,W1)]. (4.3.12)
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Putting X1 = Fei, Y1 = FY1, Z1 = ei in (4.3.12) and summing over i = 1, 2, ..., n, and

applying (4.3.1), (1.3.16), (1.3.17), (4.2.3), (4.2.4) and (4.2.7), we have

S(Y1,W1) = − r∗

2(n+ 4)
g(FY1,W1), provided n+ 4 ̸= 0.

Hence the proof.

Corollary 4.3.1. In a Bochner Kähler-Norden manifold, the scalar curvature vanishes.

Proof. Setting Y1 = W1 = ei in the above equation, and taking the summation over

i = 1, 2, ..., n, we obtain r = 0.

Therefore, the proof is complete.

4.4 Symmetric Kähler-Norden manifold

Theorem 4.4.1. A Kähler-Norden manifold is pseudo-projectively symmetric if it is lo-

cally symmetric and conversely.

Proof. Taking the covariant derivative of equation (1.2.5) and putting X1 = Fei, Y1 =

FY1, Z1 = ei,W1 = W1, and also using ∇P = 0, we acquire

(a− b)(∇X1S)(Y1,W1)− bdr∗(X1)g(FY1,W1) +
dr(X1)

n

(
a

n− 1
+ b

)
g(Y1,W1) = 0.

(4.4.1)

Now, putting Y1 = W1 = ei in (4.4.1), we have

an(dr(X1)) = 0. (4.4.2)

Since a ̸= 0, which implies

dr(X1) = 0. (4.4.3)

Again, using (4.4.3) in (4.4.1), we obtain

(∇X1S)(Y1,W1) =
b

a− b
dr∗(X1)g(FY1,W1). (4.4.4)

Putting Y1 = FY1 in (4.4.4), we get

(∇X1S)(FY1,W1) = − b

a− b
dr∗(X1)g(Y1,W1). (4.4.5)

37



Once again, replacing Y1 and W1 in equation (4.4.5) by ei, we have(
1 +

bn

a− b

)
dr∗(X1) = 0, (4.4.6)

this implies

dr∗(X1) = 0. (4.4.7)

Applying (4.4.7) in (4.4.4), we get

(∇X1S)(Y1,W1) = 0. (4.4.8)

Now, taking the covariant derivative of (1.2.5) and using (4.4.3) and (4.4.8), we obtain

(∇X1P )(Y1, Z1, U1, V1) = a(∇X1R)(Y1, Z1, U1, V1), where a ̸= 0.

This proves the theorem.

From theorem 4.4.1, we get the following corollary:

Corollary 4.4.1. Kähler-Norden manifolds are quasi-conformally symmetric, Weyl-con

formally symmetric and Bochner symmetric if and only if these are all locally symmetric.

4.5 Semi-symmetric Kähler-Norden manifold

Theorem 4.5.1. A Kähler-Norden manifold is pseudo-projectively semi-symmetric if it

is semi-symmetric and conversely.

Proof. From equation (1.2.5) and putting X1 = Fei, Y1 = FY1, Z1 = ei,W1 = W1, we

obtain
n∑

i=1

ϵiP (Fei, FY1)ei = (a− b)QY1 − br∗FY1 +
r

n

(
a

n− 1
+ b

)
Y1, (4.5.1)

where r∗ is the trace of FQ and is known as ∗-scalar curvature. If pseudo-projectively

curvature tensor in Kähler-Norden manifold satisfies R.P = 0, then from equation (4.5.1),

R.Q = 0 and hence R.S = 0. Since we know that the Ricci tensors are expressed by

S(X1, Y1) = g(QX1, Y1) and S(FX1, Y1) = g(QFX1, Y1), then from equation (1.2.5), if

R.P = 0 and R.S = 0, then we obtain R.R = 0. Conversely if

R.R = 0 ⇒ R.S = 0 ⇒ R.Q = 0, (4.5.2)

then from (4.5.1), we have R.P = 0. Hence the proof.
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From theorem 4.5.1, we get the following corollary:

Corollary 4.5.1. Kähler-Norden manifolds are quasi-conformally semi-symmetric, Weyl-

conformally semi-symmetric and Bochner semi-symmetric if and only if these are all

semi-symmetric.
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5
Some Curvature Identities on hyperKähler
Manifolds

5.1 Introduction

Riemannian manifolds with only one such automorphism are referred to as Kähler mani-

folds. Even while the term “hyperKähler” recalls Grassmann’s “hypercomplex numbers”

rather than Hamilton’s quaternions, it was established with E. Calabi [34] and is a cor-

rect description—the metric is Kählerian for multiple complex structures. But there is

a crucial distinction between hyperKähler and Kähler manifolds. Simply by including

a hermitian form ∂∂̄f for every sufficiently small C∞ function f , one can change the

Kähler metric on a given complex manifold to another. Kähler metrics’ space is infinitely

dimensional as a result. Examples of Kähler manifolds are also widely available. Since

a Kähler metric is inherited by every complex submanifold of CPn, merely setting down

the algebraic equations for a projective variety provides a huge number of examples.

HyperKähler metrics, in comparison, are far more strict. If one such metric exists on a

compact manifold, then up to isometry there is only a finite-dimensional space of them.

Finding examples is also difficult. They are obviously impossible to locate as quaternionic

submanifolds of the quaternionic projective space HPn [28].

Considering M. Berger’s [33] description of the holonomy groups of Riemannian mani-

folds in 1955, the concept of a hyperKähler manifold first emerged. Since I, J , and K

are covariant constants on a hyperKähler manifold, parallel translation preserves them.

As a result, the holonomy group is contained in both the orthogonal group O4n and the
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group GL(n,H) of quaternionic invertible matrices (i.e., those linear transformations that

commute with right multiplication by i, j and k). The group of n×n quaternionic unitary

matrices is the maximum such intersection in SPn. In Berger’s list, this group performed.

The linear transformations of C2n that preserve a non-degenerate skew form, U2n and

SP (2n,C), intersect to produce the group SPn. Thus, a hyperKähler manifold is a nat-

urally complex manifold with a holomorphic symplectic form. By using the three Kähler

two-forms, ω1(X1, Y1) = g(IX1, Y1), ω2(X1, Y1) = g(JX1, Y1), ω3(X1, Y1) = g(KX1, Y1)

for X1, Y1 ∈ TM , defined for the complex structures I, J and K, one can clearly under-

stand this. In terms of complex structures, I, J and K, the complex form ω1= ω2 + iω3

is non-degenerate and covariant constant, making it closed and holomorphic.

This chapter contains seven sections of which the first two sections are the introduction

and preliminaries, respectively. In the third section, we study some curvature identities on

hyperKähler manifold that is locally symmetric. In the next section, we study conformal

flatness of a hyperKähler manifold. Also, for a conformally flat hyperKähler manifold

of dimension ≥ 4, we prove that the manifold is locally symmetric. Particularly, if the

dimension of the manifold is equal to 4 then its scalar curvature vanishes identically.

Next, we investigate a conformally flat hyperKähler manifold of dimension 4n which be-

comes an Einstein manifold. In the later section, we discuss the Bochner flatness of a

hyperKähler manifold and prove that this manifold is an Einstein manifold. Later, we

establish a generalised W2-flat hyperKähler manifold and prove that this manifold is an

Einstein manifold. Also it is Ricci flat, provided a ̸=
(
b+ c

4n−7

)
. Now, we examine a

quasi-W2 flat hyperKähler manifold is Ricci flat, provided c ̸= 0. In the last section, we

give some examples of a hyperKähler manifold to support our results.

5.2 Preliminaries

In the introductory chapter, the almost hypercomplex manifold, hypercomplex manifold,

and hyperKähler manifold are discussed. We want to take this opportunity to mention a

few helpful findings that are used to obtain some results.

Let M be a Riemannian manifold with I, J , and K compatible almost complex structures

parallel with respect to the operator of the covariant differentiation satisfying IJ = K =

−JI. Consequently, (a) I, J , and K are integrable, and (b) ω1 = g(I., .), etc. are
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symplectic forms. Let H = R4 with basis {1, i, j, k}, i2 = −1 = j2 = k2, quaternion

division algebra. In Hn, Iq = −qi holds, with a standard inner product. We also know

SP1 = SU2 = {ai + bj + ck : a2 + b2 + c2 = 1} acts on the right. SPn = {A ∈ Mn(H) |
A

T
A = In} is the centraliser in SO4n of SP1.

Now, we have the following propositions:

Proposition 5.2.1. [37, 57] A hyperKähler manifold M is defined as a complex manifold

that possesses a holomorphic symplectic form. Conversely, any compact Kähler manifold

with a holomorphic symplectic form is hyperKähler.

Proposition 5.2.2. [57] A hyperKähler manifold is a C∞ Riemannian manifold together

with three covariantly constant orthogonal endomorphisms I, J and K of the tangent bun-

dle which satisfy the quaternionic relations I2 = J2 = K2 = IJK = −1.

Note that I, J , and K induce quaternionic vector space structure on each tangent

space. So, dimension of a hyperKähler manifold is divisible by 4. Since I, J , and K are

covariantly constant, a parallel transport commutes with the quaternionic multiplication,

and so the holonomy group is contained in O4n

⋂
GLn(H) ∼= SPn, the group of quater-

nionic unitary n × n matrices. In particular, since SPn ⊆ SU2n for every hyperKähler

manifold is Calabi-Yau [34].

5.3 Results of Some Curvature Identities on hyper

Kähler Manifold

We investigated some properties of curvature tensors and Ricci tensors of the hyperKähler

manifold.

Theorem 5.3.1. On a hyperKähler manifold M , the Riemannian curvature tensor R
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satisfies

(i)R(X1, Y1)IZ1 = IR(X1, Y1)Z1,

(ii)R(IX1, IY1)Z1 = R(X1, Y1)Z1,

(iii)R(IX1, Y1)Z1 +R(X1, IY1)Z1 = 0,

(iv)R̃(IX1, IY1, IZ1, IW1) = R̃(X1, Y1, Z1,W1),

(v)R̃(IX1, Y1, IZ1,W1) = R̃(X1, IY1, Z1, IW1),

(vi)R̃(X1, Y1, IZ1, JW1) = −R̃(IX1, IY1, Z1, IJW1),

(vii)R̃(IX1, IY1, JZ1, JW1) = R̃(X1, Y1, IJZ1, IJW1),

where R̃(X1, Y1, Z1,W1) = g(R(X1, Y1)Z1,W1).

Proof. (i) Since I is parallel, i.e., (∇X1I)(Y1) = 0, we get

∇X1I(Y1) = I(∇X1Y1).

Now

R(X1, Y1)I(Z1) = ∇X1∇Y1I(Z1)−∇Y1∇X1I(Z1)−∇[X1,Y1]I(Z1)

= ∇X1I(∇Y1Z1)−∇Y1I(∇X1Z1)− I(∇[X1,Y1](Z1))

= I(∇X1∇Y1Z1)− I(∇Y1∇X1Z1)− I(∇[X1,Y1]Z1)

= I(R(X1, Y1)Z1).

(ii) Since g(R(X1, Y1)V1, U1) = g(R(U1, V1)Y1, X1), we have

g(R(IX1, IY1)V1, U1) = g(R(U1, V1)IY1, IX1)

= g(I(R)(U1, V1)Y1, IX1)

= −g(R(U1, V1)Y1, I
2(X1)), [since g(IX1, Y1) = −g(X1, IY1)]

= g(R(U1, V1)Y1, X1), [since I2 = J2 = K2 = −1

and IJ = −K = JI]

= g(R(X1, Y1)V1, U1).

Hence, R(IX1, IY1)V1 = R(X1, Y1)V1.

43



(iii) Putting X1 = IX1 in (ii), we obtain (iii).

(iv) Now

g(R(IX1, IY1)IZ1, IW1) = −g(I(R)(IX1, IY1)IZ1,W1),

[since g(IX1, Y1) = −g(X1, IY1)]

= −g(R(IX1, IY1)Z1,W1)

= g(R(X1, Y1)Z1,W1),

[using g(R(IX1, IY1)V1, U1) = g(R(X1, Y1)V1, U1)]

Therefore, R̃(IX1, IY1, IZ1, IW1) = R̃(X1, Y1, Z1,W1).

(v) Setting Y1 = IY1, W1 = IW1 in (iv), we get (v).

(vi) Putting X1 = IX1, Y1 = IY1, W1 = KW1, where IJ = K = −JI in equation

(iv), then we obtain

R̃(X1, Y1, IZ1, JW1) = −R̃(IX1, IY1, Z1, IJW1).

(vii) Again putting Z1 = KZ1, W1 = KW1, where IJ = K = −JI in equation (iv), then

we have R̃(IX1, IY1, JZ1, JW1) = R̃(X1, Y1, IJZ1, IJW1).

Remark 5.3.1. Accordingly, theorem 5.3.1 holds for operators J,K. Since I2 = J2 =

K2 = −1 and IJ = −K = JI, so the above curvature identities also hold for the operators

IJ and JI.

Theorem 5.3.2. The Ricci tensor of a hyperKähler manifold follows the following rela-

tions

(i)S(IX1, IY1) = S(X1, Y1),

(ii)S(IX1, Y1) + S(X1, IY1) = 0.
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Proof.

S(IX1, IY1) = trace{Z1 → R(Z1, IX1)IY1}

= trace{IZ1 → R(IZ1, IX1)IY1}

= trace{IZ1 → R(Z1, X1)IY1}, [by (ii) of theorem 5.3.1]

= trace{IZ1 → IR(Z1, X1)Y1}, [sinceIR = RI]

= trace{Z1 → R(Z1, X1)Y1}

= S(X1, Y1),

which proves (i).

Now setting X1 = IY1 in (i), we obtain (ii).

Remark 5.3.2. In parallel, theorem 5.3.2 holds for the operators J,K. Since I2 = J2 =

K2 = −1 and IJ = −K = JI, so the above Ricci tensor of a hyperKähler manifold also

satisfies the operators IJ and JI.

Theorem 5.3.3. For a hyperKähler manifold of dimension 4n the following relation holds,

i.e.,
4n∑
i=1

ϵiR̃(ei, I(ei), X1, I(Y1)) = 0.

Proof. We have

S(X1, Y1) =
4n∑
i=1

ϵig(R(ei, X1)Y1, ei)

= −
4n∑
i=1

ϵig(R(I(ei), I(X1))Y1, ei)

= −
4n∑
i=1

ϵig(R(ei, Y1)I(X1), I(ei))

= −
4n∑
i=1

ϵig(R(Y1, ei)I(ei), I(X1))

=
4n∑
i=1

ϵig(R(Y1, ei)I(X1), I(ei))
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=
4n∑
i=1

ϵig(R(I(X1), ei)Y1, I(ei)) +
4n∑
i=1

ϵig(R(Y1, I(X1))ei, I(ei)),

[using Bianchi′s identities]

= −
4n∑
i=1

ϵig(R(ei, I(X1))Y1, I(ei))−
4n∑
i=1

ϵig(R(I(X1), Y1)ei, I(ei))

=
4n∑
i=1

ϵig(I(R)(ei, I(X1))Y1, ei) +
4n∑
i=1

ϵig(I(R)(I(X1), Y1)ei, ei)

=
4n∑
i=1

ϵig(R(ei, I(X1))I(Y1), ei) +
4n∑
i=1

ϵig(R(I(X1), Y1)I(ei), ei)

= S(IX1, IY1)−
4n∑
i=1

ϵig(R(Y1, I(X1))I(ei), ei)

= S(X1, Y1) +
4n∑
i=1

ϵiR̃(ei, I(ei), X1, I(Y1)).

So, this implies
4n∑
i=1

ϵiR̃(ei, I(ei), X1, I(Y1)) = 0.

Remark 5.3.3. Comparably, theorem 5.3.3 holds for the operators J,K. Since I2 =

J2 = K2 = −1 and IJ = −K = JI, so the above global form of curvature tensors of a

hyperKähler manifold also satisfy for the operators IJ and JI, i.e.

(i)
4n∑
i=1

ϵiR̃(ei, J(ei), X1, J(Y1)) = 0,

(ii)
4n∑
i=1

ϵiR̃(ei, IJ(ei), X1, IJ(Y1)) = 0,

(iii)
4n∑
i=1

ϵiR̃(ei, JI(ei), X1, JI(Y1)) = 0.

5.4 Conformal flatness of hyperKähler manifold

We concentrate on dimension 4n ≥ 4 because every 3-dimensional Riemannian or pseudo-

Riemannian manifold is conformally flat. We demonstrate the following theorem using

the identities from the preceding section.

Theorem 5.4.1. Let M be a conformally flat hyperKähler manifold. Then

(i) M is locally flat if dim M ≥ 4,

(ii) M is locally symmetric, and its scalar curvature vanishes identically if dim M = 4.
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Proof. By the vanishing of the conformal curvature tensor, we have

R̃(X1, Y1, Z1,W1) =
1

4n− 2
[−g(X1, Z1)S(Y1,W1)− g(Y1,W1)S(X1, Z1)

+ g(X1,W1)S(Y1, Z1) + g(Y1, Z1)S(X1,W1)]

+
r

(4n− 1)(4n− 2)
[g(X1, Z1)g(Y1,W1)− g(X1,W1)g(Y1, Z1)], (5.4.1)

r being the scalar curvature. From the above equation with the help of the theorem 5.3.2

and theorem 5.3.1, we get

4n∑
i=1

ϵiR̃(ei, I(ei), Z1, I(W1)) = − 2

4n− 2
S(Z1,W1) +

r

(4n− 1)(4n− 2)
g(Z1,W1).

Then using the result of theorem 5.3.3, we obtain

S(Z1,W1) =
r

2(4n− 1)
g(Z1,W1). (5.4.2)

Now, setting Z1 = W1 = ei, 1 ≤ i ≤ 4n and summing over i, then from equation (5.4.2),

we have (4n − 1)r = 0, where r =
4n∑
i=1

ϵiS(ei, ei). Then this implies r = 0, when 4n ≥ 4.

Now, putting the value of r = 0 in the equation (5.4.2), we get S = 0.

So from equation (5.4.1), it follows that the manifold is locally flat. Now, also if 4n = 4

then r = 0, then its scalar curvature vanishes identically. Next, we prove the manifold is

locally symmetric. Now, we assume that conformally flatness implies

(∇X1S)(Y1, Z1)− (∇Y1S)(X1, Z1) =
1

6
[(X1r)g(Y1, Z1)− (Y1r)g(X1, Z1)]. (5.4.3)

Putting r = 0 in the equation (5.4.3), we acquire

(∇X1S)(Y1, Z1) = (∇Y1S)(X1, Z1). (5.4.4)

On the other hand, from theorem 5.3.2 it follows that

(∇X1S)(Y1, I(Z1)) + (∇X1S)(Z1, I(Y1)) = 0. (5.4.5)

Using the equality and the equation (5.4.5), we get

(∇X1S)(Y1, I(Z1)) + (∇Y1S)(Z1, I(X1)) = 0. (5.4.6)

Applying the result of theorem 5.3.2 to the above equation, we obtain ∇S = 0. Now

from the equation (5.4.1) and ∇S = 0, implies that ∇R = 0, i.e., the manifold is locally

symmetric.
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The subsequent corollary follows from theorem 5.4.1.

Corollary 5.4.1. A conformally flat hyperKähler manifold of dimension 4n is an Einstein

manifold.

5.5 Bochner flatness of hyperKähler manifold

Theorem 5.5.1. A Bochner flat hyperKähler manifold is an Einstein manifold.

Proof. Taking inner product in the equation (1.2.10) by W1, we get

g(B(X1, Y1)Z1,W1) = R̃(X1, Y1, Z1,W1)−
1

4n+ 4
[g(Y1, Z1)S(X1,W1)

−g(X1, Z1)S(Y1,W1) + S(Y1, Z1)g(X1,W1)

−S(X1, Z1)g(Y1,W1) + g(IY1, Z1)S(IX1,W1)

−g(IX1, Z1)S(IY1,W1) + S(IY1, Z1)g(IX1,W1)

−S(IX1, Z1)g(IY1,W1)− 2S(IX1, Y1)g(IZ1,W1)

−2g(IX1, Y1)S(IZ1,W1)]

+
r

(4n+ 2)(4n+ 4)
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)

+g(IY1, Z1)g(IX1,W1)− g(IX1, Z1)g(IY1,W1)

−2g(IX1, Y1)g(IZ1,W1)]. (5.5.1)

As the manifold is Bochner flat, we can rewrite the foregoing equation as

R̃(X1, Y1, Z1,W1) =
1

4n+ 4
[g(Y1, Z1)S(X1,W1)− g(X1, Z1)S(Y1,W1)

+S(Y1, Z1)g(X1,W1)− S(X1, Z1)g(Y1,W1)

+g(IY1, Z1)S(IX1,W1)− g(IX1, Z1)S(IY1,W1)

+S(IY1, Z1)g(IX1,W1)− S(IX1, Z1)g(IY1,W1)

−2S(IX1, Y1)g(IZ1,W1)− 2g(IX1, Y1)S(IZ1,W1)]

− r

(4n+ 2)(4n+ 4)
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)

+g(IY1, Z1)g(IX1,W1)− g(IX1, Z1)g(IY1,W1)

−2g(IX1, Y1)g(IZ1,W1)]. (5.5.2)
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Setting X1 = ei, Y1 = Iei, Z1 = Z1, and W1 = IW1 in (5.5.2) and summing over i,

1 ≤ i ≤ 4n, and also using the result of the theorem 5.3.3, we have

S(Z1,W1) = − 3nr

(n+ 4)(4n+ 2)
g(Z1,W1). (5.5.3)

Hence the proof.

From theorem 5.5.1, we have the following corollary:

Corollary 5.5.1. A Bochner flat hyperKähler manifold is locally flat.

Proof. Taking Z1 = W1 = ei in (5.5.3) and summing over i, 1 ≤ i ≤ 4n, we acquire

r = 0, provided 4n+ 2 ̸= 0. (5.5.4)

Then, equation (5.5.3) becomes

S(Z1,W1) = 0.

So, the manifold is locally flat.

5.6 Generalised W2-flatness of hyperKähler manifold

Theorem 5.6.1. A generalised W2-flat hyperKähler manifold becomes Ricci flat, provided

a ̸=
(
b+ c

4n−7

)
.

Proof. Since the manifold is a 4n dimensional hyperKähler manifolds. Now for 4n > 8,

taking the scalar product of (1.2.13) with U1, we acquire

g(W2(X1, Y1)Z1, U1) = aR̃(X1, Y1, Z1, U1) +

(
b+

c

4n− 7

)
[g(X1, Z1)S(Y1, U1)

−g(Y1, Z1)S(X1, U1)]. (5.6.1)

Now, as the manifold is W 2-flat, we can rewrite (5.6.1) as

aR̃(X1, Y1, Z1, U1)+

(
b+

c

4n− 7

)
[g(X1, Z1)S(Y1, U1)−g(Y1, Z1)S(X1, U1)] = 0. (5.6.2)

Putting X1 = ei, Y1 = Iei, U1 = IU1 in (5.6.2) and summing over i, 1 ≤ i ≤ 4n and

operating the result of the theorem 5.3.2, we have(
b+

c

4n− 7

)
S(Z1, U1) = 0. (5.6.3)

Then, we obtain S(Z1, U1) = 0, provided
(
b+ c

4n−7

)
̸= 0, for any Z1, U1 ∈ χ(M). This

completes the proof.
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The findings of theorem 5.6.1 lead to the subsequent corollary.

Corollary 5.6.1. A quasi-W2 flat hyperKähler manifold becomes Ricci flat, provided c ̸=
0.

The following examples are given in the paper [57]

Example 5.6.1. A trivial example of hyperKähler manifold is Hn. However, in con-

trast to the Kähler case, HPn is not hyperKähler and neither do its generic quaternionic

submanifolds.

Example 5.6.2. In the particular case n = 1, then SP1 = SU2 in SO4, so a 4-dimensional

Riemannian manifold is hyperKähler exactly when it is Kähler and Ricci flat. Specifically,

this shows that any compact complex surface M of Kähler type with vanishing first Chern

class is either a torus or simply connected and admits a unique complex-symplectic struc-

ture, i.e., is a so-called ”K3-surface”.

Example 5.6.3. A class of non-compact hyperKähler manifolds of real dimension 4 can

be obtained by resolving the singularity of C2/Γ for Γ ⊂ SU2 a finite subgroup.

Example 5.6.4. Many examples of non-compact hyperKähler manifolds arise as moduli

spaces of solutions to gauge-theoretic equations. The hyperKähler structure is obtained by

a hyperKähler reduction from Hn.

These results can be verified in these examples.
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6
Properties of some curvature tensors on
paraKähler manifolds and paraKähler
space-time

6.1 Introduction

A para-complex geometry is defined to be the geometry related to the algebra of complex

numbers and para-complex structures [13] which is the study of structures on differentiable

manifolds. A paraKähler structure and its variants have a compatible neutral pseudo-

Riemannian metric.

In 1948 Rashevskij [54] introduced the properties of paraKähler manifolds. A scalar field

was defined by him which he considered the metric of signature (m,m) defined from a

potential function, on a stratified space which is an n-dimensional locally product mani-

fold. Also, in 1949 Rozenfeld [55] explicitly defined the paraKähler manifold. A similarity

between complex and para-complex manifolds was established by comparing Rashevskij’s

definition with Kähler definition in the complex case.

Moreover, the concept of space-time is linked to four-dimensional pseudo-Riemannian

manifolds denoted as (M4, g). These manifolds possess a Lorentz metric denoted as g,

characterized by the signature (−,+,+,+). The notion of the causal nature of vectors is

crucial in the geometric study of Lorentz manifolds. This is because Lorentz manifolds

become a covariant frame for the study of general relativity. V. R. Kaigorodov [40] stud-

ied the curvature structure of space-time in 1983. Many authors ([16, 17], and [47]) have

extended these concepts of general relativity of space-time. U. C. De, and G. C. Ghosh
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[17] derived some results by considering weakly Ricci symmetric space-time in 2004. The

concepts of the weakly symmetric and the weakly Ricci symmetric manifolds were pre-

sented by the authors [5, 68] in their work. Additionally, the authors M. Prvanovic [52],

U. C. De, and S. Bandyopdhayay [15] have examined various instances and provided sub-

stantial findings regarding Kähler manifolds that are weakly symmetric and weakly Ricci

symmetric.

This kind of evolution prompted us to study the general relativity of space-time in

paraKähler manifold admitting the space-time metric, also known as the paraKähler

space-time.

This chapter contains nine sections of which the first two sections are the introduction

and preliminaries. In the third section, we initiate the study of some curvature identities

in paraKähler manifolds that are pseudo-quasi-conformally flat, pseudo-projectively flat,

W2-flat, and Bochner flat and prove that these manifolds are Einstein manifold or Ricci

flat. Next in the fourth section, we establish the important results related to the sectional

curvature in the paraKähler manifold. In the fifth section, we delve into the investigation

of perfect fluid paraKähler space-time. We demonstrate that if such a space-time fulfils

the Einstein equation alongside a cosmological constant, it is classified as an Einstein man-

ifold. In the sixth section, our focus is on examining weakly symmetric paraKähler space-

time. We demonstrate that in the case of a weakly symmetric perfect fluid paraKähler

space-time that adheres to the Einstein equation alongside a cosmological constant, both

ρ and ρ act as eigenvectors of the Ricci tensor, associated with the eigenvalue r
2
. In the

later section, we investigate weakly Ricci symmetric perfect fluid paraKähler space-time

and establish that no such space-time exists that fulfils the Einstein equation alongside a

cosmological constant and has a non-zero scalar curvature. Moreover, in the eighth sec-

tion, we evolve previously mentioned curvature identities along with generalised W2-flat

curvature identity in paraKähler space-time, and prove that these manifolds are Einstein

manifold or Ricci flat. In the last section, we contrive the important results related to the

sectional curvature in paraKähler space-time.
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6.2 Preliminaries

The first chapter already provides definitions and some properties of the paraKähler man-

ifold, the Lorentzian manifold, space-time, perfect fluid in space-time and the paraKähler

space-time manifold. Here, we would like to review some findings on these manifolds that

were made by illustrious mathematicians and were helpful in reaching the conclusions in

this chapter.

Furthermore, a paraKähler manifold satisfies the following properties:

R(FX1, FY1)Z1 = −R(X1, Y1)Z1, (6.2.1)

R(FX1, Y1)Z1 = −R(X1, FY1)Z1, (6.2.2)

S(FX1, Y1) = −S(FY1, X1), (6.2.3)

S(FX1, FY1) = −S(X1, Y1). (6.2.4)

If we consider Q to be the Ricci operator, then the Ricci tensor S in terms of Q is defined

as

S(X1, Y1) = g(QX1, Y1),

where

rQY1 = −
∑
i

ϵiR(ei, Y1)ei,

where {e1, e2, ...en} is an orthonormal basis and ϵi are the indicators of ei. The Riemannian

metric g is defined as ϵi = g(ei, ei) = 1 in terms of ei and ϵi.

6.3 Some results on curvature identities in paraKähler

manifold

Theorem 6.3.1. A pseudo-quasi-conformally flat paraKähler manifold becomes an Ein-

stein manifold.

Proof. In a paraKähler manifold, we interpret the Ricci tensor by

S(Z1,W1) =
1

2

n∑
i=1

ϵiR̃(ei, F (ei), F (W1)), (6.3.1)
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where {e1, e2, ...en} is an orthonormal basis and n is the dimension of the manifold. Con-

sidering the scalar product of (1.2.11) with W1, we obtain

g(Ṽ (X1, Y1)Z1,W1) = (p+ d)R̃(X1, Y1, Z1,W1) +

(
q − d

n− 1

)
[S(Y1, Z1)g(X1,W1)

−S(X1, Z1)g(Y1,W1)]

+q[g(Y1, Z1)S(X1,W1)− g(X1, Z1)S(Y1,W1)]

− r

n(n− 1)
[p+ 2(n− 1)q] [g(Y1, Z1)g(X1,W1)

−g(X1, Z1)g(Y1,W1)]. (6.3.2)

Now, as the manifold is pseudo-quasi-conformally flat, the foregoing equation can be

rewrite as

(p+ d)R̃(X1, Y1, Z1,W1) +

(
q − d

n− 1

)
[S(Y1, Z1)g(X1,W1)

−S(X1, Z1)g(Y1,W1)] + q[g(Y1, Z1)S(X1,W1)− g(X1, Z1)S(Y1,W1)]

− r

n(n− 1)
[p+ 2(n− 1)q] [g(Y1, Z1)g(X1,W1)

−g(X1, Z1)g(Y1,W1)] = 0. (6.3.3)

Setting X1 = ei, Y1 = Fei,W1 = FW1 in (6.3.3) and summing over i = 1, 2, ..., n, and

applying (6.3.1), (6.2.3), we have

2(p+ d)S(Z1,W1) +

(
q − d

n− 1

)
[−S(FZ1, FW1) + S(Z1,W1)]

+q[−S(FZ1, FW1) + S(Z1,W1)]−
r

n(n− 1)
[p+ 2(n− 1)q]

[−g(FY1, FW1) + g(Z1,W1)] = 0. (6.3.4)

Using (6.2.4) and (1.3.18) in (6.3.4), we acquire

2(p+ d)S(Z1,W1) + 2

(
q − d

n− 1

)
S(Z1,W1) + 2qS(Z1,W1)

− 2r

n(n− 1)
[p+ 2(n− 1)q]g(Z1,W1) = 0. (6.3.5)

which reduces to[
p+ 2q + d

(
n− 2

n− 1

)]
S(Z1,W1) =

r

n(n− 1)
[p+ 2(n− 1)q]g(Z1,W1). (6.3.6)

Thus the manifold becomes an Einstein manifold.

This completes the proof.
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Corollary 6.3.1. A pseudo-quasi-conformally flat paraKähler manifold is Ricci flat, pro-

vided p+d ̸= 0.

Proof. Utilizing Z1 = W1 = ei in (6.3.6) and taking sum over i = 1, 2, ..., n, we obtain

r(p+ d)

(
n− 2

n− 1

)
= 0.

As a result

r = 0.

Then (6.3.6) becomes

S(Z1,W1) = 0.

This implies that the manifold becomes Ricci flat.

Hence the proof.

Theorem 6.3.2. A pseudo-projectively flat paraKähler manifold becomes an Einstein

manifold.

Proof. Applying the inner product of (1.2.5) with W1, we have

g(P (X1, Y1)Z1,W1) = aR̃(X1, Y1, Z1,W1) + b[S(Y1, Z1)g(X1,W1)− S(X1, Z1)g(Y1,W1)]

− r

n

[
a

n− 1
+ b

]
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)]. (6.3.7)

As the manifold is pseudo-projectively flat, so the (6.3.7) minimizes as

aR̃(X1, Y1, Z1,W1) + b[S(Y1, Z1)g(X1,W1)− S(X1, Z1)g(Y1,W1)]

− r

n

[
a

n− 1
+ b

]
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)] = 0. (6.3.8)

Setting X1 = ei, Y1 = Fei,W1 = FW1 in (6.3.8) and taking summation over i = 1, 2, ..., n,

and utilizing (6.3.1), (6.2.3), we obtain

2aS(Z1,W1) + b[−S(FZ1, FW1) + S(Z1,W1)]

− r

n

(
a

n− 1
+ b

)
[−g(FZ1, FW1) + g(Z1,W1)] = 0. (6.3.9)

Using (6.2.4) and (1.3.18) in (6.3.9), we get

(a+ b)S(Z1,W1) =
r

n

(
a

n− 1
+ b

)
g(Z1,W1). (6.3.10)

So the manifold is an Einstein manifold.

Consequently, the proof.
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Corollary 6.3.2. A pseudo-projectively flat paraKähler manifold is Ricci flat, provided a

̸= 0.

Proof. Setting Z1 = W1 = ei in (6.3.10) and summing over i = 1, 2, ..., n, we have

ar

(
n− 2

n− 1

)
= 0.

It follows because

r = 0.

Then (6.3.10) becomes

S(Z1,W1) = 0.

According to this, the manifold is Ricci flat.

This completes the proof.

Theorem 6.3.3. In a W2-flat paraKähler manifold, the scalar curvature tensor vanishes.

Proof. Applying the inner product of (1.2.9) with U1, we acquire

g(W2(X1, Y1)Z1, U1) = R̃(X1, Y1, Z1, U1)+
1

n− 1
[g(X1, Z1)S(Y1, U1)−g(Y1, Z1)S(X1, U1)].

(6.3.11)

As the manifold is W2-flat, so (6.3.11) contracts as

R̃(X1, Y1, Z1, U1) +
1

n− 1
[g(X1, Z1)S(Y1, U1)− g(Y1, Z1)S(X1, U1)] = 0. (6.3.12)

Putting X1 = ei, Y1 = Fei, U1 = FU1 in (6.3.12) and taking summation over i = 1, 2, ..., n,

and by virtue of (6.3.1), (6.2.3), we obtain

S(Z1, U1) +
1

n− 1
[−S(Z1, U1) + S(FZ1, FU1)] = 0. (6.3.13)

Again utilizing (6.2.4) in (6.3.13), we have

(n− 3)S(Z1, U1) = 0. (6.3.14)

Hence, since n is even, we get S(Z1, U1) = 0, for every Z1, U1 ∈ χ(M). As a result, r = 0

can be deduced from the equation above.

The evidence is now complete.

Theorem 6.3.4. A Bochner flat paraKähler manifold is an Einstein manifold.
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Proof. Considering the scalar product of (1.2.10) with W1, we acquire

g(B(X1, Y1)Z1,W1) = R̃(X1, Y1, Z1,W1)−
1

n+ 4
[g(Y1, Z1)S(X1,W1)

−g(X1, Z1)S(Y1,W1) + S(Y1, Z1)g(X1,W1)

−S(X1, Z1)g(Y1,W1) + g(FY1, Z1)S(FX1,W1)

−g(FX1, Z1)S(FY1,W1) + S(FY1, Z1)g(FX1,W1)

−S(FX1, Z1)g(FY1,W1)− 2S(FX1, Y1)g(FZ1,W1)

−2g(FX1, Y1)S(FZ1,W1)]

+
r

(n+ 2)(n+ 4)
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)

+g(FY1, Z1)g(FX1,W1)− g(FX1, Z1)g(FY1,W1)

−2g(FX1, Y1)g(FZ1,W1)]. (6.3.15)

As the manifold is Bochner flat, the foregoing equation can be rewritten as

R̃(X1, Y1, Z1,W1) =
1

n+ 4
[g(Y1, Z1)S(X1,W1)− g(X1, Z1)S(Y1,W1)

+S(Y1, Z1)g(X1,W1)− S(X1, Z1)g(Y1,W1)

+g(FY1, Z1)S(FX1,W1)− g(FX1, Z1)S(FY1,W1)

+S(FY1, Z1)g(FX1,W1)− S(FX1, Z1)g(FY1,W1)

−2S(FX1, Y1)g(FZ1,W1)− 2g(FX1, Y1)S(FZ1,W1)]

− r

(n+ 2)(n+ 4)
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)

+g(FY1, Z1)g(FX1,W1)− g(FX1, Z1)g(FY1,W1)

−2g(FX1, Y1)g(FZ1,W1)]. (6.3.16)

Setting X1 = ei, Y1 = Fei,W1 = FW1 in (6.3.16) and taking sum over i = 1, 2, ..., n, and

applying (6.3.1), (6.2.3) and (6.2.4), we have(
1 +

n

n+ 4

)
S(Z1,W1) = − r

n+ 4

(
1− n

n+ 2

)
g(Z1,W1).

This indicates

S(Z1,W1) = − r

(n+ 2)2
g(Z1,W1). (6.3.17)

This is a representation of an Einstein manifold.

The proof is now done.

Corollary 6.3.3. A Bochner flat paraKähler manifold is Ricci flat.
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Proof. Setting Z1 = W1 = ei in (6.3.17) and summing over i = 1, 2, ..., n, we obtain[
1 +

n

(n+ 2)2

]
r = 0.

This implies

r = 0.

Then (6.3.17) becomes

S(Z1,W1) = 0.

This suggest that the manifold is Ricci flat.

Therefore, the proof.

6.4 Sectional curvature in paraKähler manifold

The sectional curvature of Riemannian manifolds with dimensions greater than one is one

approach to characterize the curvature of these manifolds in Riemannian geometry. For

a point c′ of the manifold, a two-dimensional linear subspace σc′ of the tangent space

determines the sectional curvature K(σc′). It may be described geometrically as the

Gaussian curvature of the surface, generated from geodesics starting at c′ and extending

in the directions of σc′ , that has the plane σc′ as a tangent plane at c′. The curvature

tensor is entirely determined by the sectional curvature.

When two linearly independent tangent vectors are presented at the same points X1 and

Y1 on M , the sectional curvature is determined by the formula

K(X1, Y1) =
R(X1, Y1, X1, Y1)

g(X1, X1)g(Y1, Y1)− g(X1, Y1)2
,

where X1 and Y1 represents the tangent vectors, R denotes the Riemann curvature tensor,

and g represents the metric tensor.

Theorem 6.4.1. In pseudo-quasi-conformal flat paraKähler manifold the sectional cur-

vature determined by X1, Y1 is

K (X1, Y1) =
r

n

[
p+ 2(n− 1)q

(n− 1)(p+ 2q) + (n− 2)d

]
.
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Proof. From the equation (6.3.6), setting the value of S(Z1,W1) in the equation (6.3.3),

we obtain

(p+ d)R̃(X1, Y1, Z1,W1) +

[
r{p+ 2(n− 1)q}

n(n− 1){p+ 2q + d(n−2
n−1

)}

](
2q − d

n− 1

)
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)]−

r

n(n− 1)
[p+ 2(n− 1)q]

[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)] = 0. (6.4.18)

which reduces to

R̃(X1, Y1, Z1,W1)−
r

n

[
p+ 2(n− 1)q

(n− 1)(p+ 2q) + (n− 2)d

]
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)] = 0. (6.4.19)

This indicates

K (X1, Y1) =
r

n

[
p+ 2(n− 1)q

(n− 1)(p+ 2q) + (n− 2)d

]
.

The proof is now finalized.

Theorem 6.4.2. In pseudo-projectively flat paraKähler manifold the sectional curvature

determined by X1, Y1 is

K (X1, Y1) =
r

n(n− 1)

[
a+ (n− 1)b

a+ b

]
.

Proof. From the equation (6.3.10), putting the value of S(Z1,W1) in (6.3.8), we have

aR̃(X1, Y1, Z1,W1) +
br

n(a+ b)

(
a

n− 1
+ b

)
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)

− r

n

(
a

n− 1
+ b

)
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)] = 0. (6.4.20)

This implies that

R̃(X1, Y1, Z1,W1)−
r

n(n− 1)

[
a+ (n− 1)b

a+ b

]
[g(Y1, Z1)g(X1,W1)−g(X1, Z1)g(Y1,W1)] = 0.

(6.4.21)

which means

K (X1, Y1) =
r

n(n− 1)

[
a+ (n− 1)b

a+ b

]
.

Henceforth, the proof.

Theorem 6.4.3. In W2-flat paraKähler manifold the sectional curvature is Zero.
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Proof. From theorem 6.3.3, using the value of S(Z1,W1) in the equation (1.2.9), we get

R̃(X1, Y1, Z1,W1) = 0.

which minimizes

K (X1, Y1) = 0.

The conclusive proof is now complete.

Theorem 6.4.4. In a Bochner flat paraKähler manifold the sectional curvature deter-

mined by X1, Y1 is

K (X1, Y1) = − r

(n+ 2)2
.

Proof. From the equation (6.3.17), setting the value of S(Z1,W1) in the equation (6.3.16),

we obtain

R̃(X1, Y1, Z1,W1) = − 2r

(n+ 2)2(n+ 4)
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)

+g(FY1, Z1)g(FX1,W1)− g(FX1, Z1)g(FY1,W1)

−2g(FX1, Y1)g(FZ1,W1)]

− r

(n+ 2)(n+ 4)
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)

+g(FY1, Z1)g(FX1,W1)− g(FX1, Z1)g(FY1,W1)

−2g(FX1, Y1)g(FZ1,W1)]. (6.4.22)

which reduces to

R̃(X1, Y1, Z1,W1) = − r

(n+ 2)2
[g(Y1, Z1)g(X1,W1)− g(X1, Z1)g(Y1,W1)

+g(FY1, Z1)g(FX1,W1)− g(FX1, Z1)g(FY1,W1)

−2g(FX1, Y1)g(FZ1,W1)]. (6.4.23)

∴ K (X1, Y1) = − r

(n+ 2)2
.

Thus the evidence.

6.5 Perfect fluid paraKähler space-time

In this section, we study the nature of the perfect fluid paraKähler space-time admitting

the Einstein equation with a cosmological constant.
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Theorem 6.5.1. A paraKähler space-time with a perfect fluid, which fulfills the Einstein

equation while incorporating a cosmological constant, can be classified as an Einstein man-

ifold.

Proof. Substituting X1, Y1 with X1, Y1 respectively in (1.3.19) and applying (1.3.21) and

(6.2.4), we acquire

S(X1, Y1)−
r

2
g(X1, Y1) + λg(X1, Y1) = c[p̃g(X1, Y1)− (σ + p̃)ω(X1)ω(Y1)]. (6.5.1)

The result of subtracting (1.3.19) from (6.5.1) is

c(σ + p̃)[ω(X1)ω(Y 1)− ω(X1)ω(Y1)] = 0. (6.5.2)

By inserting Y1 = ρ in (6.5.2), we obtain

c(σ + p̃)ω(X1) = 0. (6.5.3)

The fluid acts as a cosmological constant since c ̸= 0 and ω(X1) ̸= 0, as shown by the

equation

σ + p̃ = 0. (6.5.4)

Additionally, from (6.5.4) we have σ = −p̃, which in cosmology stands for inflation—a

fast expansion of space-time. Now applying (6.5.4), the formula (1.3.19) exhibits

S(X1, Y1) = (
r

2
− λ+ c.p̃)g(X1, Y1). (6.5.5)

Using X1 = Y1 = ei, 1 ≤ i ≤ 4 in (6.5.5) and adding over i, we may quickly arrive

λ− c.p̃ =
r

4
. (6.5.6)

From (6.5.5) and (6.5.6), we achieve

S(X1, Y1) =
r

4
g(X1, Y1). (6.5.7)

Hence, the proof.

6.6 Weakly symmetric perfect fluid paraKähler space-

time

This section focuses on the fundamental aspects of a weakly symmetric perfect fluid

paraKähler space-time that allows for the inclusion of the Einstein equation alongside a

cosmological constant.
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Theorem 6.6.1. If a weakly symmetric perfect fluid paraKähler space-time fulfills the

Einstein equation alongside a cosmological constant, then the eigenvectors of the Ricci

tensor are ρ and ρ, corresponding to the eigenvalue r
2
.

Proof. In a weakly symmetric paraKähler space-time M , we conclude that

R(Y1, Z1, U1, V1) = R(Y1, Z1, U1, V1). (6.6.8)

By using the covariant derivative of (6.6.8), we get easily obtain

(∇X1R)(Y1, Z1, U1, V1) = (∇X1R)(Y1, Z1, U1, V1). (6.6.9)

Utilizing (1.2.3) in equation (6.6.9), we acquire

ω(Y1)R(X1, Z1, U1, V1) + ω(Z1)R(Y1, X1, U1, V1)

+ω(Y1)R(X1, Z1, U1, V1) + ω(Z1)R(Y1, X1, U1, V1) = 0. (6.6.10)

Setting X1 = ei, Z1 = Fei, V1 = FV1 in the aforementioned equation and adding the

terms over i, 1 ≤ i ≤ 4, and applying (6.2.4), (6.5.5), we get at the conclusion that

2ω(Y1)S(U1, V1) + ω(Y1)S(U1, V1) +R(Y1, ρ, U1, V1) +R(Y1, ρ, U1, V1) = 0. (6.6.11)

Putting U1 = V1 = ei, 1 ≤ i ≤ 4 in (6.6.11), and summing over i, we have

S(Y1, ρ) =
r

2
ω(Y1). (6.6.12)

or

S(Y1, ρ) =
r

2
g(Y1, ρ). (6.6.13)

Substituting ρ by ρ in (6.6.13), we can express

S(Y1, ρ) =
r

2
g(Y1, ρ).

Hence the evidence.

6.7 Weakly Ricci symmetric perfect fluid paraKähler

space-time

The objective of this section is to explore the characteristics of a weakly Ricci symmet-

ric perfect fluid paraKähler space-time by introducing the Einstein equation alongside a

cosmological constant.
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Theorem 6.7.1. No perfect fluid paraKähler space-time that is weakly Ricci symmetric,

satisfies the Einstein equation with a cosmological constant, and has a non-zero scalar

curvature exists.

Proof. For a perfect fluid paraKähler space-time, we know (∇X1S)(Y1, Z1) = 0, and ap-

plying the relation (1.2.4), we obtain

A(X1)S(Y1, Z1) + ω(Y1)S(X1, Z1) + ω(Z1)S(Y1, X1) = 0, (6.7.14)

for weakly Ricci symmetric perfect fluid paraKähler space-time. Applying (6.5.7) in

(6.7.14), we can represent

r

4
[A(X1)g(Y1, Z1) + ω(Y1)g(X1, Z1) + ω(Z1)g(Y1, X1)] = 0. (6.7.15)

This implies r = 0 or

A(X1)g(Y1, Z1) + ω(Y1)g(X1, Z1) + ω(Z1)g(Y1, X1) = 0. (6.7.16)

Now, by substituting Y1, Z1 with Y1, Z1 in (6.7.15) and applying (1.3.21), we have

A(X1)g(Y1, Z1)− ω(Y1)g(Z1, X1)− ω(Z1)g(X1, Y1) = 0. (6.7.17)

By minus (6.7.16) from (6.7.17), we get at

ω(Y1)g(Z1, X1) + ω(Y1)g(Z1, X1) + ω(Z1)g(X1, Y1) + ω(Z1)g(X1, Y1) = 0. (6.7.18)

Setting X1 = Z1 = ei, in the above equation and adding the sums across i, 1 ≤ i ≤ 4,

and using (6.2.4) and (6.5.5), we obtain

ω(Y1) = 0, (6.7.19)

which is contradictory because g(ρ, ρ) = −1.

Therefore, the proof.

6.8 Some results on curvature tensors in paraKähler

space-time

In this section, we will discuss some important results in paraKähler space-time using

some curvature tensors. For different curvature tensors, we shall show that the paraKähler

space-time characterizes as an Einstein manifold or Ricci flat.
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Theorem 6.8.1. In a pseudo-quasi-conformally flat paraKähler space-time that fulfills

Einstein’s field equation alongside a cosmological constant, the cosmological constant can

be expressed as cp̃+ r
4

(
5p+6q+4d
3p+6q+2d

)
.

Proof. Considering scalar product of (1.2.11) with T1, we acquire

g(Ṽ (X1, Y1)Z1, T1) = (p+ d)R̃(X1, Y1, Z1, T1) +

(
q − d

3

)
[S(Y1, Z1)g(X1, T1)

−S(X1, Z1)g(Y1, T1) + q[g(Y1, Z1)S(X1, T1)− g(X1, Z1)S(Y1, T1)]

− r

12
(p+ 6q) [g(Y1, Z1)g(X1, T1)− g(X1, Z1)g(Y1, T1)]. (6.8.1)

As the manifold is pseudo-quasi-conformally flat, we can rewrite the equation as

(p+ d)R̃(X1, Y1, Z1, T1) +

(
q − d

3

)
[S(Y1, Z1)g(X1, T1)

−S(X1, Z1)g(Y1, T1)] + q[g(Y1, Z1)S(X1, T1)− g(X1, Z1)S(Y1, T1)]

− r

12
(p+ 6q) [g(Y1, Z1)g(X1, T1)− g(X1, Z1)g(Y1, T1)] = 0. (6.8.2)

Setting X1 = ei, Y1 = Fei, and T1 = FT1 in (6.8.2) and summing over i, 1 ≤ i ≤ 4, and

using (1.2.11), (6.2.3), we have

2(p+ d)S(Z1, T1) +

(
q − d

3

)
[−S(FZ1, FT1) + S(Z1, T1)]

+q[−S(FZ1, FT1) + S(Z1, T1)]−
r

12
(p+ 6q)

[−g(FY1, FT1) + g(Z1, T1)] = 0. (6.8.3)

Again, by virtue of (6.2.4) and (1.3.18) in the above equation, we obtain

(p+ d)S(Z1, T1) +

(
q − d

3

)
S(Z1, T1) + qS(Z1, T1)−

r

12
(p+ 6q)g(Z1, T1) = 0. (6.8.4)

which reduces to (
p+ 2q +

2d

3

)
S(Z1, T1) =

r

12
(p+ 6q)g(Z1, T1). (6.8.5)

Now, using (6.5.1) in (6.8.5), we achieve

λ = cp̃+
r

4

(
5p+ 6q + 4d

3p+ 6q + 2d

)
.

This completes the proof.
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Corollary 6.8.1. A pseudo-quasi-conformally flat paraKähler space-time is Ricci flat,

provided p+ d ̸= 0.

Proof. Now, putting Z1 = T1 = ei in (6.8.5) and the summing over i, 1 ≤ i ≤ 4, we obtain

(p+ d)r = 0.

This implies

r = 0.

Then (6.8.5) becomes

S(Z1, T1) = 0.

This implies that the manifold is Ricci flat.

Hence proof is presented.

Theorem 6.8.2. In a pseudo-projectively flat paraKähler space-time that adheres Ein-

stein’s field equation alongside a cosmological constant, the formula for the cosmological

constant can be expressed as cp̃+ r
12

(
5a+3b
a+b

)
.

Proof. Taking the inner product in (1.2.5) by T1, we acquire

g(P (X1, Y1)Z1, T1) = aR̃(X1, Y1, Z1, T1) + b[S(Y1, Z1)g(X1, T1)− S(X1, Z1)g(Y1, T1)]

−r

4

(a
3
+ b

)
[g(Y1, Z1)g(X1, T1)− g(X1, Z1)g(Y1, T1)]. (6.8.6)

Now, as the manifold is pseudo-projectively flat, so from (6.8.6) we obtain

aR̃(X1, Y1, Z1, T1) + b[S(Y1, Z1)g(X1, T1)− S(X1, Z1)g(Y1, T1)]

−r

4

(a
3
+ b

)
[g(Y1, Z1)g(X1, T1)− g(X1, Z1)g(Y1, T1)] = 0. (6.8.7)

Writing X1 = ei, Y1 = Fei, and T1 = FT1 in (6.8.7) and adding over i, 1 ≤ i ≤ 4, and

applying (6.3.1), (6.2.3), we get

2aS(Z1, T1) + b[−S(FZ1, FT1) + S(Z1, T1)]

−r

4

(a
3
+ b

)
[−g(FZ1, FT1) + g(Z1, T1)] = 0. (6.8.8)

Again, by applying (6.2.4) and (1.3.18) in (6.8.8), we have

(a+ b)S(Z1, T1) =
r

4

(a
3
+ b

)
g(Z1, T1). (6.8.9)
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Now, using (6.5.1) in the equation (6.8.9), we achieve

λ = cp̃+
r

12

(
5a+ 3b

a+ b

)
.

This completes the proof.

Corollary 6.8.2. A pseudo-projectively flat paraKähler space-time is Ricci flat, provided

a ̸= 0.

Proof. Setting Z1 = T1 = ei in the (6.8.9) and summing over i, 1 ≤ i ≤ 4, and we acquire

ar = 0.

This implies

r = 0.

Then (6.8.9) becomes

S(Z1, T1) = 0.

This implies that the manifolds are Ricci flat.

Hence the proof at once.

Theorem 6.8.3. A generalised W2-flat paraKähler space-time is Ricci flat, provided a ̸=(
b+ c

3

)
.

Proof. The scalar product of (1.2.13) with T1 leads to

g(W2(X1, Y1)Z1, T1) = aR̃(X1, Y1, Z1, T1)+
(
b+

c

3

)
[g(X1, Z1)S(Y1, T1)−g(Y1, Z1)S(X1, T1)].

(6.8.10)

As the manifold is W 2-flat, we can rewrite (6.8.10) as

aR̃(X1, Y1, Z1, T1) +
(
b+

c

3

)
[g(X1, Z1)S(Y1, T1)− g(Y1, Z1)S(X1, T1)] = 0. (6.8.11)

Putting X1 = ei, Y1 = Fei, and T1 = FT1 in (6.8.11) and summing over i, 1 ≤ i ≤ 4, and

utilizing (1.2.13), (6.2.3), and (6.2.4), we get(
a− b− c

3

)
S(Z1, T1) = 0. (6.8.12)

Then, we have S(Z1, T1) = 0, provided a ̸= (b+ c
3
), for any Z1, T1 ∈ χ(M). The proof is

now concluded.
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Based on theorem 6.8.3, we derive the following corollary.

Corollary 6.8.3. A quasi-W2 flat paraKähler space-time is Ricci flat, provided a ̸= c
3
.

Theorem 6.8.4. In a Bochner flat paraKähler space-time that obeys to Einstein’s field

equation alongside a cosmological constant, the formula for the cosmological constant is

given by cp̃+ 19r
36
.

Proof. Considering the inner product if (1.2.10) with T1, we acquire

g(B(X1, Y1)Z1, T1) = R̃(X1, Y1, Z1, T1)−
1

8
[g(Y1, Z1)S(X1, T1)− g(X1, Z1)S(Y1, T1)

+S(Y1, Z1)g(X1, T1)− S(X1, Z1)g(Y1, T1) + g(FY1, Z1)S(FX1, T1)

−g(FX1, Z1)S(FY1, T1) + S(FY1, Z1)g(FX1, T1)

−S(FX1, Z1)g(FY1, T1)− 2S(FX1, Y1)g(FZ1, T1)

−2g(FX1, Y1)S(FZ1, T1)]

+
r

48
[g(Y1, Z1)g(X1, T1)− g(X1, Z1)g(Y1, T1)

+g(FY1, Z1)g(FX1, T1)− g(FX1, Z1)g(FY1, T1)

−2g(FX1, Y1)g(FZ1, T1)]. (6.8.13)

Now, as the manifold is Bochner flat, then (6.8.13) reduces to

R̃(X1, Y1, Z1, T1) =
1

8
[g(Y1, Z1)S(X1, T1)− g(X1, Z1)S(Y1, T1)

+S(Y1, Z1)g(X1, T1)− S(X1, Z1)g(Y1, T1)

+g(FY1, Z1)S(FX1, T1)− g(FX1, Z1)S(FY1, T1)

+S(FY1, Z1)g(FX1, T1)− S(FX1, Z1)g(FY1, T1)

−2S(FX1, Y1)g(FZ1, T1)− 2g(FX1, Y1)S(FZ1, T1)]

− r

48
[g(Y1, Z1)g(X1, T1)− g(X1, Z1)g(Y1, T1)

+g(FY1, Z1)g(FX1, T1)− g(FX1, Z1)g(FY1, T1)

−2g(FX1, Y1)g(FZ1, T1)]. (6.8.14)

Putting X1 = ei, Y1 = Fei, and T1 = FT1 in (6.8.14), summing over i, 1 ≤ i ≤ 4, applying

(6.2.3), and (6.2.4), we acquire

S(Z1, T1) = − r

36
g(Z1, T1). (6.8.15)
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Now, using (6.5.1) in the equation (6.8.15), we achieve

λ = cp̃+
19r

36
.

The proof is now ended.

Corollary 6.8.4. A Bochner flat paraKähler space-time is Ricci flat.

Proof. Now, taking Z1 = T1 = ei in (6.8.15) and summing over i, 1 ≤ i ≤ 4, we get

r = 0.

Then (6.8.15) becomes

S(Z1, T1) = 0.

This implies the manifold is Ricci flat.

The proof is now over.

6.9 Sectional curvature in paraKähler space-time

Theorem 6.9.1. In a pseudo-quasi-conformal flat paraKähler space-time, the sectional

curvature is r
4

(
p+6d

3p+6q+2d

)
.

Proof. From (6.8.5), putting the value of S(Z1, T1) in (6.8.2), we obtain

(p+ d)R̃(X1, Y1, Z1, T1) +

[
r(p+ 6q)

12(p+ 2q + 2d
3
)

](
2q − d

3

)
[g(Y1, Z1)g(X1, T1)

−g(X1, Z1)g(Y1, T1)]−
r

12
(p+ 6q) [g(Y1, Z1)g(X1, T1)

−g(X1, Z1)g(Y1, T1)] = 0. (6.9.16)

which leads to

R̃(X1, Y1, Z1, T1)−
r

4

(
p+ 6d

3p+ 6q + 2d

)
[g(Y1, Z1)g(X1, T1)− g(X1, Z1)g(Y1, T1)] = 0.

(6.9.17)

This implies

K(X1, Y1) =
r

4

(
p+ 6d

3p+ 6q + 2d

)
.

The proof is now done.
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Theorem 6.9.2. In a pseudo-projectively flat paraKähler space-time, the sectional cur-

vature is r
12

(
a+3b
a+b

)
.

Proof. Again, from (6.8.9), putting the value of S(Z1, T1) in (6.8.7), we acquire

aR̃(X1, Y1, Z1, T1) +
br

4(a+ b)

(a
3
+ b

)
[g(Y1, Z1)g(X1, T1)− g(X1, Z1)g(Y1, T1)

−r

4

(a
3
+ b

)
[g(Y1, Z1)g(X1, T1)− g(X1, Z1)g(Y1, T1)] = 0. (6.9.18)

This implies that

R̃(X1, Y1, Z1, T1)−
r

12

(
a+ 3b

a+ b

)
[g(Y1, Z1)g(X1, T1)− g(X1, Z1)g(Y1, T1)] = 0. (6.9.19)

which implies

K(X1, Y1) =
r

12

(
a+ 3b

a+ b

)
.

The proof is now prepared.

Theorem 6.9.3. In a generalised W2 and a quasi-W2 flat paraKähler space-time, the

sectional curvature is 0.

Proof. Also, from theorem 6.8.3, setting the value of S(Z1, T1) in (1.2.13), we obtain

R(X1, Y1, Z1, T1) = 0.

which reduces

K(X1, Y1) = 0.

The proof is now complete.

Theorem 6.9.4. In a Bochner flat paraKähler space-time, the sectional curvature is − r
36
.

Proof. Also, from (6.8.15), putting the value of S(Z1, T1) in (6.8.14), we get

R̃(X1, Y1, Z1, T1) = − r

144
[g(Y1, Z1)g(X1, T1)− g(X1, Z1)g(Y1, T1)

+g(FY1, Z1)g(FX1, T1)− g(FX1, Z1)g(FY1, T1)

−2g(FX1, Y1)g(FZ1, T1)]

− r

48
[g(Y1, Z1)g(X1, T1)− g(X1, Z1)g(Y1, T1)

+g(FY1, Z1)g(FX1, T1)− g(FX1, Z1)g(FY1, T1)

−2g(FX1, Y1)g(FZ1, T1)]. (6.9.20)
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which reduces to

R̃(X1, Y1, Z1, T1) = − r

36
[g(Y1, Z1)g(X1, T1)− g(X1, Z1)g(Y1, T1)

+g(FY1, Z1)g(FX1, T1)− g(FX1, Z1)g(FY1, T1)

−2g(FX1, Y1)g(FZ1, T1)]. (6.9.21)

∴ K(X1, Y1) = − r

36
.

The proof is now established.
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Abstract

In this paper we have studied weakly symmetric Kähler manifold
which is pseudo-projectively flat and quasi-conformally flat.
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1 Introduction

A non-flat Riemannian manifold (Mn, g)(n > 2) is called weakly symmetric manifold if its
curvature tensor R of type (0, 4) satisfies the condition

(∇XR)(Y,Z, U, V ) = A(X)R(Y,Z, U, V ) +B(Y )R(X,Z,U, V ) + C(Z)R(Y,X,U, V )

+D(U)R(Y, Z,X, V ) + E(V )R(Y,Z, U,X),(1.1)

where A,B,C,D,E are simultaneously non-vanishing 1-forms and X,Y,Z,U,V are vector fields
and ∇ be the operator of covariant differentiation with respect to the Riemannian metric
g. The 1- forms are called the associated 1-forms of the manifold and an n-dimensional
manifold of this kind is denoted by (WS)n.
In 1995 M. Prvanovic [1] proved that if the manifold M is a weakly symmetric manifold
satisfying (1.1) then B = C = D = E. In this paper we consider B = C = D = E = ω
and then (1.1) becomes

(∇XR)(Y,Z, U, V ) = A(X)R(Y, Z, U, V ) + ω(Y )R(X,Z,U, V ) + ω(Z)R(Y,X,U, V )

+ω(U)R(Y,Z,X, V ) + ω(V )R(Y,Z, U,X),(1.2)

where g(X, ρ) = ω(X) and g(X,α) = A(X). where ρ and α are vector fields. In 2002
Prasad [2] defined and studied a tensor field P on a Riemannian manifold of dimension
n(n > 2) which includes the projective curvature tensor P . This tensor field P is known
as pseudo-projective curvature tensor and is given by

P (X,Y, Z) = aR(X,Y, Z) + b[S(Y,Z)X − S(X,Z)Y ]

− r
n

[
a

n− 1
+ b

]
[g(Y, Z)X − g(X,Z)Y ],
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(1.3)

where a and b are constants such that a, b 6= 0, R is the curvature tensor, S is the Ricci
tensor and r is the scalar curvature. A non-pseudo projectively flat Riemannian manifold
(Mn, g)(n > 2) is said to be weakly pseudo projectively symmetric manifold if the pseudo-
projective curvature tensor P of type (0, 4) satisfies the condition

(∇XP )(Y,Z, U, V ) = A(X)P (Y,Z, U, V ) +B(Y )P (X,Z,U, V ) + C(Z)P (Y,X,U, V )

+D(U)P (Y,Z,X, V ) + E(V )P (Y,Z, U,X),(1.4)

for all vectors fields X,Y, Z, U, V and A,B,C,D,E are non-vanishing 1-forms. Such an
n-dimensional manifold is denoted by (WPPS)n. Also, we give the definition of quasi-
conformal curvature tensor given by Yano and Sawaki [8] as follows

C(X,Y, Z) = aR(X,Y, Z) + b[S(Y,Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ]

− r
n

[
a

n− 1
+ 2b

]
[g(Y, Z)X − g(X,Z)Y ],(1.5)

where a and b are non zero constants. If a = 1 and b = − 1
n−2 , then quasi-conformal

curvature tensor is reduced to the conformal curvature tensor. A Riemannian manifold
(Mn, g)(n > 2) is said to be weakly quasi-conformally symmetric manifold if the quasi-
conformally curvature tensor C of type (0, 4) satisfies the condition

(∇XC)(Y, Z, U, V ) = A(X)C(Y,Z, U, V ) +B(Y )C(X,Z,U, V ) + C(Z)C(Y,X,U, V )

+D(U)C(Y,Z,X, V ) + E(V )C(Y, Z, U,X),(1.6)

for all vectors fields X,Y, Z, U, V and A,B,C,D,E are non-vanishing 1-forms such an n-
dimensional manifold is denoted by (WQCS)n.

In this paper we have considered two types of Kähler manifold namely weakly pseudo
projectively symmetric Kähler manifold and weakly quasi-conformally symmetric Kähler
manifold.

2 Preliminaries

First of all, we define Kähler manifold in this section. A Kähler manifold is a Riemannian
manifold M of even dimension n with complex structure F on the tangent space of M at
each point satisfies the following relation

F 2(X) = −X, g(X,Y ) = g(X,Y ), (∇XF )(Y ) = 0

where F is a tensor field of type (1, 1) such that F (X) = X, g is a Riemannian metric and
∇ is the Levi-Civita Connection. Also in this section we derive some formulae which will
be required to study of (WPPS)n and (WQCS)n. Let ei, i = 1, 2, ..., n be an orthonormal
basis of the tangent space at any point of the manifold. Then from (1.3), we have the
following:-

(a)
∑n

i=1 P (ei, Y, Z, ei) = [a+ (n− 1)b][S(Y, Z)− r
ng(Y, Z)]
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(b)
∑n

i=1 P (X,Y, ei, ei) = 0

(c)
∑n

i=1C(ei, Y, Z, ei) = [a+ (n− 2)b][S(Y,Z)− r
ng(Y,Z)]

(d)
∑n

i=1C(X,Y, ei, ei) = 0

Now we have proved the following proposition:

Proposition (2.1.) In a Riemannian manifold (Mn, g)(n > 2) the pseudo-projective
curvature tensor and quasi-conformally curvature tensor satisfies the following relation:

(I) P (X,Y, Z, U) + P (Y,Z,X,U) + P (Z,X, Y, U) = 0

(II) P (X,Y, U, Z) + P (Y, Z, U,X) + P (Z,X,U, Y ) = 0

(III) C(X,Y, Z, U) + C(Y, Z,X,U) + C(Z,X, Y, U) = 0

(IV ) C(X,Y, U, Z) + C(Y,Z, U,X) + C(Z,X,U, Y ) = 0

3 Weakly Pseudo Projectively Symmetric Kähler Manifold

If the manifold M is a weakly pseudo projectively symmetric Kähler manifold, then we
have proved

P (Y , Z, U, V ) = P (Y,Z, U, V ).(3.1)

Taking the covariant derivative, we get

(∇XP )(Y , Z, U, V ) = (∇XP )(Y,Z, U, V ).(3.2)

Using(1.2) and (1.4) in (3.2), we obtain

ω(Y )P (X,Z,U, V ) + ω(Z)P (Y,X,U, V ) = ω(Y )P (X,Z,U, V ) + ω(Z)P (Y ,X,U, V ).

(3.3)

By, putting Z = U = ei, 1 ≤ i ≤ n and summing over i, we get

(a− b)ω(Y )S(X,V )− (a− 1)br

n
ω(Y )g(X,V )− aR(Y,X, V, ρ) + bg(Y, V )S(X, ρ)

−2bg(X,V )S(Y, ρ) +
2r

n

[
a

n− 1
+ b

]
g(X,V )g(Y, ρ)− r

n

[
a

n− 1
+ b

]
g(Y, V )g(X, ρ)

= (a+ b)ω(Y )S(X,V )− r

n

[
a

n− 1
+ b

]
g(X,V )ω(Y ) + aR(Y ,X, V, ρ)

+
r

n

[
a

n− 1
+

(r − n)b

r

]
g(Y , V )S(X, ρ).(3.4)
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Again, putting X = V = ei, 1 ≤ i ≤ n and summing over i, we get

rg(Y, ρ)

[
a(1− b) + (2− 1

n
)(

a

n− 1
+ b)

]
= S(Y, ρ)

[
2a+ 2b(n− 1) +

ar

n(n− 1)
+
br

n

]
.

(3.5)

We get,

S(Y, ρ) = fg(Y, ρ).

(3.6)

This is an Einstein manifold for every vector field ρ.

Thus we state the following theorem:

Theorem 3.1. A weakly pseudo projectively symmetric Kähler manifold is an Einstein
manifold with respect to vector field ρ defined by g(X, ρ) = ω(X).

From theorem (3.1.), we have the following corollary

Corollary 3.1. For a weakly pseudo projectively symmetric Kähler manifold if the vec-
tor field ρ is a unit vector field and Y=ρ, then the expression for scalar curvature is,

r = 2nh[a+(n−1)b]
2na+(n−h−1)(a+b) provided 2na+ (n− h− 1)(a+ b) 6= 0 where h = S(ρ, ρ). In addition

if a+ (n− 1)b = 0, then the scalar curvature vanishes.

4 Pseudo-Projectively Flat Weakly Symmetric Kähler manifold

For pseudo-projectively flat curvature tensor, P (Y,Z, U, V ) = 0, then

aR(Y,Z, U, V ) + bS(Z,U)g(Y, V ) − bS(Y,U)g(Z, V )− r

n

[
a

n− 1
+ b

]
g(Z,U)g(Y, V )

+
r

n

[
a

n− 1
+ b

]
g(Y, U)g(Z, V ) = 0.(4.1)

Then

R(Y, Z, U, V ) = − b
a

[S(Z,U)g(Y, V )− S(Y,U)g(Z, V )]

+
r

an

[
a

n− 1
+ b

]
[g(Z,U)g(Y, V )− g(Y, U)g(Z, V )].(4.2)

Taking covariant differentiation w.r.t. X,we get

(∇XR)(Y,Z, U, V ) = − b
a

[g(Y, V )(∇XS)(Z,U)− g(Z, V )(∇XS)(Y, U)],(4.3)
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then (4.3) reduces to

A(X)R(Y,Z, U, V ) + ω(Y )R(X,Z,U, V ) + ω(Z)R(Y,X,U, V ) + ω(U)R(Y,Z,X, V )

+ω(V )R(Y,Z, U,X) = − b
a

[g(Y, V )A(X)S(Z,U) + ω(Z)S(X,U) + ω(U)S(Z,X)

−g(Z, V )A(X)S(Y, U) + ω(Y )S(X,U) + ω(U)S(Y,X)].(4.4)

By, putting Y = V = ei, 1 ≤ i ≤ n and summing over i, we get[
1 +

b

a
(n− 1)

]
[A(X)S(Z,U) + ω(Z)S(X,U) + ω(U)S(Z,X)] = 0.(4.5)

Again,taking X = U = ei, 1 ≤ i ≤ n and summing over i, we get[
1 +

b

a
(n− 1)

]
[S(Z,α) + rω(Z) + S(Z, ρ)] = 0,(4.6)

for any vector field ρ defined by g(X, ρ) = ω(X) and g(X,α) = A(X),then we have

S(Z,α) + S(Z, ρ) = −rω(Z).(4.7)

Then we get the theorem,

Theorem 4.1. In a pseudo projectively flat weakly symmetric Kähler manifold, the Ricci
tensor satisfies the relation S(Z,α) + S(Z, ρ) = −rω(Z).

5 Weakly Quasi-Conformally Symmetric Kähler manifold

If the manifold M is a weakly quasi-conformally symmetric Kähler manifold, then we have
proved

C(Y , Z, U, V ) = C(Y,Z, U, V ).(5.1)

Taking the covariant derivative, we get

(∇XC)(Y , Z, U, V ) = (∇XC)(Y,Z, U, V ).(5.2)

Using(1.5) in (5.2), we obtain

ω(Y )C(X,Z,U, V ) + ω(Z)C(Y,X,U, V ) = ω(Y )C(X,Z,U, V ) + ω(Z)C(Y ,X,U, V ).

(5.3)



38 Alam and Bhattacharyya: Some Weakly Symmetric K · · · hler Manifolds

By, putting Z = U = ei, 1 ≤ i ≤ n and summing over i, we get

[a+ (n− 4)b]ω(Y )S(X,V )− r

n
[a+ (n− 2)b]ω(Y )g(X,V )− aR(Y,X, V, ρ)

+bg(Y, V )S(X, ρ)− 2bg(X,V )S(Y, ρ) + bg(X, ρ)S(Y, V )

= (a+ 2b)ω(Y )S(X,V )− r

n

[
a

n− 1
+ 2b

]
ω(Y )g(X,V ) + aR(Y ,X, V, ρ)

−bg(Y, V )S(X, ρ) +
r

n

[
a

n− 1
+ 2b

]
g(Y , V )g(X, ρ)− bg(X, ρ)S(Y , V ).(5.4)

Again, putting X = V = ei, 1 ≤ i ≤ n and summing over i, we get

−rg(Y, ρ)

[
2b+

a

n(n− 1)
+

2b

n

]
= S(Y, ρ)[2a− 3b+ 2bn].(5.5)

We get

S(Y, ρ) = fg(Y, ρ).(5.6)

This is again an Einstein manifold for every vector field ρ.

Theorem 5.1. A weakly quasi-conformally symmetric Kähler manifold is an Einstein
manifold with respect to vector field ρ defined by g(X, ρ) = ω(X).

From theorem (5.1.), we have the following corollary

Corollary 5.1. For a weakly quasi-conformally symmetric Kähler manifold if the vec-
tor field ρ is a unit vector field and Y=ρ, then the expression for scalar curvature is,

r = −n(n−1)h[2a+(2n−3)b]
a+(n2−1)2b

provided a + (n2 − 1)2b 6= 0 where h = S(ρ, ρ). In addition if

2a+ (2n− 3)b = 0, then the scalar curvature vanishes.

6 Quasi-Conformally Flat Weakly Symmetric Kähler manifold

For quasi-conformally flat curvature tensor, C(Y,Z, U, V ) = 0, then

aR(Y,Z, U, V ) + bS(Z,U)g(Y, V ) − bS(Y,U)g(Z, V ) + g(Z,U)g(QY, V )− bg(Y,U)g(QZ, V )

− r

n

[
a

n− 1
+ 2b

]
g(Z,U)g(Y, V )

+
r

n

[
a

n− 1
+ 2b

]
g(Y, U)g(Z, V ) = 0.(6.1)

Then

R(Y,Z, U, V ) = − b

a
[S(Z,U)g(Y, V )− S(Y, U)g(Z, V ) + g(Z,U)g(QY, V )− g(Y,U)g(QZ, V )]

+
r

an

[
a

n− 1
+ 2b

]
[g(Z,U)g(Y, V )− g(Y, U)g(Z, V )].(6.2)
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Taking covariant differentiation w.r.t. X,we get

(∇XR)(Y,Z, U, V ) = − b
a

[g(Y, V )(∇XS)(Z,U)− g(Z, V )(∇XS)(Y,U)],(6.3)

then

A(X)R(Y,Z, U, V ) + ω(Y )R(X,Z,U, V ) + ω(Z)R(Y,X,U, V ) + ω(U)R(Y,Z,X, V )

+ω(V )R(Y,Z, U,X) = − b
a

[g(Y, V )A(X)S(Z,U) + ω(Z)S(X,U) + ω(U)S(Z,X)

−g(Z, V )A(X)S(Y, U) + ω(Y )S(X,U) + ω(U)S(Y,X)].(6.4)

By, putting Y = V = ei, 1 ≤ i ≤ n and summing over i, we get[
1 +

b

a
(n− 1)

]
[A(X)S(Z,U) + ω(Z)S(X,U) + ω(U)S(Z,X)] = 0.(6.5)

Again,taking X = U = ei, 1 ≤ i ≤ n and summing over i, we get[
1 +

b

a
(n− 1)

]
[S(Z,α) + rω(Z) + S(Z, ρ)] = 0,(6.6)

for any vector field ρ defined by g(X, ρ) = ω(X) and g(X,α) = A(X),then we have

S(Z,α) + S(Z, ρ) = −rω(Z).(6.7)

Thus we state the following theorem:

Theorem 6.1. In a quasi-conformally flat weakly symmetric Kähler manifold, the Ricci
tensor satisfies the relation S(Z,α) + S(Z, ρ) = −rω(Z).

Acknowledgement: The authors are thankful to the referee for the valuable suggestions
to improve the quality of the paper.
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1. Introduction

An almost Hermite manifold (M ,g,F ) is said to be nearly Kähler manifold if

(∇XF )(X) = 0 is satisfies for all vector fields X on M , where ∇ denotes the

Livi-Civita connection associated with the metric g. A nearly Kähler manifold is

called strict if ∇X(F ) ̸= 0 for any non-vanishing vector field X ∈ TM , where TM

denotes the tangent bundle of M . On the other hand, Nagy proved in [11, 12] that,

in the compact case, his study amounts to that of quaternion-Kähler manifolds with

positive scalar curvature [13] and nearly Kähler manifolds of dimension 6. Thus our

focus on the study of such manifolds of dimension 6 can be justified by his results.

Definition : Let M be an almost Hermite manifold with almost complex struc-

ture F and Riemannian metric g. Then

F 2 = −I, g(F (X), F (Y )) = g(X,Y ),

for all vector fields X and Y on M . We denote by ∇ the operator of covariant

differentiation with respect to g. If the almost complex structure F on M satisfies

(∇XF )(Y ) + (∇Y F )(X) = 0, (1)

for any vector fields X and Y on M , then the manifold M is called a nearly Kähler

manifold or an almost Tachibana manifold.

1
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Putting X for Y in (1.1) we get

(∇XF )(X) = 0.

If in an almost Tachibana manifold, Nijenhuis tensor vanishes, then it is called a

Tachibana manifold.

2. Preliminaries

In this section, we explain our notation and write down some important curvature

identities. Let (M ,g,F ) be a connected almost Hermitian manifold. Then we have

g(FX,FY ) = g(X,Y ) for all X and Y in TM . Throughout this paper we shall

assume that (M ,g,F ) is nearly Kähler, that is (∇XF )(X) = 0 for all X ∈ TM .

Let R denote the curvature tensor defined by R(X,Y )Z = [∇X ,∇Y ]Z − ∇[X,Y ]Z

for any vector fields X and Y in TM . Let R(X,Y, Z,W ) = g(R(X,Y )Z,W ) denote

the value of the curvature tensor for every X,Y, Z and W in TM . Then we have

the following identities [1,2,3]:

(∇XF )(Y ) + (∇FXF )(FY ) = 0; (2)

(∇XF )(FY ) + F ((∇XF )(Y )) = 0; (3)

R(W,X, Y, Z)−R(W,X,FY, FZ) = g((∇WF )(X), (∇Y F )(Z)), (4)

and R(W,X, Y, Z) = R(FW,FX,FY, FZ). (5)

We now define linear transformations R1 and R∗
1 by

Ric(X,Y ) = g(R1(X), Y ) =
2n∑
i=1

R(X, ei, Y, ei) and

Ric∗(X,Y ) = g(R∗
1(X), Y ) =

1

2

2n∑
i=1

R(X,FY, ei, F ei)

respectively, where {e1, ..., e2n} denotes a local orthonormal frame field on M . We

shall call Ric the Ricci tensor of the metric and Ric∗ the Ricci∗ tensor respectively.

Now note that Ric−Ric∗ is given by the formula

(Ric−Ric∗)(X,Y ) =
2n∑
i=1

g((∇XF )ei, (∇Y F )ei)
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for all vector fields X, Y on M [5]. Furthermore, Gray [3] proved that

2n∑
i,j=1

(Ric−Ric∗)(ei, ej)(R(X, ei, Y, ej)− 5R(X, ei, FY, Fej)) = 0.

So using the above results we have proved

Theorem 2.1. A necessary and sufficient condition for an almost Hermite manifold

to be an almost nearly Kähler manifold is

∇XF (Y ) +∇Y F (X) = F (∇XY ) + F (∇Y X).

Proof : First we suppose that an almost Hermite manifold is an almost nearly

Kähler manifold. Then

(∇XF )(Y ) + (∇Y F )(X) = 0

or, ∇XF (Y )− F (∇XY ) +∇Y F (X)− F (∇Y X) = 0,

or, ∇XF (Y ) +∇Y F (X) = F (∇XY ) + F (∇Y X).

Conversely, we suppose that

∇XF (Y ) +∇Y F (X) = F (∇XY ) + F (∇Y X)

or, ∇XF (Y )− F (∇XY ) +∇Y F (X)− F (∇Y X) = 0,

or, (∇XF )(Y ) + (∇Y F )(X) = 0.

Hence the manifold is an almost nearly Kähler manifold.

Proposition 2.1.[5] (i) For a nearly Kähler manifold

N(X,Y ) = 2M(X,Y ) = −4F ((∇XF )(Y )) = 4F ((∇Y F )(X)) =

4F ((∇F (X)F )F (Y )),

where M(X,Y ) = ∇F (X)F (Y )−∇XY − F (∇F (X)Y )− F (∇XF (Y )).

(ii) If M is nearly Kähler manifold then N(X,Y ) = F (∇XF )Y ,

where 4N(X,Y ) = [X,Y ]− [FX,FY ] + F [FX, Y ] + F [X,FY ].

Theorem 2.2. If the Nijenhuis tensor N of a nearly Kähler manifold M van-

ishes, then M is Kähler manifold.
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Proof : From the Proposition (2.1) we obtain

N(X,Y ) = −4F ((∇XF )(Y )).

If N(X,Y ) = 0, then F ((∇XF )(Y )) = 0. That is, F 2(∇XF )Y = 0.

Hence (∇XF )(Y ) = 0.

Therefore the manifold is a Kähler manifold.

Theorem 2.3. On a nearly Kähler manifold divF = 0.

Proof : On a nearly Kähler manifold we have

(∇XF )(Y ) + (∇Y F )(X) = 0.

Now contracting X and Y we have

(∇XF )(X) = 0.

That is, divF = 0.

3. Curvature identities on nearly Kähler manifold

In this section we prove some curvature identities for a nearly Kähler manifold.

Theorem 3.1. For a con-circularly flat nearly Kähler manifold the following rela-

tion holds

2g(F (R(X,Y )Z,W )) + g[(∇XF )(∇Y Z),W ]− g[(∇Y F )(∇XZ),W ]

=
r

n(n− 1)
[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )].

Proof : In an n-dimensional Riemannian manifold the con-circular curvature tensor

is defined by

C(X,Y )Z = R(X,Y )Z − r

n(n− 1)
[g(Y,Z)X − g(X,Z)Y ], (6)

so (3.1) can be written as

C̃(X,Y, Z,W ) = R̃(X,Y, Z,W )

− r

n(n− 1)
[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )] (7)

where

C̃(X,Y, Z,W ) = g(C(X,Y )Z,W ), R̃(X,Y, Z,W ) = g(R(X,Y )Z,W )

and r is the scalar curvature. Now for con-circularly flat manifold, we have

C̃(X,Y, Z,W ) = 0. Hence from (3.2) we get

R̃(X,Y, Z,W ) =
r

n(n− 1)
[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )]. (8)
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Now putting Z = F (Z) in (3.3) we get

g(∇X∇Y F (Z),W )− g(∇Y ∇XF (Z),W )− g(∇[X,Y ]F (Z),W ) =
r

n(n− 1)
[g(Y, Z)g(X,W )

−g(X,Z)g(Y,W )]. (9)

By using

∇XF (Y ) = (∇XF )Y + F (∇XY )

and nearly Kähler condition

(∇XF )(Y ) + (∇Y F )(X) = 0

we have

−g[∇X(∇ZF )Y,W ] + g[(∇XF )(∇Y Z),W ] + g(F (∇X∇Y Z),W )

+g[∇Y (∇ZF )X,W ]− g[(∇Y F )(∇XZ),W ]− g(F (∇Y ∇XZ),W )

−g[(∇[X,Y ]F )Z,W ]− g(F (∇[X,Y ]Z),W )

=
r

n(n− 1)
[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )],

this implies

2g(F (R(X,Y )Z,W )) + g[(∇XF )(∇Y Z),W ]− g[(∇Y F )(∇XZ),W ]

=
r

n(n− 1)
[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )].

Theorem 3.2. For a con-circularly flat nearly Kähler manifold the following

expression holds

2n∑
i=1

g((∇eiF )(ei), (∇eiF )(ei)) = 0.

Proof : we know in a nearly Kähler manifold the curvature tensor R̃ satisfies,

R̃(X,Y,X, Y ) = R̃(X,Y, F (X), F (Y )) + g((∇XF )(Y ), (∇XF )(Y )),

where R̃(X,Y,X, Y ) = g(R(X,Y )X,Y ).
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Also for con-circularly flat manifold, we have C̃(X,Y, Z,W ) = 0. So

R̃(X,Y, Z,W ) =
r

n(n− 1)
[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )]. (10)

Now

from (3.5) and putting X = Y = ei , 1 ≤ i ≤ 2n and summing over i

we obtain
2n∑
i=1

g((∇eiF )(ei), (∇eiF )(ei)) = 0.

Note: For a conformally flat, projectivly flat, con-harmonic flat and Bochner flat

nearly Kähler manifold the following relations holds

2n∑
i=1

g((∇eiF )(ei), (∇eiF )(ei)) = 0.

Theorem 3.3. If a nearly Kähler manifold M is of constant holomorphic sectional

curvature c at every point P in M and con-circularly flat, then

2n∑
i=1

g((∇XF )(Y ), (∇eiF )(ei)) = 0.

Proof : We know that in a nearly Kähler manifold M of constant holomorphic

sectional curvature c at every point P in M , the Riemannian curvature tensor of

M is of the form

R̃(X,Y, Z,W ) =
c

4
[g(X,W )g(Y, Z)− g(X,Z)g(Y,W )]

, +g(X,F (W ))g(Y, F (Z))

−g(X,F (Z))g(Y, F (W ))

−2g(X,F (Y ))g(Z,F (W ))]

+
1

4
[g((∇XF )W, (∇Y F )Z)− g((∇XF )Z, (∇Y F )W )

−2g((∇XF )Y, (∇ZF )W )].

Also for con-circularly flat manifold, we have C̃(X,Y, Z,W ) = 0. So

R̃(X,Y, Z,W ) =
r

n(n− 1)
[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )]. (11)
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Now

from (3.6) and putting Z = W = ei , 1 ≤ i ≤ 2n and summing over i

we have
2n∑
i=1

g((∇XF )(Y ), (∇eiF )(ei)) = 0.

Note: For a conformally flat, projectivly flat, con-harmonic flat and Bochner flat

nearly Kähler manifold M is of constant holomorphic sectional curvature c at every

point P in M , then the following expression holds

2n∑
i=1

g((∇XF )(Y ), (∇eiF )(ei)) = 0.

4. Curvature identities in 6 - dimensional nearly Kähler manifolds

In a lower dimensions, the nearly Kähler manifolds are widely determined. If M is

nearly Kähler manifold with dimM ≤ 4, then M is Kähler manifold. If dimM = 6,

then we have the following [2,3,6,14].

Proposition 4.1. [10] Let (M ,g,F ) be a 6-dimensional, strict, nearly Kähler man-

ifold. Then we have

(i) ∇F has constant type; that is,

g((∇XF )(Y ), (∇XF )(Y )) =
r

30
(g(X,X)g(Y, Y )− g(X,Y )2 − g(FX, Y )2)

for all vector fields X and Y ,

(ii) the first Chern class of (M,F ) vanishes, and

(iii)M is Einstein manifold;

Ric =
r

6
g,Ric∗ =

r

30
g.

Furthermore, from this proposition we have the following lemma [2,3,14].

Lemma 4.1. For vector fields W,X, Y and Z, we have

g((∇WF )(X), (∇Y F )(Z)) =
r

30
[g(W,Y )g(X,Z)− g(W,Z)g(X,Y )

−g(W,FY )g(X,FZ) + g(W,FZ)g(X,FY )]

and

g((∇W∇ZX), Y ) =
r

30
(g(W,Z)g(FX, Y )− g(W,X)g(FZ, Y ) + g(W,Y )g(FZ,X)).

We can easily verify that for a 6-dimensional nearly Kähler manifold the con-circular

curvature tensor takes the form

C̃(X,Y, Z,W ) = R̃(X,Y, Z,W )− r

30
[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )].
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The dimension of the manifold can be verified by using Lemma (4.1) and con-

circularly flatness conditions.

We also deduce the following result

Result 4.1. For a projectively flat 6-dimensional nearly Kähler manifold Ricci

curvature tensor is S(X,Y) = r
6g(X,Y ). So the manifold is an Einstein manifold.

5. Example of nearly Kähler manifold

A 6-dimensional unit sphere S6 has an almost complex structure F defined by the

vector cross product in the space of purely imaginary Cayley numbers. This almost

complex structure is not integrable and satisfies (∇XF )(X) = 0, for any vector field

X on S6. Hence S6 is a nearly Kähler manifold which is not Kähler.

A structure on an n-dimensional manifold M given by a non-null tensor field f

satisfies f3 + f = 0, is called an f -structure. Then the rank of f is a constant, say

r. If r = n, then the f -structure gives an almost complex structure of the manifold

M . In this case n is even.

The results can be verified in the above example.
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1. Introductrion. An even dimensional differentiable manifold Mn, where n =2m,
m ≥ 2 is said to be an Kähler-Norden manifold (anti-Kähler manifold) [3] if there is
an almost complex structure F and an anti-Hermitian metric g such that ∇F = 0
where ∇ is the Levi-Civita connection of g. The metric g is called anti-Hermitian if
it satisfied g(FX, FY ) = −g(X, Y ) for all vector fields X and Y on Mn. Then the
metric g has necessarily a neutral signature (m, m) and Mn is a complex manifold
and there exist a holomorphic metric on Mn [9]. This fact gives us some topological
obstructions to an anti-Kähler manifold, for instance, all its odd Chern numbers vanish
because its holomorphic metric gives us a complex isomorphism between the complex
tangent bundle and its dual and a compact simply connected Kähler manifold cannot

269



270 samser alam and arindam bhattacharyya

be anti-Kähler because it does not admit a holomorphic metric. In the present paper
we have studied some curvature identities on Kähler-Norden manifolds.

2. Preliminaries. Let M be a connected differentiable manifold of dimension
n = 2m, m ≥ 2, F be a (1,1)-tensor field and g be a pseudo-Riemannian metric on M .
Then (M ,F ,g) is said to be a Kähler-Norden manifold if the following conditions hold :

F 2 = −I, g(FX, FY ) = −g(X, Y ), ∇F = 0

for any X, Y ∈ TM , being the Lie algebra of vector fields on M , ∇ is the Levi-Civita
connection of g and I is the identity operator. In a Kähler-Norden manifold (M ,F ,g),
the Riemannian curvature operator R, the Riemannian curvature tensor R̃, the Ricci
tensor S, the scalar curvature r and the r∗ curvature are defined by:

R(X, Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z,

R̃(X, Y, Z, W ) = g(R(X, Y )Z, W ),

S(X, Y ) = trace of Z → R(Z, X)Y,

r = trace S, (2.1)

r∗ = S(Fei, ei). (2.2)

Also, the following properties are satisfied in a Kähler-Norden manifold :

R(FX, FY )Z = −R(X, Y )Z, (2.3)

R(FX, Y )Z = R(X, FY )Z, (2.4)

S(FX, Y ) = S(FY, X), (2.5)

S(FX, FY ) = −S(X, Y ). (2.6)

If we take Q as the Ricci operator then the Ricci tensor of type (0, 2) in terms of Q is
defined as

S(X, Y ) = g(QX, Y ), (2.7)

where
rQY = −

∑
i

εiR(ei, Y )ei,
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and {e1, e2, ...en} is an orthonormal basis and εi are the indicators of ei. The
Riemannian metric g in terms of ei and εi are given by

εi = g(ei, ei) = ±1, (2.8)

g(Fei, ei) = 0. (2.9)

3. Some results on Curvature Identities on Kähler-Norden manifold

Definition : The notion of quasi-conformal curvature tensor was introduced by Yano
and Sawaki [19] and is defined by :

C(X, Y )Z = αR(X, Y )Z + β[S(Y, Z)X − S(X, Z)Y

+g(Y, Z)QX − g(X, Z)QY ]

− r

n

[
α

n − 1
+ 2β

]
[g(Y, Z)X − g(X, Z)Y ], (3.1)

where α, β are constants, Q is the Ricci operator, defined by g(QX, Y ) = S(X, Y )
and n is the dimension of the manifold. Moreover, if α = 1 and β = − 1

n−2 , the above
equation reduces to conformal curvature tensor [8]. A manifold (Mn,g) where n > 3,
is said to be quasi-conformally flat if C = 0. Using the above definition we prove the
following:

Theorem 3.1 In a quasi-conformally flat Kähler-Norden manifold, the Ricci tensor
satisfies the relation S(Y, W ) = βr∗

α−2β g(FY, W ), provided α �= 2β.

Proof: In an n-dimensional Kähler-Norden manifold, we can define the Ricci tensor S

by

S(X, Y ) =
n∑

i=1

εiR̃(F (ei), F (Y ), ei, W ), (3.2)

where {e1, e2, ...en} is an orthonormal basis and εi is the indicator of ei, εi = g(ei, ei) =
±1. Taking inner product in (3.1) by W , we get

g(C(X, Y )Z, W ) = αR̃(X, Y, Z, W ) + β[S(Y, Z)g(X, W ) − S(X, Z)g(Y, W )

+g(Y, Z)S(X, W ) − g(X, Z)S(Y, W )]

− r

n

[
α

n − 1
+ 2β

]
[g(Y, Z)g(X, W )

−g(X, Z)g(Y, W )]. (3.3)
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Now, as the manifold is quasi-confomally flat, then the above equation reduces to

αR̃(X, Y, Z, W ) + β[S(Y, Z)g(X, W ) − S(X, Z)g(Y, W )

+g(Y, Z)S(X, W ) − g(X, Z)S(Y, W )]

− r

n

[
α

n − 1
+ 2β

]
[g(Y, Z)g(X, W )

−g(X, Z)g(Y, W )] = 0. (3.4)

Putting X = Fei, Y = FY, Z = ei in the above equation and summing over
i = 1, 2, ..., n, and using (3.2), (2.2), (2.5), (2.6) and (2.9), we have

(α − 2β)S(Y, W ) − βr∗g(FY, W ) +
r

n

(
α

n − 1
+ 2β

)
g(Y, W ) = 0. (3.5)

Taking Y = W = ei in the above equation and summing over i = 1, 2, ..., n, and
applying (2.1), we obtain

αnr = 0.

This implies
r = 0, provided α �= 0.

Then (3.13) becomes

(α − 2β)S(Y, W ) − βr∗g(FY, W ) = 0.

This implies

S(Y, W ) =
βr∗

α − 2β
g(FY, W ), provided α �= 2β.

This completes the proof.

Definition : The pseudo-projective curvature tensor P [15] is given by :

P (X, Y )Z = aR(X, Y )Z + b[S(Y, Z)X − S(X, Z)Y ]

− r

n

[
a

n − 1
+ b

]
[g(Y, Z)X − g(X, Z)Y ], (3.6)

where a, and b �= 0 are constants. Also, a manifold (Mn,g) is said to be pseudo-
projectively flat if P = 0.
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Theorem 3.2 In a pseudo-projectively flat Kähler-Norden manifold, the Ricci tensor
satisfies the relation S(Y, W ) = br∗

a−bg(FY, W ), provided a �= b.

Proof: Taking inner product in (3.6) by W , we get

g(P (X, Y )Z, W ) = aR̃(X, Y, Z, W ) + b[S(Y, Z)g(X, W ) − S(X, Z)g(Y, W )]

− r

n

[
a

n − 1
+ b

]
[g(Y, Z)g(X, W )

−g(X, Z)g(Y, W )]. (3.7)

Now, as the manifold is pseudo-projectively flat, then the above equation reduces to

aR̃(X, Y, Z, W ) + b[S(Y, Z)g(X, W ) − S(X, Z)g(Y, W )]

− r

n

[
a

n − 1
+ b

]
[g(Y, Z)g(X, W )

−g(X, Z)g(Y, W )] = 0. (3.8)

Setting X = Fei, Y = FY, Z = ei in the above equation and summing over
i = 1, 2, ..., n, and using (3.2), (2.2), (2.5), (2.6) and (2.9), we have

(a − b)S(Y, W ) − br∗g(FY, W ) +
r

n

(
a

n − 1
+ b

)
g(Y, W ) = 0. (3.9)

Taking Y = W = ei in the above equation and summing over i = 1, 2, ..., n, and
applying (2.1), we obtain

anr = 0.

This implies

r = 0, provided a �= 0.

Then (3.9) becomes

(a − b)S(Y, W ) − br∗g(FY, W ) = 0.

This implies

S(Y, W ) =
br∗

a − b
g(FY, W ), provided a �= b.

Hence the proof.
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Definition : The Weyl-conformal curvature tensor (n > 3) [14] is given by:

W (X, Y )Z = R(X, Y )Z − 1
n − 2

[g(Y, Z)QX − g(X, Z)QY

+S(Y, Z)X − S(X, Z)Y ]

+
r

(n − 1)(n − 2)
[g(Y, Z)X − g(X, Z)Y ]. (3.10)

So, a manifold is Weyl-conformal flat if W̃ (X, Y, Z, U) = g(W (X, Y )Z, U) = 0.

Theorem 3.3 In a Weyl-conformally flat Kähler-Norden manifold, the Ricci tensor
satisfies the relation S(Y, U) = − r∗

n g(FY, U), provided n �= 0.

Proof: Taking inner product in (3.10) by U , we get

g(W (X, Y )Z, U) = R̃(X, Y, Z, U) − 1
n − 2

[g(Y, Z)S(X, U) − g(X, Z)S(Y, U)

+S(Y, Z)g(X, U) − S(X, Z)g(Y, U)]

+
r

(n − 1)(n − 2)
[g(Y, Z)g(X, U) − g(X, Z)g(Y, U)]. (3.11)

Now, as the manifold is Weyl-confomally flat, then the above equation reduces to

R̃(X, Y, Z, U) − 1
n − 2

[g(Y, Z)S(X, U) − g(X, Z)S(Y, U)

+S(Y, Z)g(X, U) − S(X, Z)g(Y, U)]

+
r

(n − 1)(n − 2)
[g(Y, Z)g(X, U) − g(X, Z)g(Y, U)] = 0. (3.12)

Putting X = Fei, Y = FY, Z = ei in the above equation and summing over
i = 1, 2, ..., n, and using (3.2), (2.2), (2.5), (2.6) and (2.9), we get

n

n − 2
S(Y, U) +

r∗

n − 2
g(FY, U) − r

(n − 1)(n − 2)
g(Y, U) = 0. (3.13)

Taking Y = U = ei in the above equation and summing over i = 1, 2, ..., n, and applying
(2.1) we have,

nr = 0.

This implies
r = 0, provided n �= 0.
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Then (3.13) becomes

n

n − 2
S(Y, U) +

r∗

n − 2
g(FY, U) = 0.

This implies

S(Y, U) = −r∗

n
g(FY, U), provided n �= 0.

This completes the proof.

Definition : The notion of Bochner curvature tensor [4] is defined by :

B(X, Y )Z = R(X, Y )Z − 1
n + 4

[g(Y, Z)QX − g(X, Z)QY + S(Y, Z)X

−S(X, Z)Y + g(FY, Z)QFX − g(FX, Z)QFY

+S(FY, Z)FX − S(FX, Z)FY − 2S(FX, Y )FZ

−2g(FX, Y )QFZ] +
r

(n + 2)(n + 4)
[g(Y, Z)X − g(X, Z)Y

+g(FY, Z)FX − g(FX, Z)FY − 2g(FX, Y )FZ], (3.14)

where Q is the Ricci operator, defined by g(QX, Y ) = S(X, Y ) and n is the
dimension of the manifold. Moreover, a manifold is Bochner flat if B̃(X, Y, Z, U) =
g(B(X, Y )Z, U) = 0.

Theorem 3.4 In a Bochner flat Kähler-Norden manifold, the Ricci tensor satisfies the
relation S(Y, W ) = − r∗

2(n+4)g(FY, W ), provided n + 4 �= 0.

Proof: Considering the inner product in (3.14) by W , we get

g(B(X, Y )Z, W ) = R̃(X, Y, Z, W ) − 1
n + 4

[g(Y, Z)S(X, W ) − g(X, Z)S(Y, W )

+S(Y, Z)g(X, W ) − S(X, Z)g(Y, W ) + g(FY, Z)S(FX, W )

−g(FX, Z)S(FY, W ) + S(FY, Z)g(FX, W )

−S(FX, Z)g(FY, W ) − 2S(FX, Y )g(FZ, W )

−2g(FX, Y )S(FZ, W )] +
r

(n + 2)(n + 4)
[g(Y, Z)g(X, W )

−g(X, Z)g(Y, W ) + g(FY, Z)g(FX, W )

−g(FX, Z)g(FY, W ) − 2g(FX, Y )g(FZ, W )]. (3.15)
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Now, as the manifold is Bochner flat, then the above equation reduces to

R̃(X, Y, Z, W ) =
1

n + 4
[g(Y, Z)S(X, W ) − g(X, Z)S(Y, W ) + S(Y, Z)g(X, W )

−S(X, Z)g(Y, W ) + g(FY, Z)S(FX, W )

−g(FX, Z)S(FY, W ) + S(FY, Z)g(FX, W )

−S(FX, Z)g(FY, W ) − 2S(FX, Y )g(FZ, W )

−2g(FX, Y )S(FZ, W )] − r

(n + 2)(n + 4)
[g(Y, Z)g(X, W )

−g(X, Z)g(Y, W ) + g(FY, Z)g(FX, W )

−g(FX, Z)g(FY, W ) − 2g(FX, Y )g(FZ, W )]. (3.16)

Putting X = Fei, Y = FY, Z = ei in the above equation and summing over
i = 1, 2, ..., n, and using (3.2), (2.1), (2.2), (2.5), (2.6) and (2.9), we have

S(Y, W ) = − r∗

2(n + 4)
g(FY, W ), provided n + 4 �= 0.

Hence the proof.

Corollary 3.5 In a Bochner Kähler-Norden manifold, the scalar curvature vanishes.

Proof: Setting Y = W = ei in the above equation, and taking the summation over
i = 1, 2, ..., n, we obtain r = 0.

Therefore, the proof is complete.

4. Symmetric Kähler-Norden manifold. Let (M ,g) be a Riemannian manifold
and ∇ be the Levi-Civita connection of (M ,g) then a Riemannian manifold is said to
be locally symmetric if ∇R = 0, where R is the Riemannian curvature tensor of (M ,g).

A pseudo-projectively curvature tensor is said to be parallel if the covariant
derivative of pseudo-projective curvature tensor vanishes i.e. ∇P = 0, and this type of
manifold is called pseudo-projectively symmetric manifold.

Theorem 4.1 A Kähler-Norden manifold is pseudo-projectively symmetric if and only
if it is locally symmetric.
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Proof: Taking the covariant derivative of equation (3.6) and putting X = Fei, Y =
FY, Z = ei, W = W and also using ∇P = 0, we get

(a − b)(∇XS)(Y, W ) − bdr∗(X)g(FY, W )

+
dr(X)

n

(
a

n − 1
+ b

)
g(Y, W ) = 0. (4.1)

Now, putting Y = W = ei in above equation

an(dr(X)) = 0. (4.2)

Since a �= 0, which implies
dr(X) = 0. (4.3)

Using (4.3) in (4.1), we obtain

(∇XS)(Y, W ) =
b

a − b
dr∗(X)g(FY, W ). (4.4)

Setting Y = FY in the above equation, we get

(∇XS)(FY, W ) = − b

a − b
dr∗(X)g(Y, W ). (4.5)

Again replacing Y and W in (4.5) by ei, we have(
1 +

bn

a − b

)
dr∗(X) = 0, (4.6)

this implies
dr∗(X) = 0. (4.7)

Applying (4.7) in (4.4), we get

(∇XS)(Y, W ) = 0. (4.8)

Now, taking the covariant derivative of (3.6) and using (4.3) and (4.8), we obtain

(∇XP )(Y, Z, U, V ) = a(∇XR)(Y, Z, U, V ), where a �= 0.

This proves the theorem.
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From theorem 4.1, we have the following corollary :

Corollary 4.2 Kähler-Norden manifolds are quasi-conformally symmetric, Weyl-
conformally symmetric and Bochner symmetric if and only if these are all locally
symmetric.

5. Semi-symmetric Kähler-Norden manifold. Let (M ,g) be a Riemannian
manifold and a Riemannian or pseudo-Riemannian manifold is said to be semi-
symmetric [16] if R(X, Y ).R = 0, Ricci semi-symmetric [11] if R(X, Y ).S = 0, where
R(X, Y ) denote the derivation in the tensor algebra at each point of the manifold.

Theorem 5.1 A Kähler-Norden manifold is pseudo-projectively semi-symmetric if and
only if it is semi-symmetric.

Proof: From equation (3.6) and putting X = Fei, Y = FY, Z = ei, W = W , we obtain

n∑
i=1

εiP (Fei, FY )ei = (a − b)QY − br∗FY +
r

n

(
a

n − 1
+ b

)
Y, (5.1)

where r∗ is the ∗-scalar curvature which is defined by trace of FQ. If pseudo-
projectively curvature tensor in Kähler-Norden manifold satisfies R.P = 0 then from
equation (5.1) R.Q = 0 and hence R.S = 0. Since we know that the Ricci tensors are
defined by S(X, Y ) = g(QX, Y ) and S(FX, Y ) = g(QFX, Y ) then from equation (3.6)
if R.P = 0 and R.S = 0 then we obtain R.R = 0. Conversely if

R.R = 0 ⇒ R.S = 0 ⇒ R.Q = 0, (5.2)

then from (5.1), we have R.P = 0. Hence the proof.

From theorem 5.1, we have the following corollary:

Corollary 5.2 Kähler-Norden manifolds are quasi-conformally semi-symmetric, Weyl-
conformally semi-symmetric and Bochner semi-symmetric if and only if these are all
semi-symmetric.
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SOME CURVATURE IDENTITIES ON HYPERKÄHLER
MANIFOLDS

SAMSER ALAM1∗ , AND ARINDAM BHATTACHARYYA2

Abstract. The object of the present paper is to study some curvature identi-
ties on hyperKähler manifold which is locally symmetric. Also, we study con-
formal flatness, Bochner flatness and generalised W2-flatness of a hyperKähler
manifold. Finally, we gave some examples of a hyperKähler manifold.

1. Introduction

A hyperKähler manifold [15] is a Riemannian 4n-manifold with a family of
almost complex structures which act under composition like the multiplication,
pure-imaginary, unit quaternions and which are covariantly constant with respect
to the Levi-Civita connection. If we only requisite that these almost complex
structures exist locally and that the Levi-Civita connection preserves this fam-
ily generally, then we obtain a quaternionic Kähler structure, at least if n ≥ 2.
Thus hyperKähler manifolds are a special case of quaternionic Kähler manifolds.
Although, note that quaternionic Kähler manifold need not be Kähler.

Remember that a Riemannian manifold which has just one such automorphism
is called a Kähler manifold. The name “hyperKähler”, which established with
E. Calabi [8], is a proper description-the metric is Kählerian for several com-
plex structures-even though it does recall Grassmann’s “hypercomplex numbers”
rather than Hamilton’s quaternions. There is, however, an essential difference
between Kähler and hyperKähler manifolds. A Kähler metric on a given complex
manifold can be modified to another one simply by adding a hermitian form ∂∂̄f
for an arbitrary sufficiently small C∞ function f . Thus the space of Kähler met-
rics is infinite dimensional. It is also easy to find examples of Kähler manifolds.
Any complex submanifold of CPn inherits a Kähler metric and so simple writing
down algebraic equations for a projective variety gives a vast number of examples.

By contrast, hyperKähler metrics are much more rigid. On a compact manifold,
if one such metric exists, then up to isometry there is only a finite dimensional
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space of them. Nor is it easy to find examples. Obviously, we will never find
them as quaternionic submanifolds of the quaternionic projective space HPn [6].

The idea of a hyperKähler manifold arose first in 1955 with M.Berger’s clas-
sification of the holonomy groups of Riemannian manifolds. On a hyperKähler
manifold, parallel translation preserves I, J and K (since they are covariant con-
stant) and so the holonomy group is contained in both orthogonal group O4n and
the group GL(n,H) of quaternionic invertible matrices (i.e., those linear trans-
formations which commute with right multiplication by i, j and k). The maximal
such intersection in SPn, the group of n× n quaternionic unitary matrices. This
group performed in Berger’s list.

The group SPn is also an intersection of U2n and SP (2n,C), the linear trans-
formations of C2n which preserve a non-degenerate skew form. Thus a hy-
perKähler manifold is naturally a complex manifold with a holomorphic sym-
plectic form. One can see explicitly by taking the three Kähler two-forms,
ω1(X, Y ) = g(IX, Y ), ω2(X, Y ) = g(JX, Y ), ω3(X, Y ) = g(KX,Y ) for X, Y
∈ TM , defined for the complex structures I, J and K. As to complex structures
I, J and K, the complex form ω+= ω2 + iω3 is non-degenerate and covariant
constant, hence it is closed and holomorphic.

Now, also we define the generalised W2-curvature tensor (4n > 8) as follows:

W2(X, Y )Z = aR(X, Y )Z +

(
b+

c

4n− 7

)
[g(X,Z)QY − g(Y, Z)QX], (1.1)

where a, b, c 6= 0. In particular, if a = 1, b = 0, c = 1; then it reduces to W2-
curvature tensor. Again if b = 0, we call the W 2 tensor as quasi-W2 tensor and

is denoted by W̃2. So a manifold is generalised W2-flat if g(W2(X, Y )Z,W ) = 0.

The interest in some curvature identities on hyperKähler manifold is motivated
by our study [13] and [15] of hyperKähler manifold and hypercomplex structures
in 4n-dimensional Riemannian manifolds, which is locally symmetric, conformally
flat, Bochner flat and generalised W2-flat.

2. Preliminaries

Let (M, g) be a Riemmanian manifold with I, J,K compatible almost complex
structures parallel for the Levi-Civita connection and with IJ = K = −JI.
Consequently, (a) I, J,K are Integrable, (b) ω1 = g(I., .) etc. are symplectic
forms. Let H = R4 with basis {1, i, j, k}, i2 = −1 = j2 = k2, quaternion division
algebra. In Hn, Iq = −qi holds, with standard inner product. We also know
SP1 = SU2 = {ai + bj + ck : a2 + b2 + c2 = 1} acts on the right. SPn = {A ∈
Mn(H) | AT

A = 1n} is centraliser in SO4n of SP1.
A hyperKähler manifold is a Rieminnian 4n-manifold with holonomy in SPn.

Now, we have the following propositions:
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Proposition 2.1. [14] A hyperKähler manifold M is a complex manifold with
a holomorphic symplectic form. Conversely , any compact Kähler manifold [10]
with a holomorphic symplectic form is hyperKähler.

Proposition 2.2. [14] A hyperKähler manifold is a C∞ Riemannian manifold
together with three covariantly constant orthogonal endomorphisms I, J and K
of the tangent bundle which satisfy the quaternionic relations I2 = J2 = K2 =
IJK = −1.

Note that, I, J and K give each tangent space the structure of a quater-
nionic vector space, so the dimension of a hyperKähler manifold is divisible by
4. Since I, J and K are covariantly constant, a parallel transport commutes
with the quaternionic multiplication and so the holonomy group is contained in
O4n

⋂
GLn(H) ∼= SPn, the group of quaternionic unitary n× n matrices. In par-

ticular, since SPn ⊆ SU2n every hyperKähler manifold is Calabi-Yau [9]. Assume
that M is an almost hypercomplex manifold. Define the Nijenhuis tensor N of
I, J and K by

NI(X, Y ) = [IX, IY ]− I[IX, Y ]− I[X, IY ]− [X, Y ],

NJ(X, Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X, Y ], and

NK(X, Y ) = [KX,KY ]−K[KX,Y ]−K[X,KY ]− [X, Y ],

for all vector fields X, Y . M is said to be hypercomplex if NI = NJ = NK = 0.
Suppose that g is a pseudo Riemannian metric on M satisfying the condition

g(IX, Y ) + g(X, IY ) = 0,

g(JX, Y ) + g(X, JY ) = 0,

g(KX,Y ) + g(X,KY ) = 0, (2.1)

for X, Y ∈ χ(M). Define the 2-forms Ĩ(X, Y ) = g(X, IY ), J̃(X, Y ) = g(X, JY ),

K̃(X, Y ) = g(X,KY ) for all X, Y ∈ χ(M). M is said to be hyperKähler manifold
if it is a hypercomplex and the respective 2-forms are closed and ∇I = ∇J =
∇K = 0, where ∇ is the Levi-Civita connection on M are equivalent.

3. Main results of Some Curvature Identities on hyperKähler
Manifolds

We are investigated some properties of curvature tensors and Ricci tensors of
hyperKähler manifold. Let M be a hyperKähler manifold and R denotes the
curvature tensor of M .
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Theorem 3.1. The curvature tensor R satisfies

(i)R(X, Y )IZ = IR(X, Y )Z,

(ii)R(IX, IY )Z = R(X, Y )Z,

(iii)R(IX, Y )Z +R(X, IY )Z = 0,

(iv)R̃(IX, IY, IZ, IW ) = R̃(X, Y, Z,W ),

(v)R̃(IX, Y, IZ,W ) = R̃(X, IY, Z, IW ),

(vi)R̃(X, Y, IZ, JW ) = −R̃(IX, IY, Z, IJW ),

(vii)R̃(IX, IY, JZ, JW ) = R̃(X, Y, IJZ, IJW ),

where R̃(X, Y, Z,W ) = g(R(X, Y )Z,W ).

Proof. (i) Since I is parallel, i.e., (∇XI)(Y ) = 0, we get

∇XI(Y ) = I(∇XY ).

Now,

R(X, Y )I(Z) = ∇X∇Y I(Z)−∇Y∇XI(Z)−∇[X,Y ]I(Z)

= ∇XI(∇YZ)−∇Y I(∇XZ)− I(∇[X,Y ](Z))

= I(∇X∇YZ)− I(∇Y∇XZ)− I(∇[X,Y ]Z)

= I(R(X, Y )Z).

(ii) Since g(R(X, Y )V, U) = g(R(U, V )Y,X), we have

g(R(IX, IY )V, U) = g(R(U, V )IY, IX)

= g(I(R)(U, V )Y, IX)

= −g(R(U, V )Y, I2(X)), [since g(IX, Y ) = −g(X, IY )]

= g(R(U, V )Y,X), [since I2 = J2 = K2 = −1

and IJ = −K = JI]

= g(R(X, Y )V, U).

Hence, R(IX, IY )V = R(X, Y )V .

(iii) Putting X = IX in (ii) we obtain (iii).

(iv) Now,

g(R(IX, IY )IZ, IW ) = −g(I(R)(IX, IY )IZ,W ),

[since g(IX, Y ) = −g(X, IY )]

= −g(R(IX, IY )Z,W )

= g(R(X, Y )Z,W ),

[using g(R(IX, IY )V, U) = g(R(X, Y )V, U)]

Therefore, R̃(IX, IY, IZ, IW ) = R̃(X, Y, Z,W ).
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(v) Setting Y = IY , W = IW in (iv) we get (v).

(vi) Putting X = IX, Y = IY , W = KW , where IJ = K = −JI in equa-
tion (iv) then we obtain

R̃(X, Y, IZ, JW ) = −R̃(IX, IY, Z, IJW ).

(vii) Again putting Z = KZ, W = KW , where IJ = K = −JI in equation (iv)

then we have R̃(IX, IY, JZ, JW ) = R̃(X, Y, IJZ, IJW ). �

Remark 3.2. Accordingly, Theorem 3.1 holds for operators J,K. Since I2 = J2 =
K2 = −1 and IJ = −K = JI, so the above curvature identities also hold for the
operators IJ and JI.

Let S be the Ricci tensor of M , i.e.,

S(Y, Z) = trace{X → R(X, Y, Z)} =
4n∑
i=1

εiR̃(ei, Y, Z, ei),

where {e1, e2, ..., en} is an orthonormal basis for M and εi = g(ei, ei) = 1.

Theorem 3.3. The Ricci tensor of a hyperKähler manifold satisfies

(i)S(IX, IY ) = S(X, Y ),

(ii)S(IX, Y ) + S(X, IY ) = 0.

Proof.

S(IX, IY ) = trace{Z → R(Z, IX)IY }
= trace{IZ → R(IZ, IX)IY }
= trace{IZ → R(Z,X)IY }, [by (ii) of Theorem 3.1]

= trace{IZ → IR(Z,X)Y }, [sinceIR = RI]

= trace{Z → R(Z,X)Y }
= S(X, Y ),

which proves (i).

Now setting X = IY in (i) we obtain (ii). �

Remark 3.4. In parallel, Theorem 3.3 holds for the operators J,K. Since I2 =
J2 = K2 = −1 and IJ = −K = JI, so the above Ricci tensor of a hyperKähler
manifold also satisfy for the operators IJ and JI.

Theorem 3.5. For a hyperKähler manifold of dimension 4n the following relation

holds, i.e.,
4n∑
i=1

εiR̃(ei, I(ei), X, I(Y )) = 0.
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Proof. We have

S(X, Y ) =
4n∑
i=1

εig(R(ei, X)Y, ei)

= −
4n∑
i=1

εig(R(I(ei), I(X))Y, ei)

= −
4n∑
i=1

εig(R(ei, Y )I(X), I(ei))

= −
4n∑
i=1

εig(R(Y, ei)I(ei), I(X))

=
4n∑
i=1

εig(R(Y, ei)I(X), I(ei))

=
4n∑
i=1

εig(R(I(X), ei)Y, I(ei)) +
4n∑
i=1

εig(R(Y, I(X))ei, I(ei)),

[using Bianchi′s identities]

= −
4n∑
i=1

εig(R(ei, I(X))Y, I(ei))−
4n∑
i=1

εig(R(I(X), Y )ei, I(ei))

=
4n∑
i=1

εig(I(R)(ei, I(X))Y, ei) +
4n∑
i=1

εig(I(R)(I(X), Y )ei, ei)

=
4n∑
i=1

εig(R(ei, I(X))I(Y ), ei) +
4n∑
i=1

εig(R(I(X), Y )I(ei), ei)

= S(IX, IY )−
4n∑
i=1

εig(R(Y, I(X))I(ei), ei)

= S(X, Y ) +
4n∑
i=1

εiR̃(ei, I(ei), X, I(Y )).

So this implies,
4n∑
i=1

εiR̃(ei, I(ei), X, I(Y )) = 0. �

Remark 3.6. Comparably, Theorem 3.5 holds for the operators J,K. Since I2 =
J2 = K2 = −1 and IJ = −K = JI, so the above global form of curvature tensors
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of a hyperKähler manifold also satisfy for the operators IJ and JI, i.e.

(i)
4n∑
i=1

εiR̃(ei, J(ei), X, J(Y )) = 0.

(ii)
4n∑
i=1

εiR̃(ei, IJ(ei), X, IJ(Y )) = 0.

(iii)
4n∑
i=1

εiR̃(ei, JI(ei), X, JI(Y )) = 0.

3.1. Conformal flatness of hyperKähler manifold. Since any pseudo-Riemannian
as well as Riemannian manifold of dimension 3 is conformally flat, we are focused
in dimension 4n ≥ 4. Utilizing the identities from the previous section, we prove
the following theorem.

Theorem 3.7. Let M be a conformally flat hyperKähler manifold. Then
(i) M is locally flat if dim M ≥ 4 ,
(ii) M is locally symmetric and its scalar curvature vanishes identically if dim
M = 4.

Proof. By the vanishing of conformal curvature tensor, we have

R̃(X, Y, Z,W ) =
1

2n− 2
[−g(X,Z)S(Y,W )− g(Y,W )S(X,Z) + g(X,W )S(Y, Z)

+ g(Y, Z)S(X,W )]− r

(2n− 1)(2n− 2)
[g(X,Z)g(Y,W )

− g(X,W )g(Y, Z)], (3.1)

r being the scalar curvature of M . From the above equation with the help of
Theorem 3.3 and Theorem 3.1, we get

4n∑
i=1

εiR̃(ei, I(ei), Z, I(W )) = − 2

n− 1
S(Z,W )− r

(2n− 1)(n− 1)
g(Z,W ).

Then using the result of Theorem 3.5, we obtain

S(Z,W ) = − r

2(2n− 1)
g(Z,W ). (3.2)

Now setting Z = W = ei, 1 ≤ i ≤ n and summing over i then from Equation

(3.2), we have (4n − 1)r = 0, where r =
4n∑
i=1

εiS(ei, ei). Then this implies r = 0,

when 4n ≥ 4. Now putting the value of r = 0 in the Equation (3.2), we get
S = 0.
So from Equation (3.1) it follows that the manifold is locally flat. Now, also if
4n = 4 then r = 0, then its scalar curvature vanishes identically. Next we proof
the manifold is locally symmetric. Now we assume that conformally flatness
implies,

(∇XS)(Y, Z)− (∇Y S)(X,Z) =
1

6
[(Xr)g(Y, Z)− (Yr)g(X,Z)]. (3.3)
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Putting r = 0 in the Equation (3.3), we obtain

(∇XS)(Y, Z) = (∇Y S)(X,Z). (3.4)

On the other hand, from Theorem 3.3 it follows that

(∇XS)(Y, I(Z)) + (∇XS)(Z, I(Y )) = 0. (3.5)

Using the equality and the Equation (3.4), we get

(∇XS)(Y, I(Z)) + (∇Y S)(Z, I(X)) = 0. (3.6)

Applying the result of the Theorem 3.3 on the above equation, we obtain ∇S = 0.
Now from the Equation (3.1) and∇S = 0, implies that∇R = 0, i.e., the manifold
is locally symmetric. �

From Theorem 3.7, we have the following Corollary:

Corollary 3.8. A conformally flat hyperKähler manifold of dimension 4n is an
Einstein manifold.

3.2. Bochner flatness and generalised W2-flatness of hyperKähler man-
ifold. The notion of Bochner curvature tensor [2] is defined by:

B(X, Y )Z =R(X, Y )Z − 1

2n+ 4
[g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X

− S(X,Z)Y + g(IY, Z)QIX − g(IX,Z)QIY + S(IY, Z)IX

− S(IX,Z)IY − 2S(IX, Y )IZ − 2g(IX, Y )QIZ]

+
r

(2n+ 2)(2n+ 4)
[g(Y, Z)X − g(X,Z)Y + g(IY, Z)IX

− g(IX,Z)IY − 2g(IX, Y )IZ], (3.7)

where Q is the Ricci operator, defined by g(QX, Y ) = S(X, Y ) and n is the

dimension of the manifold. Moreover a manifold is Bochner flat if B̃(X, Y, Z, U) =
g(B(X, Y )Z,U) = 0.

Theorem 3.9. A Bochner flat hyperKähler manifold is an Einstein manifold.

Proof. Taking inner product in the Equation (3.7) by W , we get

g(B(X, Y )Z,W ) = R̃(X, Y, Z,W )− 1

2n+ 4
[g(Y, Z)S(X,W )− g(X,Z)S(Y,W )

+ S(Y, Z)g(X,W )− S(X,Z)g(Y,W ) + g(FY, Z)S(IX,W )

− g(IX,Z)S(IY,W ) + S(IY, Z)g(IX,W )− S(IX,Z)g(IY,W )

− 2S(IX, Y )g(IZ,W )− 2g(IX, Y )S(IZ,W )]

+
r

(2n+ 2)(2n+ 4)
[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )

+ g(IY, Z)g(IX,W )− g(IX,Z)g(IY,W )− 2g(IX, Y )g(IZ,W )].
(3.8)
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Now as the manifold is Bochner flat then the above equation reduces to

R̃(X, Y, Z,W ) =
1

2n+ 4
[g(Y, Z)S(X,W )− g(X,Z)S(Y,W ) + S(Y, Z)g(X,W )

− S(X,Z)g(Y,W ) + g(IY, Z)S(IX,W )− g(IX,Z)S(IY,W )

+ S(IY, Z)g(IX,W )− S(IX,Z)g(IY,W )− 2S(IX, Y )

g(IZ,W )− 2g(IX, Y )S(IZ,W )]− r

(2n+ 2)(2n+ 4)
[g(Y, Z)

g(X,W )− g(X,Z)g(Y,W ) + g(IY, Z)g(IX,W )− g(IX,Z)

g(IY,W )− 2g(IX, Y )g(IZ,W )]. (3.9)

Setting X = ei, Y = Iei, Z = Z and W = IW in the above equation and taking
summation over i, 1 ≤ i ≤ n and also using the result of the Theorem 3.5, we
obtain

S(Z,W ) = − r

2n+ 6
g(Z,W ). (3.10)

Hence the proof. �

From Theorem 3.9 we have the following Corollary:

Corollary 3.10. A Bochner flat hyperKähler manifold is locally flat.

Proof. Taking Z = W = ei in the above equation and summing over i, 1 ≤ i ≤ n
we obtain

r = 0, provided 3n+ 6 6= 0. (3.11)

Then the Equation (3.10) becomes

S(Z,W ) = 0. (3.12)

So the manifold is locally flat. �

Theorem 3.11. A generalised W2-flat hyperKähler manifold is Ricci flat, pro-
vided a 6=

(
b+ c

4n−7

)
.

Proof. Taking inner product in the Equation (1.1) by W , we get

g(W2(X, Y )Z,W ) =aR̃(X, Y, Z,W ) +

(
b+

c

4n− 7

)
[g(X,Z)S(Y,W )

− g(Y, Z)S(X,W )]. (3.13)

Now as the manifold is W 2-flat then the above equation reduces to

aR̃(X, Y, Z,W )+

(
b+

c

4n− 7

)
[g(X,Z)S(Y,W )−g(Y, Z)S(X,W )] = 0. (3.14)

Putting X = ei, Y = Iei,W = IW in the above equation and summing over i,
1 ≤ i ≤ 4n and operating the result of the Theorem 3.3 we have(

b+
c

4n− 7

)
S(Z,W ) = 0. (3.15)

Then we have S(Z,W ) = 0, for any Z,W ∈ χ(M), being the Lie algebra of vector
fields on M . This completes the proof. �
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From Theorem 3.11 we have the following Corollary:

Corollary 3.12. A quasi-W2 flat hyperKähler manifold is Ricci flat, provided
c 6= 0.

The following examples are given in the paper [14]

Example 3.13. A trivial example is Hn. However, in contrast to the Kähler case,
HPn is not hyperKähler and neither do its generic quaternionic submanifolds.

Example 3.14. In the particular case n = 1, then SP1 = SU2 in SO4, so a 4-
dimensional Riemannian manifold is hyperKähler exactly when it is Kähler and
Ricci flat. Specifically, this shows that any compact complex surface M of Kähler
type with vanishing first Chern class is either a torus or simply connected and
admits a unique complex-symplectic structure, i.e., is a so-called ”K3-surface”.

Example 3.15. A class of non-compact hyperKähler manifolds of real dimension
4 can be obtained by resolving the singularity of C2/Γ for Γ ⊂ SU2 a finite
subgroup.

Example 3.16. Many examples of non-compact hyperKähler manifolds arise
as moduli spaces of solutions to gauge-theoretic equations. The hyperKähler
structure is obtained by a hyperKähler reduction from Hn.

These results can be verified in these examples.
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