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Abstract

Leprosy is a chronic mycobacterial infectious disease that causes peripheral neu-
ropathy in human body which results irreversible nerve damage and loss of sensation
in skin and disabilities of various organs. In-depth research of leprosy continues to be
a very challenging topic for scientists worldwide as the infection of leprosy is a very
complex process and difficult to execute the same in laboratory. In spite of the inven-
tion of multi-drug therapy (MDT), leprosy is far from eradicated and still remains a
public health problem in many densely populated countries like India, Brazil, China,
Indonesia and some parts of Africa, Europe and USA etc. According to WHO (World
Health organisation), there were 202, 256 new leprosy cases registered globally in 2019
from 161 countries from the six WHO Regions. Considering this contexts, this thesis
deals with several mathematical models demonstrating and decoding the basic infec-
tion mechanism and disease dissemination process of leprosy. Also, exploring safe and
effective treatment policies and regimens to overcome the hindrance of drug-resistance
scenarios, adverse drug impacts and the difficulties in framing a perfect tenure of treat-
ment is the key focus of the thesis. Each chapter of this thesis is divided into two parts:
theoretical part and numerical part. In theoretical section, systems are constructed in
such a way so that their solutions remain biologically meaningful and also the existence,
uniqueness and boundedness of solutions remain biologically plausible. Finally, novel
numerical tools and techniques are utilized to illustrate and validate all the analytical
outcomes.
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Chapter 1

Introduction

“An end to leprosy can be put only if all of us work in synergy. . . . Only if we never give up

on this disease.”

∼ World Leprosy Eradication Day Slogan, 2022 (@bestmessages.org) □

1.1 The Leprosy Epidemic: History of the Disease

1Leprosy is a chronic mycobacterial disease caused by the bacterium called M. leprae. The

disease is also recognized as one of the oldest disease known to mankind. In medieval times,

nearly all of Europe have seen the terrifying impact of leprosy at an endemic stage. The

burden of leprosy reduced a lot during the period of renaissance in Europe and that was

possible due to the strict isolation measure implemented which blocked the transmission of

the disease quite successfully. This strategy also enhanced the social stigma greatly. In

the 13th century BC, there were as many as 2000 leper colonies in France according to

an article in 1864 written by Rudolf Virchow. people used to know very little about the in-

depth infection and disease dissemination process about leprosy until the norwegian physician

Gerhard Armauer Hansen first experimented in 1873 and discovered that the main causative

agent for leprosy is the bacteria Mycobacterium leprae (M. leprae). After his name, leprosy

is also called ’Hansen’s disease’ nowadays.

1Information given/listed in this chapter are collected from several web links and peer-reviewed
journals (cited here).
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1.2 The Epidemiology of Leprosy

1.2 The Epidemiology of Leprosy

Leprosy constitutes a chronic infectious ailment stemming from the bacteriumMycobacterium

leprae. Its primary afflictions encompass the skin and peripheral nerves, with potential for

disfigurement and disability when left untreated [Ploemacher et al. (2020)]. Profound com-

prehension of leprosy’s epidemiological facets is imperative for the effective implementation

of prevention and control measures. The subsequent elucidation provides an overview of the

epidemiology of leprosy:

Figure 1.1: Global leprosy update (2019) describing the geographical distribution

• Global Prevalence: Leprosy persists as a salient public health quandary in numerous

regions worldwide, prominently within low- and middle-income nations. As of the last

data update in September 2021, the World Health Organization (WHO) reported a

yearly incidence exceeding 200,000 new leprosy cases globally.

• Geographic Distribution: Leprosy exhibits global dissemination, with its highest preva-

lence in tropical and subtropical zones, encompassing sections of Asia, Africa, and Latin

America [mondiale de la Santé et al. (2016)]. Notably, nations such as India, Brazil,

and Indonesia consistently manifest the highest incidence of new leprosy cases [Rao

and Suneetha (2018)].

• Clinical Spectrum: Leprosy manifests a spectrum of clinical presentations, encompass-

ing the Paucibacillary (characterized by few bacteria) and multibacillary (characterized

by numerous bacteria) forms [Gaschignard et al. (2016); Pardillo et al. (2007)]. The

specific type of leprosy an individual manifests influences both the risk of transmission

and the duration of treatment. Timely diagnosis and commencement of treatment,

3



1.3 Transmission Dynamics

employing multidrug therapy (MDT), are pivotal to averting disability and curtailing

further transmission.

• Endeavors Toward Eradication: The WHO initiated the Global Leprosy Strategy

2016–2020 with the overarching objective of diminishing the worldwide burden of lep-

rosy. This strategy centers on early case identification, enhancing access to MDT, and

mitigating the societal stigma and discrimination linked with leprosy. Several nations

have demonstrated substantial progress in lowering leprosy prevalence, and certain re-

gions have achieved the esteemed status of leprosy elimination, signifying a low rate of

incidence [Dogra et al. (2013); Ooi and Srinivasan (2004)].

• Persistent Challenges: Noteworthy hurdles in leprosy control include late case de-

tection, incomplete treatment regimens, and societal ostracism, which can dissuade

afflicted individuals from seeking necessary medical care and support [Goulart and

Goulart (2008); Rodrigues and Lockwood (2011)]. Furthermore, the fortification of

monitoring and surveillance systems is requisite to furnish precise data on leprosy

caseloads.

1.3 Transmission Dynamics

The mode of transmission of M. leprae, the etiological agent of leprosy, is a very complex

phenomenon and not completely understood by researchers till date. Prolonged close contact

with untreated individuals with active leprosy is considered the primary route of transmission,

although respiratory droplets and nasal secretions also play a pivotal role [Job et al. (2008)].

The disease exhibits a long incubation period, ranging from several months to years, posing

challenges in identifying the source and timing of infection.

1.4 Basic Features and Clinical Symptoms

Leprosy primarily affects the skin, peripheral nerves, mucosal surfaces of the upper respiratory

tract, and the eyes. The disease has a wide range of clinical manifestations, making it

essential to understand its basic features and clinical symptoms. Clinical symptoms of leprosy

vary depending on the immune response of the affected individual. The disease can be

classified into different types based on the Ridley-Jopling classification [Ridley et al. (1962)]

or the World Health Organization (WHO) classification. The two main types of leprosy i.e.

paucibacillary (PB) and multibacillary (MB) leprosy are described briefly below.

4



1.5 What is Schwann Cell? A Short Review

Paucibacillary leprosy is characterized by a lower bacterial load and a limited number of

skin lesions. Skin lesions in PB leprosy are typically hypopigmented or erythematous macules

(flat patches) or papules (raised bumps). These lesions may be accompanied by numbness

or loss of sensation in the affected area due to nerve involvement. Nerve damage is a crucial

aspect of leprosy, and it can lead to sensory loss, muscle weakness, and deformities [Sabin

et al. (1969)].

Multibacillary leprosy, on the other hand, is characterized by a higher bacterial load and

a larger number of skin lesions. The skin lesions in MB leprosy are often nodules, plaques,

or infiltrated areas. Just like in PB leprosy, nerve involvement is common and can result in

sensory loss, muscle weakness, and deformities.

Leprosy can affect various systems of the body, leading to complications if left untreated.

Common complications include eye involvement (such as lagophthalmos, iridocyclitis, or

blindness), nasal septum perforation, and claw hand or foot deformities [Leprosy (2012)].

It’s important to note that early diagnosis and treatment play a crucial role in preventing

further transmission, irreducible nerve damage and reducing the long-term complications

associated with the disease.

1.5 What is Schwann Cell? A Short Review

Schwann cells are a type of glial cell found in the peripheral nervous system (PNS). During the

mid nineteenth century while investigating the nervous system, scientist Theodore Schwann,

the co-founder of the cell theory, discovered Schwann cells. The primary function of these

cells is to support and insulate neurons by producing myelin, a lipid-rich substance that

forms a protective sheath around nerve fibers. Schwann cells play a crucial role in nerve

development, maintenance, and regeneration [Jessen and Mirsky (2016); Salzer (2015)]. In

leprosy, these cells are the principal target of Mycobacterium leprae, the causative agent of

the disease [Tapinos and Rambukkana (2005)]. The bacteria invade Schwann cells, leading to

a cascade of events that result in nerve damage and the characteristic neuropathic symptoms

observed in leprosy patients.

M. leprae infects Schwann cells through a process involving adhesion, entry, and intracel-

lular survival. The bacteria first attach to Schwann cell surfaces through interactions with

specific receptors. Once attached, they gain entry into the Schwann cells by either receptor-

mediated endocytosis or phagocytosis. Once inside, M. leprae manipulates the host cellular

machinery to ensure its survival [Masaki et al. (2013)]. The bacteria inhibit phagosome

maturation, preventing their destruction by lysosomes, and interfere with immune recogni-
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1.6 Infection Mechanism of Schwann cells by M. leprae Bacteria

Figure 1.2: Depiction of Schwann cells within a Neuron of Peripheral Nervous System
(PNS)

tion mechanisms. They also exploit host lipids and nutrients to support their replication

and persistence within Schwann cells. These interactions disrupt normal Schwann cell func-

tions, including myelination, leading to the demyelination and nerve damage characteristic

of leprosy. Understanding the biology of Schwann cells in leprosy is essential for developing

targeted therapeutic strategies to mitigate the progression of the disease and minimize its

neurological complications.

1.6 Infection Mechanism of Schwann cells by M.

leprae Bacteria

Mycobacterium leprae, the causative agent of leprosy, predominantly infects Schwann cells,

leading to the characteristic neuropathic manifestations of the disease. Understanding the

infection mechanism of M. leprae in Schwann cells is crucial for developing effective thera-

peutic interventions. The whole infection process involves a series of intricate interactions

between the bacteria and Schwann cells, ultimately leading to nerve damage and clinical

symptoms.

6



1.6 Infection Mechanism of Schwann cells by M. leprae Bacteria

Crucial steps of the infection mechanism:

• Adhesion and Entry: M. leprae first attaches to the surface of Schwann cells, facili-

tated by various adhesion molecules and receptors. Upon adhesion, the bacteria trig-

ger receptor-mediated endocytosis or phagocytosis, enabling their entry into Schwann

cells [Masaki et al. (2013)].

• Intracellular Survival: After entering Schwann cells, the bacteria modifies its intracellu-

lar environment to ensure survival. The bacteria employ multiple mechanisms to avoid

host immune responses, including inhibition of phagosome maturation and interference

with signaling pathways involved in immune recognition.

Figure 1.3: Demonstration of the infection procedure by M. leprae bacteria and further,
the proliferation and dissemination of the bacteria into the human body

• Replication and Spread: Within the Schwann cell, M. leprae undergoes replication,

leading to the formation of multiple bacteria-containing vacuoles known as globi. The

bacteria strategically avoid host lysosomal degradation mechanisms and utilize host

lipids for their growth and persistence [Adams et al. (2012)].

• Interaction with Schwann Cell Signaling: During infection, M. leprae manipulates var-

ious signaling pathways within Schwann cells, including those involved in myelination,

inflammation, and cell survival [Spierings et al. (2000)]. These alterations contribute

to the demyelination and nerve damage observed in leprosy.

7



1.7 Risk Factors

• Dissemination: M. leprae can be transmitted from infected individuals through res-

piratory droplets. The bacteria exploit nerve pathways and utilize peripheral blood

mononuclear cells as a means of transport.

1.7 Risk Factors

Several risk factors influence leprosy transmission and susceptibility. These include genetic

predisposition, immunological status, socioeconomic factors, and environmental conditions.

Household contacts of leprosy patients are at increased risk of developing the disease, em-

phasizing the importance of contact tracing and early case detection.

1.8 Prevention of the Disease

Leprosy control programs aim to interrupt transmission, prevent disabilities, and provide

timely treatment. Active case finding, starting the treatment at an early stage are vital

components of disease control strategies. Multidrug therapy (MDT), consisting of a combi-

nation of antibiotics, has proven effective in curing leprosy and reducing transmission [Becx-

Bleumink and Berhe (1992)]. However, challenges such as finding the perfect drug dose reg-

imen which also supports cost-effectiveness strategies, drug resistance, adverse therapeutic

effects, and the persistence of leprosy in certain endemic pockets require ongoing surveillance

and research for tailored interventions.

Understanding the epidemiology of leprosy is crucial for effective disease control. Con-

tinued research, surveillance, and targeted interventions are needed to achieve global leprosy

elimination goals.

1.9 Drug Therapies Invented so far

MDT stands for Multidrug Therapy, which is the standard treatment regimen for leprosy

recommended by theWorld Health Organization (WHO). MDT is a combination of antibiotics

that effectively target and kill the Mycobacterium leprae bacteria [Smith et al. (2017)]. The

components of MDT include three main drugs:

• Rifampicin: Rifampicin is a bactericidal antibiotic that targets actively dividing bac-

teria, including M. leprae [Moet et al. (2008)]. It inhibits the synthesis of bacterial

RNA, thereby preventing protein production and ultimately killing the bacteria.
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• Dapsone: Dapsone is a bacteriostatic antibiotic that inhibits the synthesis of dihy-

drofolic acid, a crucial component required for bacterial DNA synthesis. By interfering

with this process, Dapsone slows down the growth of M. leprae, allowing the immune

system to effectively control and eliminate the bacteria [Zuidema et al. (1986)].

• Clofazimine: Clofazimine is a bactericidal antibiotic that exerts its antimicrobial

activity by binding to bacterial DNA, leading to the inhibition of DNA replication

and transcription. It also possesses anti-inflammatory properties that help reduce the

immune response and limit tissue damage caused by leprosy [Fischer (2017)].

The combination of these three drugs in MDT helps to eliminate M. leprae bacteria,

and reduce the risk of relapse. The specific duration and dosage of MDT depend on the

classification and severity of the disease. MDT not only acts on active leprosy infections

but also prevents transmission by rapidly reducing the bacterial load, thereby reducing

the chances of spreading the disease to others. It is highly effective in preventing

disabilities if administered early and completed as prescribed. Some of the other novel

drug therapies invented for the treatment of leprosy as listed as:

• Minocycline: Minocycline is a broad-spectrum antibiotic belonging to the tetracy-

cline class. It has shown efficacy in the treatment of leprosy and is often used as an

alternative to Dapsone in cases of Dapsone resistance or intolerance. Minocycline works

by inhibiting bacterial protein synthesis, thereby preventing the growth and spread of

M. leprae. It is commonly used in combination with Rifampicin and Clofazimine in

multidrug therapy (MDT) regimens for leprosy treatment [Gelber et al. (1992)].

• Ofloxacin: Ofloxacin is a fluoroquinolone antibiotic with potent antimycobacterial

activity. It is primarily used in the treatment of multibacillary leprosy and is included

as an additional drug in the WHO-recommended MDT regimen for this form of the

disease [Grosset et al. (1990)]. Ofloxacin inhibits bacterial DNA gyrase, an enzyme

essential for DNA replication, thereby preventing the growth of M. leprae. It has

shown good efficacy, especially in cases of Rifampicin resistance, and has the advantage

of being available in oral form [Setia et al. (2011)].

• Clarithromycin: Clarithromycin is a macrolide antibiotic that exhibits antimicrobial

activity against a wide range of bacteria, including M. leprae. It inhibits bacterial

protein synthesis. Clarithromycin is used as an alternative drug in the treatment of

leprosy and often used in combination with other antibiotics, such as Ofloxacin or

Minocycline, to enhance its effectiveness.
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These additional drugs, namely Minocycline, Ofloxacin, and Clarithromycin, provide

valuable alternatives in cases of drug resistance or intolerance to the standard MDT

regimen [Williams and Gillis (2012)]. They have demonstrated efficacy in treating

leprosy and are commonly used as part of multidrug combinations to achieve optimal

treatment outcomes. However, it is important to note that the choice and use of these

drugs should be guided by the specific characteristics of the patient’s health situation

and should be done under the supervision of efficient healthcare professionals.

1.10 Mathematical Methods and Their Applica-

tions

In this Section, we have discussed about some mathematical techniques that are generally

required to investigate the dynamical behavior of a system. The following qualitative methods

of dynamical systems have been applied to analyze various models proposed in this thesis.

1.10.1 Equilibrium analysis:

Let us assume the following system of first order autonomous difference equation:

Xt+1 = f(Xt) or X → f(X), (1.10.1)

where

X = (X1, X2, ..., Xk) ∈ Rk,

f = (f1, f2, ..., fk) ∈ Rk,

and f : Rk → Rk.

Here Xt denotes the state of the system (1.10.1) at discrete time t ∈ T and the corresponding

initial conditions are:

Xt=0 = X0, X0 = (X1
0, X

2
0, ..., X

k
0).

Definition 1.10.1 A point X∗ of the system (1.10.1) is said to be an Equilibrium point

or Fixed point or Critical point if it satisfies f(X∗) = X∗.

It is also very crucial to determine the behavior of a non-linear system in the neighbour-

hood of equilibrium points. In order to analyze the behaviour of the systems’ trajectories,

we have described the stability criteria of the possible equilibrium points.
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Local stability analysis:

It is one of the most fundamental topics in applied mathematics, especially in the field mathe-

matical biology. Several existing literatures have addressed this topic lately [Lakshmikantham

et al. (1989); Lakshmanan and Rajaseekar (2012); Hale (1977); Guckenheimer et al. (1977)].

Definition 1.10.2 The equilibrium point Y ∗ of the system (1.10.1) is said to be Locally

stable, if for each ϵ > 0 there exists δ > 0 such that

||fn(X0)−X∗|| < ϵ whenever ||X0 −X∗|| < δ. (1.10.2)

Note that, if X∗ is locally stable then any solution trajectory starts from any nearest point

to X∗ will remain closed to it.

Definition 1.10.3 If the fixed point X∗ of the system (1.10.1) is not stable then it is Un-

stable fixed point.

If the solution trajectories start from any initial point which nearest to X∗ not only remain

close to it but also converge to that fixed point, is called locally asymptotically stable fixed

point.

Definition 1.10.4 The critical point X∗ of the system (1.10.1) is said to be Local asymp-

totic stable, if X∗ is locally stable and there exists a δ > 0 such that

fn(X) = X∗ as n→ ∞ when ||X0 −X∗|| < δ. (1.10.3)

Let us assume X be any solution in the neighborhood of X∗ and λ = λ1, λ2, ..., λn is a small

perturbation from that fixed point (X∗), then we have X = X∗ + λ,

λn+1 = Nλn,
(1.10.4)

where, N = (pij)|Y ∗ , (i, j = 1, 2, 3, ..., n) is the Variational or Jacobian Matrix at the fixed

point X∗. The linear system (1.10.4) corresponding to the Jacobian matrix is called lineariza-

tion of the non-linear system (1.10.1) at X∗. If λ0 be the initial perturbation from the fixed

point X∗ then

λn = N nλ0. (1.10.5)

The stable or unstable nature of the fixed point X∗ of system (1.10.1) can be determined by

the eigenvalues of the linearized system (1.10.4). Let, ζ be the eigenvalue corresponding to
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the eigenvector υ of the matrix N . Then the characteristic equation is given by

det(N − ζI) = p0ζ
n + p1ζ

n−1 + p2ζ
n−2 + ...+ pn, p0 ̸= 0. (1.10.6)

The necessary and sufficient condition for being the fixed point locally stable is that the

eigenvalues of the linearized matrix lie in the unit circle [Robinson (1998)].

Definition 1.10.5 A fixed point X∗ of the system (1.10.1) is called Saddle point if the

maximum modulus of at least one eigenvalue of N is less than unity with the other eigenvalues

are greater than unity.

Definition 1.10.6 A fixed point X∗ is said to be a Hyperbolic fixed point of the system

(1.10.1) if none of the eigenvalues of N have unit modulus.

Definition 1.10.7 An equilibrium point X∗ is called Non-Hyperbolic fixed point of a

system if

• at least one eigenvalue of N is 1 and other eigenvalues having moduli not equal to 1.

• at least one eigenvalue of N is -1 and other eigenvalues having moduli not equal to 1.

• at least N has two complex conjugate eigenvalues with modulus 1 and other eigenvalues

having moduli not equal to 1.

1.10.2 Bifurcation analysis

Whenever studying a dynamical system, bifurcation analysis is a very well-known tool to

investigate the changes in the qualitative or topological structure of the solutions of a family

of differential equations. A bifurcation occurs in both continuous and discrete systems when

a small smooth change made to the parameter values (the bifurcation parameters) of the sys-

tem. There are mainly four types of bifurcations viz. Saddle-node bifurcation, Transcritical

bifurcation, Pitchfork bifurcation and Hopf bifurcation.

Let us consider the following continuous dynamical system described by the ODE:

ẋ = f(x, λ), f : Rn × R → Rn, (1.10.7)

with an equilibrium (x0, λ0) and corresponding Jacobian matrix df(x0,λ0).

Definition 1.10.8 A Bifurcation occurs at the fixed point (x0, λ0) for the system (1.10.7)

if the Jacobian matrix df(x0,λ0) has at least one eigenvalue with real part equals to zero.
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Definition 1.10.9 Let the system (1.10.7) has two fixed points namely (x0, λ0) and (x1, λ1)

and the two fixed points (or equilibria) collide and annihilate each other then a Saddle-node

bifurcation occurs.

Definition 1.10.10 Transcritical bifurcation is characterized by an equilibrium of the

system (1.10.7) having an eigenvalue whose real part passes through zero.

Definition 1.10.11 Pitchfork bifurcation is a particular type of bifurcation where the

system (1.10.7) transitions from one fixed point to three fixed points.

Definition 1.10.12 Hopf bifurcation occurs if near a critical point system (1.10.7) losses

its stability and a periodic solution arises.

In this thesis, we have focused on Hopf-bifurcation, associated with the appearance or the

disappearance of a periodic orbit through a local change in the stability properties of a fixed

point. By the following theorem, Hale et al. [Hale and Koçak (2012)] have described the

conditions under which Hopf-bifurcation phenomenon occurs

Theorem 1.10.1 Suppose that all eigenvalues of df(x0,λ0) corresponding to the steady state

(x0, λ0) have negative real parts except one conjugate nonzero purely imaginary pair ±iβ.
A Hopf-bifurcation arises when these two eigenvalues cross the imaginary axis because of a

variation of the system parameters.

1.10.3 Delay differential equation

A delayed differential equation (DDE) is a type of differential equation where the rate of

change of a variable does not solely depend on its current value but also on its past values,

with a time delay. In other words, the state variable appears with delayed argument i.e. the

derivative of the variable at a given time depends on its values at previous times.

A delayed differential equation can be generally written in the form:

dx(t)

dt
= f(x(t), x(t− τ1), x(t− τ2), ...., x(t− τn)) (1.10.8)

where x(t) is the variable of interest at time t and f is a function that describes how the

variable changes based on its current and past values at specific delays (τ1, τ2, τ3, ...., τn).

Here, τ1, τ2, τ3, ...., τn are considered as constant delays.

DDEs can model various real-world phenomena where the past history of a system affects

its future behavior. They have applications in biology, physics, engineering, economics, and
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other fields. Analyzing and solving DDEs can be more challenging compared to ordinary

differential equations due to the presence of delay terms, which can lead to complex dynamics

and sometimes require specialized techniques for analysis and numerical solutions. Overall,

we can say that a system based on delayed differential equations offers a way to capture

systems where time delays play a significant role in determining the system’s behavior and

evolution over time.

Example: Let us consider a simple example of a population growth model that incor-

porates a time delay. Suppose we have a population of rabbits, and we want to model their

growth over time, taking into account a delay in the reproductive process.

Let,

• X(t) be the population of rabbits at time t,

• ν be the intrinsic growth rate of the rabbit population,

• K be the carrying capacity of the environment (maximum sustainable population size),

• τ be a time delay representing the time it takes for a rabbit to mature and start

reproducing.

According to these assumptions, the delayed differential equation-based system can be

written as:
dX(t)

dt
= νX(t).

(
1− X(t− τ)

K

)
This equation describes the rate of change of the rabbit population at time t. The growth

rate ν is scaled by the current population size X(t) and is dampened by the term X(t−τ)
K ,

which represents the effect of the delayed reproduction.

In this model, the delay τ accounts for the time it takes for a newborn rabbit to reach

maturity and contribute to population growth. The equation essentially says that the rate

of change of the population depends on the current population size and the population size

τ units of time ago. This simple delayed differential equation captures how the history of

the rabbit population affects its future growth. The dynamics of this model can lead to

interesting behaviors, including oscillations and stability, depending on the parameter values

ν, K, and τ . Solving and analyzing this equation would involve considering the impact of

the delay on the stability and behavior of the rabbit population over time.

• Linearization process for autonomous delay differential equation (DDE) with

constant delay
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Suppose, g(x, y) is chosen so that it satisfies g(0, 0) = 0 and x = 0 is a steady state. Then,

ẋ(t) = g(x(t), x(t− τ)) = gx(0, 0)x(t) + gy(0, 0)x(t− τ) + h.o.t.

The corresponding linearization is given as

ẋ(t) = gx(0, 0)x(t) + gy(0, 0)x(t− τ) = σ1x(t) + σ2x(t− τ).

Now, putting x(t) = eλt, we get the following transcendental characteristic equation given as:

λ− σ1 − σ2e
−λτ = 0.

Considering λ = α+ iβ, we have the following:

α− σ1 − σ2e
−ατ cos(τβ) = β + σ2e

−ατ sin(τβ) = 0.

The equation given above has infinitely many roots and all of them lie on the curve g(α) =

±
√
σ22e

−2τα − (α− σ1)2 From the above discussion, we can observe the following points:

1. The fact that all the solutions are exponential can be viewed using Laplace transform.

2. On the right-hand side of any vertical line in the complex plane, there exists finitely

many roots.

3. Each stable manifold is infinitesimal here.

4. The inequality α < |σ1|+ |σ2| is necessarily satisfied by all the characteristic roots.

• Important results and theorems related to a general delayed dynamical

system

A dynamical system based on delayed differential equation exhibits various phenomena and

properties. Here, we note some of the important theorems, properties, and results that

commonly occur during the analytical and numerical investigation of such a system in general.

1. Existence and Uniqueness Theorems: For the justification of biological validity

and plausibility of a dynamical system, demonstration of the existence and unique-

ness of the solutions of a delayed system is essential. Similar to ordinary differential

equations, delayed differential equations also have existence and uniqueness theorems

that ensure the existence of solutions and their uniqueness under certain conditions,

specifically based on the initial conditions. These theorems provide a foundation for

studying the behavior of solutions to delayed dynamical systems.
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2. Characteristic Equation: The characteristic equation of a delay differential

equation-based system is important for stability analysis. From this, we can obtain

the eigenvalues of the system, which actually supply the necessary information about

the stability and oscillatory behavior of the solutions of the system.

3. Stability Criteria: Lyapunov’s direct method, as well as other stability criteria such

as the delay-independent stability criterion and delay-dependent stability criterion, are

used to analyze the stability of equilibrium points in delayed systems.

4. Hopf Bifurcation: Delayed systems can exhibit Hopf bifurcations, leading to the

emergence of stable periodic solutions from equilibrium points as a parameter is var-

ied. The delayed nature of the system can induce interesting and complex oscillatory

behavior.

5. State-Dependent Delays and Neutral Delay Differential Equations: In some

systems, the delay itself can depend on the state of the system while Neutral Delay

is a special class of delayed systems where both the current state and its past values

impact the dynamics. Both these types of delayed systems can lead to more intricate

dynamics and analyzing the stability and behavior of these systems often involves more

advanced mathematical tools.

6. Delay Compensation and Control: Understanding and designing controllers for

systems with delays is an important practical application. Methods like Smith pre-

dictors and model predictive control are used to compensate for delays and stabilize

systems.

7. Chaos and Complex Behavior: Delayed dynamical systems can exhibit chaotic

behavior, leading to sensitive dependence on initial conditions and complex patterns

of evolution.

8. Numerical Methods: Numerical techniques for solving delayed differential equations,

such as Runge-Kutta methods and collocation methods, need to be adapted to handle

the time delays. These methods are crucial for approximating solutions and studying

the behavior of delayed dynamical systems.

These are just a few aspects of the rich and diverse field of delayed dynamical systems. The

study of such systems requires a combination of mathematical analysis, numerical methods,

and sometimes specialized tools to unravel the complex behavior and properties of the system.
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1.10.4 Optimal control theory

Let us consider an ordinary differential equation (ODE) having the form

dX(t)

dt
= f(X(t)) (t > 0)

X(0) = X0.

Here X0 ∈ Rn is the given initial point and the function f is defined from Rn to Rn. The

unknown is the curve X : [0,∞) → Rn, which we interpret as the dynamical evolution of the

state of some “system”.

Now by generalizing, we suppose that f depends also upon some “control” parameters be-

longing to a set A ⊂ Rm; so that f : Rn × A → Rn. Then if we select some value a ∈ A and

consider the corresponding dynamics:

dX(t)

dt
= f(X(t), a) (t > 0)

X(0) = X0, (1.10.9)

we obtain the evolution of our system when the parameter is constantly set to the value a.

The next possibility is that we change the value of the parameter as the system evolves. For

instance, suppose we define the function α : [0,∞) → A this way:

α(t) =


a1, 0 ≤ t ≤ t1

a2, t1 ≤ t ≤ t2

a3, t2 ≤ t ≤ t3 etc.

(1.10.10)

for times 0 < t1 < t2 < t3... and parameter values a1, a2, a3, ... ∈ A; and we then solve the

dynamical equation

dX(t)

dt
= f(X(t), a(t)) (t > 0)

X(0) = X0. (1.10.11)

It is important to note here that the system may behave quite differently as we change the

control parameters. More generally, we call a function α : [0,∞) → A a control. Correspond-

ing to each control, we consider the ODE system (1.10.11) and regard the trajectory X(·) as
the corresponding response of the system. The set A = {α : [0,∞) → A | α(·) is measurable}
denotes the collection of all admissible controls.
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Note that our solution X(·) of (1.10.11) depends upon α(·) and the initial condition.

Consequently our notation would be more precise, but more complicated if we were to write

X(·) = X(·, α(·), X0),

displaying the dependence of the response X(·) upon the control and the initial value.

Let us now define the payoff functional

J [α(·)] :=

tf∫
t0

[r(X(t), α(t))]dt+ g(X(T )), (1.10.12)

where X(·) solves (1.10.11) for the control α(·). Here r : Rn × A → R and g : Rn → R are

given, and we call r the running payoff and g the terminal payoff. The terminal time tf > 0

is given as well.

Our aim is to find a control α∗(·), which maximizes or minimizes the payoff function

J [α(·)]. In other words, we want

J [α∗(·)] ≥ or ≤ J [α(·)]

for all controls α(·) ∈ A. Such a control α∗(·) is called optimal.

1.10.5 Preliminaries on fractional derivatives and integration

Recently, analysis of fractionalized mathematical models has gained a huge importance for

any biological system equipped with memory phenomena. In this Subsection, some crucial

fundamental definitions from the theory of fractional calculus are presented.

Definition 1.10.13 The Caputo fractional derivative operator of order ζ (ζ ≥ 0) & n ∈
N ∪ {0} is defined by Vellappandi et al. (2022) as:

Dζ
t (u(t)) =

1

Γ(n− ζ)

∫ t

0
(t− ξ)n−ζ−1 d

n

dtn
u(ξ)dξ (1.10.13)

where n− 1 ≤ ζ < n.

Definition 1.10.14 Let v ∈ H ′(a, b), b > a, 0 < ζ < 1. Then, the time-fractional Caputo–
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Fabrizio fractional differential operator is defined as [Caputo and Fabrizio (2015)]:

CFDζ
t (v(t)) =

M(ζ)

1− ζ

∫ t

0
exp

[
−ζ(t− ξ)

1− ζ

]
v′(ξ)dξ, t ≥ 0, 0 < ζ < 1 (1.10.14)

where M(ζ) is a normalization function which depends on ζ and satisfies the condition

M(0) =M(1) = 1.

Definition 1.10.15 The Caputo–Fabrizio (CF) fractional integral operator of order 0 < ζ <

1 is given by Losada and Nieto (2015) as:

CFIζt (v(t)) =
2(1− ζ)

(2− ζ)M(ζ)
v(t) +

2ζ

(2− ζ)M(ζ)

∫ t

0
v(ξ)dξ, t ≥ 0. (1.10.15)

Here, it is important to note that

CFDζ
t (v(t)) = 0 if vs. is a constant function.

Furthermore, it is imperative to observe that the previous definitions completely suggest that

the fractional integral of a function of order 0 < ζ < 1 is actually represented by the average

of the respective functions and their integral of order one. Furthermore, the equation

2(1− ζ)

(2− ζ)M(ζ)
+

2ζ

(2− ζ)M(ζ)
= 1 (1.10.16)

holds true, which provides the following formula:

M(ζ) =
2

(2− ζ)
, 0 ≤ ζ < 1. (1.10.17)

Here, the specific form of the normalizing function M(ζ) given in (1.10.17) along with

the boundary conditions is used throughout the study and more specifically, for the purpose

of numerical simulations.

Definition 1.10.16 The Laplace transform for the CF fractional operator of order 0 < ζ ≤ 1

for k ∈ N is given as follows [Caputo and Fabrizio (2015)]:

L
(
CFDk+ζ

t (v(t))
)
(p) =

1

1− ζ
L
(
vk+1(t)L

(
exp

(
− ζ

1− ζ
t

)))
=
pk+1L(v(t))− pkv(0)− pk−1v′(0) . . .− vk(0)

p+ ζ(1− p)
.
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To be precise, we can say that

L
(
CFDζ

t (v(t))
)
(p) =

pL(v(t))
p+ ζ(1− p)

, k = 0

L
(
CFDζ+1

t (v(t))
)
(p) =

p2L(v(t))− pv(0)− v′(0)

p+ ζ(1− p)
, k = 1.

1.11 Mathematical Contribution and Motivation of

the Study

Mathematical model and its control therapeutic approaches provide an efficient way to un-

derstand and unravel different dynamics of the disease leprosy and help us to obtain futuristic

predictions. The outcomes based on the mathematical investigations are of utmost impor-

tance to the clinical scientists and pharmacists as well as the policymakers who are trying to

achieve a perfect drug dose regimen and complete eradication of leprosy from mankind.

Firstly, we note some of the previous clinical studies that actually made the pathway for

performing mathematical investigations on leprosy. Several clinical and experimental studies

have been performed on the leprosy disease lately. Sharma et al. (2013) reported that among

infected armadillos, concentrations of 109 to 1011 M. leprae/gram of liver, spleen or lymph

node has been observed. Through an electron microscopic study, Job et al. (1975) reported

that M. leprae is engulfed by Schwann cells and the bacteria survive and replicate inside the

cells by constructing protective responses against the disastrous activities taken by Schwann

cells by losing its phagosomal membrane. The clinical works thus clearly constitute the

basic background of mathematical model formulations on leprosy which deals with ordinary

differential equations (ODEs) and incorporates control therapeutic approaches as standard

treatment methods.

The control theoretic concepts have been considered important in a wide variety of disci-

plines. Too large dosage may not be beneficial for the patient and also too small dosage may

not be effective as well. This is the main reason why we require optimal treatment strategies

which can reduce the possibility of bacterial transmission and proliferation, pharmaceutical

side effects and complex, expansive medication burden. The basic equation of the optimal

control theory may be derived by different approach which comprises the well-known theorem

called Pontryagin’s Minimum Principle [Pontryagin (1987)]. Pontryagin et al. also developed

the maximum principle for the optimal control of finite dimensional problems governed by

ODEs. The application and necessity of the theorems provided by Pontryagin et al. is very

much important for the drug treatment in different treatment setup. We have used the theory
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and by the help of these theorems, we have derived optimal drug dosages for different optimal

control-induced systems for which better treatment can be achieved.

For leprosy patients, two of the most commonly used drugs in combined control thera-

peutic treatment procedures are Ofloxacin and Dapsone. Ofloxacin displayed powerful bac-

tericidal activity against M. leprae and can be chosen as an important component of new

multidrug therapy for the treatment of leprosy. Ji et al. (1994) experimented over 24 patients

with newly diagnosed leprosy and treated them for 56 days with 400 mg of ofloxacin daily

and demonstrated significant clinical developments along with major decline of the MI index

(morphological index) in the skin smears during the treatment period. Dapsone (diamino-

diphenylsulphone) is also a key part of multidrug therapy (MDT). Following this direction,

some mathematicians have contributed in exploring the leprosy dynamics by formulating

mathematical models on leprosy regulation through Ordinary Differential Equations. Blok

et al. (2015) developed a stochastic individual-based model, SIMCOLEP, which was able to

take into account transmission of leprosy in households and test for different assumptions on

heterogeneity in susceptibility to leprosy. Recently in 2018, Giraldo et al. (2018) constructed

a mathematical simulation model describing the transmission dynamics of the multibacillary

leprosy (MB) and paucibacillary leprosy (PB) including a delay. However, all these works

are based on human population dynamics, but the detailed fundamental cell dynamical char-

acteristics of leprosy has not been examined yet.

During the last few decades, mathematical modeling on living organisms in the discrete-

time setup is gaining much interest and is considered a very crucial and significant tool by

many researchers [Franke and Yakubu (2008); Sekiguchi and Ishiwata (2010)]. There are some

specific advantages of discrete-time models compared with continuous-time models. Discrete-

time models manifest a much richer set of system dynamics. It offers a more convenient and

precise approach to formulate a mathematical model than continuous-time models [Hu et al.

(2012); Chen et al. (2009)]. Through the discretization, numerical simulations for continuous

models can be obtained. These suggest that it is more appropriate to elucidate Schwann

cell infection by M. leprae and the disease transmission through a discretized system while

categorically focusing on the per capita growth rate of the bacterium.

Analysis of mathematical models based on delayed differential equations instead of simple

ODE-based systems has acquired major importance in current times and several mathemat-

ical studies on various infectious and non-infectious diseases like HIV-1, dengue, malaria,

tumor and cutaneous leishmaniasis have been performed recently that primarily focuses on

the delayed dynamics of the systems [Banerjee and Sarkar (2008); Ruan et al. (2008); Roy,

Chatterjee, Greenhalgh and Khan (2013)]. Most interestingly, previous outcomes from exist-

ing literature on various diseases and moreover, on several biological problems, it is observed
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that optimal control theory whenever applied on delayed differential equation-based systems

produces much accurate result. There has been significant progress in the development of

optimal control-induced delayed mathematical models and various research works have been

performed in this direction in recent times [Al Basir (2020); Ali and Zaman (2021); Hattaf

and Yousfi (2012)]. It is important to note that implementing optimal control theory on

delayed systems instead of simple ODE-based systems has some certain benefits in general.

The state-of-the-art of this type of system involves the use of advanced numerical methods

which allows for more efficient numerical simulations of the system dynamics. Besides, for

a fixed duration, in comparison to optimal therapy, a constant control therapy requires a

high dose of drug therapy for the whole treatment tenure which usually results in a high

cost of combined drug therapy and simultaneously, induces the risks related to drug overdose

situations.

Before 1982, the only available treatment for leprosy was Dapsone monotherapy but drug

resistance to Dapsone was observed in a large number of patients suffering from leprosy.

So, multidrug therapy (MDT) was implemented according to the recommendation of World

Health Organization in 1982 [Walker and Lockwood (2006)]. The components of MDT are

Dapsone, Rifampicin and Clofazimine. Among these, Rifampicin has a bactericidal effect

on M. leprae while Clofazimine mainly acts as an anti-inflammatory drug [Fischer (2017)].

Still, there are evidences in recent times in which cases MDT with the standard components

was not completely successful. Results from clinical trials conducted in 2012 indicates that

bacteriological index (BI) are observed to be decreased significantly over time in patients

taking U-MDT compared to the regular MDT therapy but the relapse rates for U-MDT

regimen are still a matter of concern for the clinical scientists [Kroger et al. (2008); Penna,

Buhrer-Sekula, Pontes, Cruz, Gonçalves and Penna (2014)]. In a recent study, it is suggested

that the rate at which infected nerve regenerates is nearly about 60% to 70% and the recovery

rate is relatively slow for patients with chronic and recurrent nerve impairment [Britton and

Lockwood (2004)]. These observations together indicate the essence of investigating a safe

and unsafe zone of MDT depending on the drug-efficacy rate of the therapy. There are some

previous works on various infectious diseases such as HIV which dealt with the infection

of healthy cells, stable production of virus [Ikeda et al. (2003)] and the key relationships

in between the disease prevalence or infection rate, drug-efficacy and dosing regimen of the

prescribed combined or single-drug therapy into a human body [Smith and Wahl (2005);

Saha et al. (2018); Cao et al. (2019)]. As far as finding a perfect drug dose regimen for

both paucibacillary (PB) and multibacillary (MB) leprosy is our foremost goal, in depth

investigation of the drug efficacy of the existing MDT therapy and its correlations with

various pathogenetic components of leprosy must be given major importance to eradicate the
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disease permanently from mankind.

In 2016, Westerlund pointed out that every matter has a memory [Westerlund (1991)].

The dynamic behavior of living microorganisms such as M. leprae bacteria not only depends

on the conditions of their current state but also on those of their previous states to better

predict and interpret the pattern of the states at some point in the future [Wolf et al. (2008);

Yang et al. (2020)]. It is to be noted that integer-order (IO) derivatives only take into account

the local properties (at time t). In the real-world explanation, the IO differentiation explores

the dynamics between two different points. In such a situation, a natural question may arise

about the non-local behavior of the two points. To solve such limitations of local differenti-

ation, researchers like Riemann and Liouville first introduced the concept of differentiation

with non-local or fractional-order operators [Samko et al. (1993)]. A fractional (fractional-

order) derivative is a generalization of the integer-order (IO) derivative and integral. In order

to investigate the pathogenesis of leprosy from a completely novel analytical and numeri-

cal point of view, considering only systems involving ordinary differential equations (ODE)

with integer-order (IO) derivatives is not sufficient, and introducing fractionalized mathe-

matical systems to introspect various aspects of memory effect on leprosy dynamics becomes

mandatory in this scenario.

All of our investigations are mainly based on deterministic modeling. Deterministic mod-

eling produces consistent outcomes for a given set of inputs, regardless of how many times

the model is recalculated. The mathematical characteristics are known in this case. It deals

with the definitive outcomes as opposed to random results and doesn’t make allowances for

error. A deterministic model is applied where outcomes are precisely determined through a

known relationship between states and events where there is no randomness or uncertainty.

In contrast, stochastic modelling is intrinsically unpredictable, and the unknown components

are integrated into the model. When the relationship between variables is unknown or uncer-

tain then stochastic modelling could be used because it relies on likelihood estimation of the

probability of events. There are several stochastic mathematical models [N̊asell (1999); Matis

et al. (2003)] that have been developed to describe the extinction process both at cellular

and population level. Wang et al. (2013) investigated the behavior of a hospital infection

before extinction and also, the time to extinction. In a HIV disease mathematical model,

the authors focused about the distribution function and expected time to extinction of the

infected cells [Cao et al. (2019)].

From the above discussion, it is clear that though a few mathematical models have been

developed previously on the disease leprosy in human population level, but the in depth anal-

ysis of the cell dynamical structure has not been explored yet mathematically. Furthermore,

predictions on various aspects of the density dependent growth of the bacteria, the important
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effects of intracellular delays to unravel the complex infection mechanism in leprosy, inves-

tigation of the corresponding optimal control-induced systems for finding suitable drug dose

regimen in a safe, cost-effective way and evaluation of the critical drug efficacy rate of the

MDT are still untouched by the researchers. In addition, besides the ODE-based systems, the

novel aspects of the fractionalized models considering the memory effects and the expected

time to extinction of the infected Schwann cells in the leprosy neuropathy are yet to be stud-

ied by the mathematicians. Such unknown issues of the previous studies lead us to generate

new ideas and determination in the development of theoretical research on leprosy. Research

is an original contribution to the existing stock of knowledge making for its advancement

and it is indeed the pursuit of truth with the help of study, observation, comparison and

experiment. This thesis obeys this law and contributes the systematic approach concerning

generalization and the formulation of a theory.

1.12 Outline of the Contribution

The thesis has been organized in the following manner:

• In Chapter 2, we have formulated a three dimensional nonlinear ODE-based mathemat-

ical model comprising of the concentrations of healthy Schwann cells, infected Schwann

cells andM. leprae bacteria and explored the interlink between these system population

on how they contribute to progress the infection into the human body. Moreover, the

optimal control-induced system consisting of a combined drug therapy of Ofloxacin and

Dapsone has been investigated in detail to predict a suitable optimal control strategy

for the eradication of leprosy.

• Next, in Chapter 3, the previously formulated ODE-based continuous system has been

discretized. Here, in this chapter theta logistic growth rate of M. leprae bacteria has

been incorporated into the system instead of the classical logistic growth rate. Besides

performing the stability analysis in discrete setup, we have also determined θ∗ i.e.

the critical value of the radius of curvature of the density dependant bacterial growth

curve through Hopf-bifurcation analysis. Also, different behaviours of the system cell

populations arising for both θ < 1 and θ > 1 have been manifested in detail.

• In Chapter 4, the necessary aspects of intracellular delay has been considered to for-

mulate and examine two different variants of delay induced systems. We have also

discussed the impact of optimal control strategy into the systems while simultaneously

considering the time-lag appeared into the bacterial attachment and bacterial prolifer-
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ation process for finding a cost effective and safe combined therapeutic regimen more

accurately and realistically.

• Chapter 5 deals with a four dimensional ODE-based mathematical model consisting

of the concentrations of healthy Schwann cells, infected Schwann cells, M. leprae bac-

teria and the amount of MDT drug concentrations administered into the human body

during the treatment. Through Hopf-bifurcation analysis for inquiring oscillatory pe-

riodic solutions, Poincare section analysis and and Lyapunov’s exponent method, we

have systematically determined and distinguished a safe and an adversely impactful

zone of the drug efficacy rate of MDT. Moreover, critical efficacy rate of MDT has

been found for different classifications (according to the World Health Organization

(W.H.O) and also, the Ridley-Jopling classification) for both the Paucibacillary (PB)

and Multibacillary (MB) leprosy cases.

• In Chapter 6, a fractionalized mathematical model has been introduced by incorpo-

rating the well-known Caputo-Fabrizio (CF) fractional derivative for fractional order

ζ ∈ (0, 1) instead of classical integer-order (IO) derivative. A generalized fractional op-

timal control problem (FOCP) has been formulated in CF sense. Utilizing the results

derived from this general case, we have studied the control-induced CF fractional sys-

tem. As a consequence, we have evaluated a standard tenure of treatment and optimal

control profiles for a double-drug therapeutic schedule to overcome the drug-resistance

scenario emerging due to the memorial effect of the bacteria.

• In Chapter 7, we have derived a stochastic mathematical model from the previously

studied four dimensional deterministic system. Constructing Kolmogorov’s forward

equation by applying Joint probability distribution of infected Schwann cells and M.

leprae bacteria along with quasi-stationary distribution, normal approximation, com-

parison between approximate and exact solutions of the system are demonstrated.

Finally, utilising Ornstein-Uhlenbeck Process, expected time to extinction of the in-

fected Schwann cells are estimated for our formulated model and all of our analytical

observations are verified through numerical investigations in detail.

• Finally, Chapter 8, we have reviewed all the research conclusions of the thesis and

presented some important future aims and scope for research in these directions.
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Chapter 2

Basic Framework of Mathematical

Modelling on Leprosy by

Introducing Optimal Control

Therapeutic Approach

Leprosy (Hansen’s disease) is an infectious, neglected tropical disease caused by the bac-

terium scientifically called Mycobacterium leprae (M. leprae) and the disease is characterized

by damage and impairment of nerve-function through infection of untreated wounds, which

reveals of debilitating ulcers on palms and soles, chronic disability of several organs. Lep-

rosy affects the skin or more precisely epidermal layer but M. leprae specifically targets the

Schwann cells of myelinated axons. In this Chapter2, we have proposed a three dimensional

mathematical model involving the concentrations of healthy Schwann cells, infected Schwann

cells and bacteria (M. leprae) to predict the dynamical changes of the cells during this disease

progression. We have also studied the control-induced mathematical model by introducing

two bounded control parameters into our model. For detailed analysis of this controlled sys-

tem, by considering a minimization problem for the concentration of infected Schwann cells

and bacteria, we have applied the Pontryagin maximum principle. As a result of this analy-

sis, the properties of the optimal controls and their possible types have been established. All

analytical outcomes have been verified by numerical simulations.

2The major portion of this chapter is published in Computational Mathematics and Modeling,
Springer, Vol. 32, No. 1, January, 2021.
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2.1 The Basic Assumptions and the Mathematical Model

Healthy Schwanncell SH (t )

�
1

SH ( t )B(t )

M.leprae bacteria B(t)

�

Infected Schwann cell SI(t)

�

µ

� SH ( t ) B(t )

Production of new free 

bacteria

Natural death rate of 

infected Schwann cells

Uninfected Schwann cell- 

M.leprae bacteria

interaction

Production of infected 

Schwann cells

Clearance or loss of bacteria 

due to infection

Figure 2.1: Schematic of the interactions between the components of the model.

2.1 The Basic Assumptions and the Mathematical

Model

In order to formulate the mathematical model, we assume SH(t), SI(t) and B(t) are the

concentrations of healthy Schwann cells, infected Schwann cells and M. leprae bacteria, re-

spectively, for any time t. Following assumptions are to be considered in creating the math-

ematical model.

(A1): We have considered the logistic function as a growth function of healthy Schwann cells,

where r1 is the growth rate and k1 is the carrying capacity. Schwann cells are the main target

for the bacterium Mycobacterium Leprae. Healthy Schwann cells become infected at the rate

λ1 by the bacteria through receptor mediated mechanisms regulated by Mitogen-activated

protein kinases (MAPK) cascade. So, the term −λ1SHB is added to the first equation.

(A2): It is to be assumed that newborn bacteria may be created by proliferation of existing

M. leprae bacteria and the total number of bacteria can not increase unboundedly. Here,

we represent the proliferation of bacteria by a logistic fashion, in which r2 is the maximum

proliferation rate constant and it proliferates to the maximum given by k2, denoting the

bacteria’s population density at which proliferation shuts off. M. leprae takes entry into

healthy Schwann cells and hence, the Schwann cells become infected. The interaction rate of

bacteria and healthy Schwann cells is denoted by λ1 (same as infection rate). Now, due to the

interaction of bacteria with healthy Schwann cells and the infection of healthy cells, a certain
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2.2 Theoretical Study of the System

portion of bacteria is cleared. We have denoted the rate of loss of bacteria or clearance rate

of bacteria by the parameter η. So, -ηSHB is also added to the third equation. Infected

Schwann cells produce new free bacteria at the rate α.

(A3): From the above assumptions, it is imperative to include another variable SI to rep-

resent the density of the infected Schwann cells. The growth of the infected Schwann cells

is represented by term λ1SHB. The natural mortality rate of the infected Schwann cells is

denoted by µ.

The above assumptions (A1)–(A3) lead us to formulate the model equations as follows

dSH
dt

= r1SH

(
1− SH

k1

)
− λ1SHB,

dSI
dt

= λ1SHB − µSI ,

dB

dt
= r2B

(
1− B

k2

)
− ηSHB + αSI

(2.1.1)

with the initial conditions

SH(0) ≥ 0, SI(0) ≥ 0, B(0) ≥ 0. (2.1.2)

Various cell-to-cell interactions between our model cell populations are demonstrated

through a schematic diagram in Figure 2.1.

2.2 Theoretical Study of the System

2.2.1 Non-negative invariance and boundedness

Let us demonstrate the non-negativity and boundedness of the solutions, which imply that

the system (2.1.1) is well-posed and biologically realistic. The following theorem is true.

Theorem 2.2.1 The solutions of system (2.1.1) with the non-negative initial condi-

tions (2.1.2) are non-negative:

SH(t) ≥ 0, SI(t) ≥ 0, B(t) ≥ 0

for all possible t > 0. All such solutions are located in the region Ω ⊂ R3
+ and are ultimately
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bounded, where Ω is defined as

Ω =
{
(SH , SI , B) : 0 ≤ SH ≤M, 0 ≤ SH + SI ≤M

(
r1
µ

+ 1

)
,

0 ≤ B ≤ k2
2

+

√
k22
4

+
αk2M

r2

(
r1
µ

+ 1

)}
,

where M = max {k1;SH(0)}.

Proof. In order to justify the non-negativity of the solutions SH(t), SI(t), B(t) to the sys-

tem (2.1.1) under initial conditions (2.1.2), let us check the necessary and sufficient condition

for these solutions to be non-negative [Krasnosel (1968)]. It consists in satisfying the quasi-

positivity condition: 
ΦH(0, SI , B) ≥ 0 for all SI ≥ 0, B ≥ 0,

ΦI(SH , 0, B) ≥ 0 for all SH ≥ 0, B ≥ 0,

ΦB(SH , SI , 0) ≥ 0 for all SH ≥ 0, SI ≥ 0,

where 
ΦH(SH , SI , B) = r1SH

(
1− SH

k1

)
− λ1SHB,

ΦI(SH , SI , B) = λ1SHB − µSI ,

ΦB(SH , SI , B) = r2B

(
1− B

k2

)
− ηSHB + αSI

are the right-hand sides of the equations of the system (2.1.1).

It is easy to see that
ΦH(0, SI , B) = 0,

ΦI(SH , 0, B) = λ1SHB ≥ 0 for all SH ≥ 0, B ≥ 0,

ΦB(SH , SI , 0) = αSI ≥ 0 for all SI ≥ 0.

Thus, the non-negativity of the solutions SH(t), SI(t), B(t) for the system (2.1.1) with the

non-negativity initial conditions (2.1.2) is established. It means that the non-negative octant

R3
+ is an invariant region for this system.

Now we will study the behavior of non-negative solutions SH(t), SI(t), B(t) for the

system (2.1.1) with respect to the region Ω. To do this, first, we consider the first equation
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of the system. It implies the following inequality:

dSH
dt

≤ r1SH

(
1− SH

k1

)
.

Integrating this inequality with the corresponding initial condition from (2.1.2), we find that

SH(t) ≤
k1SH(0)

SH(0) (1− e−r1t) + k1e−r1t
≤M. (2.2.1)

Now we consider the first and second equations of system (2.1.1). Adding these two

equations and using (2.2.1), we obtain the relationships:

d(SH + SI)

dt
= r1SH

(
1− SH

k1

)
− µSI

≤ r1SH − µSI = (r1 + µ)SH − µ(SH + SI)

≤ (r1 + µ)M − µ(SH + SI)

from which we find the inequality:

d(SH + SI)

dt
≤ (r1 + µ)M − µ(SH + SI).

Integrating it with the necessary initial condition, we conclude that

SH(t) + SI(t) ≤ (SH(0) + SI(0)) e
−µt +M

(
r1
µ

+ 1

)(
1− e−µt

)
,

which implies the inequality

SH(t) + SI(t) ≤M

(
r1
µ

+ 1

)
, (2.2.2)

if SH(0) + SI(0) ≤M
(
r1
µ + 1

)
. Moreover, inequality (2.2.2) also implies

SI(t) ≤M

(
r1
µ

+ 1

)
. (2.2.3)

Finally, we consider the last equation of system (2.1.1). Inequality (2.2.3) implies that

dB

dt
≤ r2B − r2

k2
B2 + αM

(
r1
µ

+ 1

)
, (2.2.4)
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or performing the change of variable

z =
r2
k2
B − r2

2
,

we obtain the differential inequality:

dz

dt
≤ ξ2 − z2, (2.2.5)

where

ξ =

√
r22
4

+ αM
r2
k2

(
r1
µ

+ 1

)
.

Assuming the inequality z2(0) ≤ ξ2, we can integrate the inequality (2.2.5) with the initial

condition z(0). As a result, the following inequality can be found

z(t)− ξ

z(t) + ξ
≤ z(0)− ξ

z(0) + ξ
e−2ξtd

which implies that z(t) ≤ ξ if z(0) ≤ ξ. Returning to the original variable, we obtain

B(t) ≤ k2
2

+

√
k22
4

+ αM
k2
r2

(
r1
µ

+ 1

)
.

Thus, all solutions (SH(t), SI(t), B(t)) of system (2.1.1) that start in Ω, remain in this

set for all t > 0. It means that Ω is an invariant set of this system. Moreover, the region Ω

is bounded and therefore all mentioned solutions ultimately bounded as well. Moreover, all

such solutions finally come into the region Ω and stay in it. This property is provided by the

definition of the region Ω and the following relationships:

dSH
dt

(t)
∣∣∣
∂Ω

< 0,
dSI
dt

(t)
∣∣∣
∂Ω

< 0,
dB

dt
(t)
∣∣∣
∂Ω

< 0

which are carried out at the points of the boundary ∂Ω of the region Ω.

2.2.2 Equilibrium analysis

Existence conditions

In system (2.1.1), endemic equilibrium point E∗ is steady state solution. For the existence

of endemic equilibrium E∗ = (S∗
H , S

∗
I , B

∗), its coordinates should satisfy the conditions:

E∗ = (S∗
H , S

∗
I , B

∗) ̸= 0, where S∗
H > 0, S∗

I > 0, B∗ > 0. The endemic equilibrium point is
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obtained by setting equations of the system (2.1.1) to zero. Solving state variables in terms

of the model parameters we get:

S∗
H =

r2k1µ(λ1k2 − r1)

[λ1k1k2(λ1α− µη)− µr1r2]
,

S∗
I = [λ1k2(λ

2
1k1k2α+ r1r2µ+ r1k1µη + r1r2µ)

− λ21k2(k1k2µη + k2r2µ+ k1r1α)− r21r2µ]×
λ1k1r2

[λ1k1k2(λ1α− µη)− µr1r2]2

B∗ =
r1λ

−1
1 [(λ21k1k2α+ r1r2µ)− (λ1k1k2µη + λ1k2r2µ)]

[λ1k1k2(λ1α− µη)− µr1r2]
.

(2.2.6)

Now, assuming that

C0 = λ21k1k2α+ r1r2µ+ r1k1µη + r1r2µ,

C1 = λ21k2(k1k2µη + k2r2µ+ k1r1α) + r21r2µ,

and using the formulas (2.2.6), we can state the following lemma.

Lemma 2.2.1 System (2.1.1) possesses positive endemic equilibrium E∗ = (S∗
H , S

∗
I , B

∗) if

the following conditions are valid:

i) λ1α > µr1r2 (λ1k1k2)
−1 + µη,

ii) λ1k2 > r1,

iii) λ1k2C0 > C1,

iv) λ21k1k2α+ r1r2µ > λ1k2µ(k1η + r2)

2.2.3 Stability criteria

The Jacobian matrix for the endemic equilibrium E∗ of system (2.1.1) is given by

J(S∗
H , S

∗
I , B

∗) =


[
r1 − 2r1k

−1
1 S∗

H − λ1B
∗] 0 −λ1S∗

H

λ1B
∗ −µ λ1S

∗
H

−ηB∗ α
[
r2 − 2r2k

−1
2 B∗ − ηS∗

H

]
 .

The characteristic equation of the Jacobian matrix can be written in the form

ξ3 +A2ξ
2 +A1ξ +A0 = 0, (2.2.7)
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where

A2 =

(
2r1
k1

+ η

)
S∗
H +

(
2r2
k2

+ λ1

)
B∗ + (µ− r2),

A1 =
4r1r2
k1k2

S∗
HB

∗ +
2r1η

k1
(S∗
H)

2 +
2r2λ1
k2

(B∗)2

+

(
2r1µ

k1
+ µη − 2r1r2

k1
− λ1α− r1η

)
S∗
H

+

(
2r2µ

k2
+ λ1µ− 2r1r2

k2
− λ1r2

)
B∗ + (r1r2 − µ[r1 + r2]) ,

A0 =
4r1r2µ

k1k2
S∗
HB

∗ − 2r1λ1α

k1
(S∗
H)

2 +
2λ1r2µ

k2
(B∗)2 + µr1r2

+

(
2r1ηµ

k1
+ λ1r1α− 2r1r2µ

k1
− r1µη

)
S∗
H −

(
2r1r2
k2

+ λ1µr2

)
B∗.

By the Routh-Hurwitz criteria (R-H criteria) [Gantmacher (1959)], if the following three

conditions:

A0 > 0, A2 > 0, A1A2 > A0 (2.2.8)

are satisfied, then the characteristic Eq. (2.2.7) has all the roots lying in the open left half

plane, i.e. all the roots have negative real parts. Hence, using the R-H criteria, we can

describe the stability situation of our system by the following theorem.

Theorem 2.2.2 The system (2.1.1) will be locally asymptotically stable at the endemic equi-

librium point E∗ = (S∗
H , S

∗
I , B

∗) if the inequalities (2.2.8) are fulfilled.

2.2.4 Disease free equilibrium and basic reproduction ratio ℜ0

The system (2.1.1) has always a disease-free equilibrium E0 = (k1, 0, 0). Local stability of

E0 is governed by basic reproduction ratio ℜ0. Biologically, ℜ0 is the average number of

new secondary infections in a completely susceptible Schwann cell population, generated by

a single infected Schwann cell. It can be determined by the next generation method [Van den

Driessche and Watmough (2002)]. Using this approach, we need to renumber the model

variables in such a way that the compartments reflecting infected individuals are at the

beginning. So, we have x = (SI , B, SH), with the number of infected compartments equal to

2. Now, by XS we denote the set of all disease-free states, i.e.

XS = {x ≥ 0 : xi = 0, i = 1, 2}.

System (2.1.1) shall be written in the form

x′i = fi(x) = Fi(x)− Vi(x), i = 1, 2, 3,
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where Fi(x) describes the rate of appearance of new infections in compartment i. Moreover,

Vi(x) = V−
i (x)− V+

i (x), and V+
i (x) is the rate of transfer into the compartment i, V−

i (x) is

the rate of transfer out of this compartment. The following assumptions are to be posed:

• (A1) Fi(x) ≥ 0, V−
i (x) ≥ 0, V+

i (x) ≥ 0 for any x ≥ 0;

• (A2) if xi = 0, then V−
i = 0;

• (A3) Fi = 0 for i = 3;

• (A4) if x ∈ XS , then Fi(x) = 0 and V+
i (x) = 0 for i = 1, 2;

• (A5) if x0 is the disease free equilibrium (DFE), then the Jacobi matrix Df(x0) restricted

to the subspace F = 0 has all eigenvalues with negative real parts.

Now, we can form the next generation matrix FV −1 [Heffernan et al. (2005); Van den

Driessche and Watmough (2002)] from matrices of partial derivatives of Fi and Vi. Specifi-

cally,

F =
[
∂Fi(x0)
∂xj

]
, V =

[
∂Vi(x0)
∂xj

]
,

where i, j = 1, 2. Here F and V are the squared matrices of dimension 2 and ℜ0 = ϱ(FV −1)

(ϱ denotes a spectral radius of the matrix).

In case of system (2.1.1), we have

F =


λ1SHB

0

0

 , V =


µSI

ηSHB − r2B
(
1− k−1

2 B
)
− αSI

λ1SHB − r1SH
(
1− k−1

1 SH
)
 .

Here, the infected compartments are SI and B. The matrices F and V for the new infection

terms and the remaining transfer terms are given by

F =

(
0 λ1k1

0 0

)
, V =

(
µ 0

−α ηk1 − r2

)
.

A threshold criteria, or reproduction ratio ℜ0, can be derived using the spectral radius of

the next-generation matrix. Therefore, to find ℜ0, we have to find the largest eigenvalue of

FV −1. It easy to find that

V −1 = [µ(ηk1 − r2)]
−1

(
ηk1 − r2 0

α µ

)
.

34



2.2 Theoretical Study of the System

Hence, we calculate

FV −1 = [µ(ηk1 − r2)]
−1

(
αλ1k1 µλ1k1

0 0

)
.

Finally, we obtain

ℜ0 = ϱ(FV −1) =
αλ1k1

µ(ηk1 − r2)
.

Now, the Jacobian matrix at the disease-free equilibrium E0 of system (2.1.1) is given by

J(E0) =


−r1 0 −λ1k1
0 −µ λ1k1

0 α r2 − ηk1

 .

After expanding we get the characteristic polynomial of the Jacobian matrix J(E0) as follows

(ξ + r1)
(
ξ2 +D1ξ +D0

)
= 0, (2.2.9)

where D1 = µ+ ηk1 − r2, D0 = µ(ηk1 − r2)− αλ1k1.

Now E0 = (k1, 0, 0) to be locally asymptotically stable, polynomial in (2.2.9) should have

all the roots with negative real parts. Equation (2.2.9) has already a negative root which is

ξ = −r1. Now, it is easy to note that if D0 ≥ 0, then D1 > 0. Therefore, all the roots of the

Eq. (2.2.9) will be negative real if D0 > 0 [ Heffernan et al. (2005)]. Now, we can see that

D0 > 0 gives us a threshold criteria to determine the stability of the disease-free equilibrium

and actually D0 > 0 is equivalent to ℜ0 < 1. When ℜ0 > 1, leprosy infection can take hold.

Otherwise, the infection will be eliminated. Hence, we state the following theorem.

Theorem 2.2.3 For ℜ0 < 1 the disease-free equilibrium E0 is locally asymptotically stable

and unstable otherwise.

Remark 2.2.1 When ℜ0 < 1, disease-free equilibrium E0 exists as the only equilibrium but

for ℜ0 > 1, E0 becomes unstable and endemic equilibrium E∗ exists.

Remark 2.2.2 From the expression of ℜ0 = αλ1k1[µ(ηk1− r2)]−1 it is observed that param-

eters appearing in ℜ0 are biologically valid. With the increase of the values of parameters

λ1, α and r2, an average number of new secondary infected Schwann cells will increase and

with the increase of the values of parameters µ, η, the number of new secondary cases will

decrease.
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2.2.5 Sensitivity analysis

In this Section, we use sensitivity analysis to investigate the impact of various intervention

measures. By this method, we can determine the model robustness to parameter values.

More precisely, sensitivity indices allows us to measure the relative change in a variable when

a parameter changes. Also we can identify the parameters that have high impact on the basic

reproductive ratio ℜ0 as well as on the disease transmission. Here we derive the sensitivity

index by using partial rank correlation coefficients (PRCC) of the basic reproductive ratio

with respect to parameters. The normalized forward sensitivity index [Okosun and Makinde

(2013)] of a variable v which is differentiable with respect to a given parameter p, is defined

as:

Υv
p :=

∂v

∂p
× p

v
.

Therefore the normalized forward sensitivity index of ℜ0 with respect to a parameter c is

defined as follows:

Υℜ0
c =

∂ℜ0

∂c
× c

ℜ0
.

By using this formula, we have written the signs sensitivity index of ℜ0 with respect to each

of the six different parameters in Table 2.1.

Table 2.1: Sensitivity analysis of parameters of system (2.1.1)

Parameter Assigned value Sensitivity index of ℜ0 (Positive/Negative)

λ1 5×10−4 1.0 +
k1 1200 -0.081 –
α 0.4 1 +
µ 0.1 -1 –
η 4×10−4 -1.09 –
r2 0.036 0.081 +

Sensitivity indices of ℜ0 with respect to the six parameters are obtained as

Υℜ0
λ1

= 1, Υℜ0
k1

= −0.081, Υℜ0
α = 1,

Υℜ0
µ = −1, Υℜ0

η = −1.09, Υℜ0
r2 = 0.081.

Increasing (or decreasing) λ1 by 10% would increase (or decrease) ℜ0 by 10% and increasing

(or decreasing) k1 by 10% would decrease (or increase) ℜ0 by 0.81%. This suggests that ℜ0 is

most positively sensitive to the interaction rate of bacteria and healthy Schwann cells, i.e. the

infection rate (λ1) and the proliferation rate of new free bacteria from infected Schwann cell
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population (α), which implies that if we can decrease the values of λ1 and α, the number of

new infected Schwann cells and disease prevalence will be reduced. On the other hand, η and

µ have most negative effect on ℜ0. So, with the increase of the values of bacteria clearance

rate and mortality rate of the infected cells, the value of ℜ0 will be decreased. From our

knowledge of sensitivity analysis, the control theoretic approach to our system can be very

beneficial and accurate as we can identify the most sensitive parameters by this method and

use some of them as control parameters. In contrast, the other parameters, k1 and r2 do

not require as much attention because of their low value in the magnitude of the sensitivity

indices.

2.3 Optimal Control Approach

Optimal control is a well-known mathematical tool which is used to control a mathematical

model of biological or medical processes. On a given treatment time interval, we usually solve

these types of problems through finding the time dependent values of the control functions.

Previously several mathematicians have successfully developed control based mathematical

models to achieve ideal drug dose regimen in a cost-effective manner for various diseases.

Chatterjee and Roy (2012) studied optimal schedule treatment by systematic drug therapy

for HIV infection. In the article [Roy, Chowdhury, Chatterjee, Chattopadhyay and Nor-

man (2013)], the author have investigated optimal control therapy and the effect of delay in

the positive feedback control for HIV. Effect of Th1-cells and cytokines have been explored

through a control-based mathematical model in psoriasis regulation by Roy et al. (2017).

Since leprosy is a skin disease which occurs due to the effect of M. leprae bacterium on

healthy Schwann cells, then it is obligatory that to control this disease we have to suppress

the effect of M. leprae bacterium on the susceptible Schwann cells and also the natural repli-

cation of the bacterium. In this Section, we have analyzed our formulated model with an

addition of two control functions u1(t) and u2(t), one is an effect of the drug Ofloxacin and

another is Dapsone on various cell densities. Dapsone works by preventing the formation

of folic acid and thus inhibits the organism Mycobacterium leprae’s replication. Ofloxacin is

also a very effective drug in killing the leprosy bacterium. This drug works by disrupting the

activity of Gyrase (an enzyme) in the bacterium. Gyrase actually cuts DNA of the bacterium

at specific points so that the DNA is able to uncoil to be transcribed. Thus, the control u1(t)

represents the drug therapy Ofloxacin which prevents the new infection, and control u2(t) is

the drug therapy Dapsone which acts against new replication of the bacteria.

As a result, at a given time interval [0, tf ], which is the leprosy treatment period, we
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consider the control system:

dSH
dt

= r1SH

(
1− SH

k1

)
− λ1(1− u1)SHB,

dSI
dt

= λ1(1− u1)SHB − µSI ,

dB

dt
= r2(1− u2)B

(
1− B

k2

)
− η(1− u1)SHB + αSI

(2.3.1)

with the known initial values for the state variables SH(t), SI(t) and B(t):

SH(0) = S0
H ≥ 0, SI(0) = S0

I ≥ 0, B(0) = B0 ≥ 0. (2.3.2)

We will consider that the set U of admissible controls consists of all Lebesgue measurable

functions (u1(t), u2(t)), which for almost all the values of t from the time interval [0, tf ] satisfy

the following constraints:

0 ≤ u1(t) ≤ 1, 0 ≤ u2(t) ≤ 1. (2.3.3)

The following theorem ensures that the solutions of system (2.3.1),(2.3.2) are bounded.

Theorem 2.3.1 For any admissible controls (u1(t), u2(t)) the corresponding absolutely con-

tinuous solution (SH(t), SI(t), B(t)) to system (2.3.1),(2.3.2) is defined on the entire interval

[0, tf ], and for its components SH(t), SI(t), B(t) the inequalities:

0 ≤ SH(t) ≤ Smax
H , 0 ≤ SI(t) ≤ Smax

I , 0 ≤ B(t) ≤ Bmax, (2.3.4)

where

Smax
H = max

{
k1;S

0
H

}
, Smax

I = max
{
k1;S

0
H

}(r1
µ

+ 1

)
,

Bmax = B0er2tf +
αmax

{
k1;S

0
H

}
r2

(
r1
µ

+ 1

)(
er2tf − 1

)
hold for all t ∈ [0, tf ].

Proof. Let the solution (SH(t), SI(t), B(t)) be defined on some interval [0, t0), which is

the maximum possible interval of its existence. Without loss of generality, we will assume

that t0 ≤ tf . Then, the nonnegativity of the solutions SH(t), SI(t), B(t) is justified as in

Theorem 2.2.1. The right bounds Smax
H and Smax

I result from the inequalities similar to (2.2.1)

and (2.2.3) of Theorem 2.2.1. The bound Bmax results from integrating the differential
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inequality
dB

dt
≤ r2B + αM

(
r1
µ

+ 1

)
,

following from (2.2.4), with the appropriate initial condition from (2.3.2).

Thus, we substantiated the validity of inequalities (2.3.4) on the maximum possible in-

terval of existence of the solution (SH(t), SI(t), B(t)). This means their implementation on

the entire interval [0, tf ] [Hartman (1964)].

Now, on the set U of admissible controls for the control system (2.3.1),(2.3.2) we define

the objective function

J (u1(·), u2(·)) =

tf∫
0

[
Pu21(t) +Qu22(t) + S2

I (t)− S2
H(t)

]
dt, (2.3.5)

where the term Pu21(t) represents the cost of the Ofloxacin drug therapy that prevents the

new infection. The term Qu22(t) is the cost of the Dapsone drug therapy, which acts against

new replication of the bacteria. P and Q are positive balancing coefficients (weights) that

regularize the optimal controls. The quadratic expressions for the controls included in (2.3.5)

indicate nonlinear costs potentially arising at high intervention levels [Neilan (2009)].

Our goal is to minimize the objective function (2.3.5) on the set U for the state sys-

tem (2.3.1),(2.3.2) and find the corresponding optimal controls (u∗1(t), u
∗
1(t)), such that

inf
(u1(·),u2(·))∈U

J (u1(·), u2(·)) = J (u∗1(·), u∗2(·)). (2.3.6)

In order to show the existence of the optimal solution in problem (2.3.6), we will use

the well-known result from [Lee and Markus (1967)]. Indeed, for any admissible controls

(u1(t), u2(t)) from U and the given non-negative initial conditions (2.3.2), it is obvious that

the non-negative uniformly bounded on the whole interval [0, tf ] solutions SH(t), SI(t), B(t)

to the state system (2.3.1) exist (see Theorem 2.3.1). Also, we note that the equations of this

system are linear in the controls u1 and u2. Next, the set U = {(u1, u2) : 0 ≤ ui ≤ 1, i = 1, 2},
in which these controls take on their values (see (2.3.3)), is convex and compact. Finally, the

integrand
[
Pu21 +Qu22 + S2

I − S2
H

]
in the objective function (2.3.5) is convex in variables u1,

u2 on the set U .
Then, we can state the existence of the optimal solution by the following theorem.

Theorem 2.3.2 There exists the optimal solution in problem (2.3.6), which consists of the

optimal controls (u∗1(t), u
∗
2(t)) and the appropriate optimal solution (S∗

H(t), S
∗
I (t), B

∗(t)) for
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system (2.3.1),(2.3.2), such that

inf
(u1(·),u2(·))∈U

J (u1(·), u2(·)) = min
(u1(·),u2(·))∈U

J (u1(·), u2(·)) = J (u∗1(·), u∗2(·)). (2.3.7)

2.3.1 Properties of the optimal controls

For the analysis of the controls u∗1(t), u
∗
2(t) and the corresponding solutions S∗

H(t), S
∗
I (t),

B∗(t)) we apply the Pontryagin maximum principle [Pontryagin (2018)]. First, we define the

Hamiltonian:

H(SH , SI , B,u1, u2, ψ1, ψ2, ψ3) = Pu21 +Qu22 + S2
I − S2

H

+

{
r1SH

(
1− SH

k1

)
− λ1(1− u1)SHB

}
ψ1

+
{
λ1(1− u1)SHB − µSI

}
ψ2

+

{
r2(1− u2)B

(
1− B

k2

)
− η(1− u1)SHB + αSI

}
ψ3,

where ψ1, ψ2, ψ3 are the adjoint variables.

Next, we evaluate all the required partial derivatives of the Hamiltonian with respect to

the variables SH , SI , B:

H′
SH

(SH , SI , B, u1, u2, ψ1, ψ2, ψ3) =− 2SH +

{
r1

(
1− 2SH

k1

)
− λ1(1− u1)B

}
ψ1

+ λ1(1− u1)Bψ2 − η(1− u1)Bψ3,

H′
SI
(SH , SI , B, u1, u2, ψ1, ψ2, ψ3) = 2SI − µψ2 + αψ3,

H′
B(SH , SI , B, u1, u2, ψ1, ψ2, ψ3) =− λ1(1− u1)SHψ1 + λ1(1− u1)SHψ2

+

{
r2(1− u2)

(
1− 2B

k2

)
− η(1− u1)SH

}
ψ3,

and also with respect to controls u1 and u2:

H′
u1(SH , SI , B, u1, u2, ψ1, ψ2, ψ3) = 2Pu1 + λ1SHBψ1 − λ1SHBψ2 + ηSHBψ3,

H′
u2(SH , SI , B, u1, u2, ψ1, ψ2, ψ3) = 2Qu2 − r2B

(
1− B

k2

)
ψ3.

(2.3.8)

Then, by the Pontryagin maximum principle, for optimal controls u∗1(t), u
∗
2(t) and the

corresponding optimal solutions S∗
H(t), S

∗
I (t), B

∗(t) there exists the vector-function ψ∗(t) =

(ψ∗
1(t), ψ

∗
2(t), ψ

∗
3(t)), such that:
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• ψ∗(t) is the nontrivial solution of the adjoint system:

ψ∗
1
′(t) =−H′

SH
(S∗
H(t), S

∗
I (t), B

∗(t), u∗1(t), u
∗
2(t), ψ

∗
1(t), ψ

∗
2(t), ψ

∗
3(t))

= 2S∗
H(t)−

{
r1

(
1−

2S∗
H(t)

k1

)
− λ1(1− u∗1(t))B

∗(t)

}
ψ∗
1(t)

− λ1(1− u∗1(t))B
∗(t)ψ∗

2(t) + η(1− u∗1(t))B
∗(t)ψ∗

3(t),

ψ∗
2
′(t) =−H′

SI
(S∗
H(t), S

∗
I (t), B

∗(t), u∗1(t), u
∗
2(t), ψ

∗
1(t), ψ

∗
2(t), ψ

∗
3(t))

=− 2S∗
I (t) + µψ∗

2(t)− αψ∗
3(t),

ψ∗
3
′(t) =−H′

B(S
∗
H(t), S

∗
I (t), B

∗(t), u∗1(t), u
∗
2(t), ψ

∗
1(t), ψ

∗
2(t), ψ

∗
3(t))

= λ1(1− u∗1(t))S
∗
H(t)ψ

∗
1(t)− λ1(1− u∗1(t))S

∗
H(t)ψ

∗
2(t)

−
{
r2(1− u∗2(t))

(
1− 2B∗(t)

k2

)
− η(1− u∗1(t))S

∗
H(t)

}
ψ∗
3(t)

(2.3.9)

with the corresponding initial conditions:

ψ∗
1(tf ) = 0, ψ∗

2(tf ) = 0, ψ∗
3(tf ) = 0; (2.3.10)

• the controls u∗1(t) and u
∗
2(t) maximize the Hamiltonian

H(S∗
H(t), S

∗
I (t), B

∗(t), u1, u2, ψ
∗
1(t), ψ

∗
2(t), ψ

∗
3(t)) (2.3.11)

with respect to ui ∈ [0, 1], i = 1, 2 for almost all t ∈ [0, tf ], and therefore, due to the

corresponding formulas from (2.3.8), the following relationships hold:

u∗1(t) =


1 , if ϕu1(t) ≥ 1,

ϕu1(t) , if 0 < ϕu1(t) < 1,

0 , if ϕu1(t) ≤ 0,

(2.3.12)

u∗2(t) =


1 , if ϕu2(t) ≥ 1,

ϕu2(t) , if 0 < ϕu2(t) < 1,

0 , if ϕu2(t) ≤ 0,

(2.3.13)

where
ϕu1(t) = 0.5P−1S∗

H(t)B
∗(t)(λ1(ψ

∗
2(t)− ψ∗

1(t))− ηψ∗
3(t)),

ϕu2(t) = 0.5Q−1r2B
∗(t)

(
1− B∗(t)

k2

)
ψ∗
3(t).

(2.3.14)

are the so-called the indicator functions [Schättler and Ledzewicz (2015)], which determine the
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behavior of the corresponding optimal controls u∗1(t) and u
∗
2(t) according to formulas (2.3.12)

and (2.3.13).

Study of relationships (2.3.12) and (2.3.13) shows that for all values of t ∈ [0, tf ], the

maximum of the Hamiltonian (2.3.11) is reached with unique values u1 = u∗1(t), u2 = u∗2(t).

Therefore, Theorem 6.1 in the article [Flemming and RISHEL (1975)] implies the conti-

nuity of controls u∗1(t) and u∗2(t). Adding to this result, the analysis of the adjoint sys-

tem (2.3.9),(2.3.10) and formulas (2.3.14), and again relationships (2.3.12) and (2.3.13) leads

us to the validity of the following theorem.

Theorem 2.3.3 The optimal controls u∗1(t) and u
∗
2(t) are continuous functions on the inter-

val [0, tf ], which satisfy the equalities:

u∗1(tf ) = 0, u∗2(tf ) = 0.

Also we note that the uniqueness of the optimal controls (u∗1(t), u
∗
2(t)) is due to the

boundedness of the state and adjoint variables and the Lipschitz properties of the sys-

tems (2.3.1),(2.3.2) and (2.3.9),(2.3.10) defining these variables [see Jung et al. (2002); Mateus

et al. (2017); Silva and Torres (2013) and references cited therein].

Due to relationships (2.3.14), we will rewrite the formulas (2.3.12) and (2.3.13) in a more

convenient and compact form:

u∗1(t) = max
{
min

{
1; 0.5P−1S∗

H(t)B
∗(t)(λ1(ψ

∗
2(t)− ψ∗

1(t))− ηψ∗
3(t))

}
; 0
}
,

(2.3.15)

u∗2(t) = max

{
min

{
1; 0.5Q−1r2B

∗(t)

(
1− B∗(t)

k2

)
ψ∗
3(t)

}
; 0

}
. (2.3.16)

Finally, the boundary value problem for the maximum principle arises, which is formed by

systems (2.3.1) and (2.3.9) with the corresponding initial conditions (2.3.2) and (2.3.10), as

well as relationships (2.3.15) and (2.3.16). The results of numerical analysis of this boundary

value problem are presented in Section 2.4.

2.3.2 Efficiency analysis

In this Section, we consider three strategies (Strategy-I, Strategy-II and Strategy-III).

Strategy-I is the strategy where u1 ̸= 0, u2 = 0 and for Strategy-II, u1 = 0, u2 ̸= 0.

Strategy-III is the combination of the drug therapy where u1 ̸= 0, u2 ̸= 0. Here we shall
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Figure 2.2: Transcritical bifurcation: steady state value of infected cell are plotted
versus basic reproduction ratio ℜ0 using the set of parameters as given in Table 2.3
except disease transmission rate λ1. Endemic steady state feasible when ℜ0 > 1. λ1 is
varied in plotting the Figure.

calculate the efficiency index
∑

which is defined as

∑
=

(
1− Ac

As

)
× 100%,

where Ac represents the area under the infected Schwann cells concentration as a function of

time when the control is used and As is the area under the infected total population curve in

absence of control input. The cumulative number of infected Schwann cells during the time

interval [0, 1] is defined by

A =

tf∫
0

SI(t)dt.

By calculating the efficiency index we can adopt the best strategy whose efficiency index

[Yang and Ferreira (2008); Abboubakar et al. (2018)] will be the biggest. The values of Ac

and the efficiency index for two strategies are given in Table 2.2.

Table 2.2: Table of efficiency index for system (2.1.1)

Strategy A =
tf∫
0

SI(t)dt
∑

=
(
1− Ac

As

)
× 100%

No control 4.8558× 105 0%
Strategy-I 2.0034× 105 58.74%
Strategy-II 2.3858× 105 50.85%
Strategy-III 1.3812× 105 71.56%
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From the Table 2.2, we can conclude that Strategy-I is more effective than Strategy-II.

However, Strategy-III (which is the combination of two drug therapy) is the best strategy.
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Figure 2.3: Trajectories with fixed controls u1 = 0.7, u2 = 0.7. Inset Figure shows
model trajectories without controls.

2.4 Numerical Simulations

In this Section, we have studied the numerical simulations of our model on the basis of

analytical findings in order to have an understanding of the detailed dynamics of the system

comprising of three different cell populations. For numerical simulations, we take a set of

parameter values given in Table 2.3. Some parameter values are estimated and the remaining

values are assumed. We choose the initial values in number dependant according to cardinal

rule of scientific hypothesis.

In Figure 2.2, we have described that our system (2.1.1) exhibits a transcritical bifurcation

at the threshold ℜ0 = 1. Here the three steady state values of our model three cell populations

have been plotted versus basic reproduction ratio ℜ0. From the three Subfigures of Figure 2.2,

we can clearly observe that for ℜ0 < 1, the healthy Schwann cells (SH) remain at its maximum

possible density level, i.e. at 600 mm−3 and the densities of infected Schwann cells (SI) and

M. leprae bacteria (B) remain zero. As the value of ℜ0 is increased and becomes greater than

1, the density of healthy cells starts decreasing and the concentrations of infected cells and

bacteria begin to increase rapidly and thus the endemic steady state E∗ becomes feasible.

Biologically speaking, for ℜ0 < 1, the disease-free state E0 becomes stable and for ℜ0 > 1,

the endemic state E∗ exists and hence, the disease leprosy persists. Infection rate λ1 is varied

within the permissible range listed in Table 2.3 in plotting the graphs in this Figure.

In Figure 2.3, we have demonstrated the trajectories of healthy Schwann cells, infected
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2.4 Numerical Simulations

Table 2.3: List of parameter values used in numerical simulation for sys-
tem (2.1.1)

Parameter Parameter definition Assigned
Value
(Unit)

r1 growth rate of healthy Schwann cell 0.4(day−1)
r2 growth rate of M. leprae bacteria 0.1(day−1)
k1 carrying capacity of healthy Schwann cell 600(mm−3)
k2 carrying capacity of bacteria 500(mm−3)
µ natural death rate of infected Schwann cell 0.1(day−1)
λ1 infection rate of healthy cell and bacteria 0.00042(mm3

day−1)
α proliferation of new free bacteria 0.1(day−1)
η bacteria clearance rate due to infection 0.0003(mm3

day−1)

Schwann cells and M. leprae bacteria at a constant value of both controls. The inset Figures

in each Subfigure represents the behavior of the curves of the corresponding cell populations

without controls. The values of constant controls u1 and u2 are taken as u1 = 0.7, u2 = 0.7

to produce the graphs in Figure 2.3. The trajectories of SH and SI indicate that without

controls, the density of healthy Schwann cells decreases from 500 mm−3 to 280 mm−3 and in

case of infected cells it increases up to 480 mm−3 from 250 mm−3 in 100 days. Trajectory of

M. leprae bacteria shows a quite similar behavior like infected cells as both of them decreases

gradually to 248 mm−3 and 227 mm−3 with controls from their initial cell concentrations.

Also, the healthy cell concentration SH increases from 520 mm−3 to 539 mm−3 in 100 days

if we use fixed control values of both the control functions u1 and u2. It is evident from

this Figure that the fixed control therapy has a great impact on both healthy and infected

Schwann cells by increasing and decreasing the cell concentrations respectively in comparison

with the scenario of the cell dynamics without controls. Also, if we use higher values of both

the control functions u1 and u2, it will be easier to handle the condition of a patient but using

high dosages of these two drugs (Ofloxacin and Dapsone) for a long period of time can cause

potentially irreversible serious adverse reactions (skin rashes, hypersensitivity, peripheral

neuropathies, hemolytic anemia etc.) in a leprosy patient. Therefore, we need to provide the

optimal control therapy of leprosy.

Next, we solve the optimal control problem (2.3.7) for the control system (2.3.1) numeri-

cally and we have explored the effect of optimal controls u∗1(t) and u
∗
2(t). In Section 2.3.2, we
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Figure 2.4: Strategy-I: u1(t) ̸= 0, u2(t) = 0 with P = 30000.
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Figure 2.5: Strategy-II: u1(t) = 0, u2(t) ̸= 0 with Q = 100.

have performed an efficiency analysis on the three previously mentioned control strategies.

Efficiency analysis is actually a comparative study of these three strategies to discover which

one of them is the strongest and the most effective. The effect of optimal control Strategy-I,

Strategy-II and Strategy-III on the three cell populations SH , SI , and B have been illustrated

in Figure 2.4, Figure 2.5, and Figure 2.6, respectively. Values of the parameters P and Q,
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2.4 Numerical Simulations

which are actually the weight constants on the benefit of the cost, have been chosen suitably as

P = 30000 and Q = 100 for these three Figures. The graphs of the optimal control functions

u∗1(t), u
∗
2(t) plotted with respect to the time scale t/100 in each of these Figures suggests that

after a certain number of days (after approximately 40 days for u∗1(t) and after 60 days for

u∗2(t) in case of Strategy-III) when the infected Schwann cells and bacteria population density

reduces remarkably, the drug dose declines gradually to 0. From Figure 2.4 and Figure 2.5

we can observe that for Strategy-I, the healthy Schwann cell concentration increases up to

530 mm−3 where for Strategy-II, healthy cell density increases up to 523 mm−3 in 100 days.

Also for Strategy-II, infected cell (SI) density declines to 273 mm−3, but for Strategy-I, den-

sity of SI reduces to a relatively lower level i.e. 230 mm−3 in 100 days. So, Strategy-I is more

effective than Strategy-II but Figure 2.6 demonstrates that in case of Strategy-III, density

of SH increases to 529 mm−3 and both infected cell population (SI) and M. leprae bacteria

(B) population density decrease significantly to 238 mm−3 and 245 mm−3, respectively, in

100 days. So finally, Strategy-III appears to be the best and strongest strategy among these

three strategies according to our numerical findings and it clearly supports our analytical

findings as well in Section 2.3.2.
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Figure 2.6: Strategy-III: u1(t) ̸= 0, u2(t) ̸= 0 with P = 30000 and Q = 100.
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In Figure 2.6, we have also illustrated the dynamics of the optimal controls with respect to

time. At the early stage of the disease leprosy, high drug doses (0.8–0.9) of both Ofloxacin and

Dapsone are needed to control the infection as extreme bacterial density has been observed

in the skin smears of leprosy patients at this time. Once the infections start decreasing, drug

dose needs to be reduced after 40 days for Ofloxacin and after 60 days in case of Dapsone. We

have used the drug dose of 0.7 for both the two drugs throughout 100 days during the fixed

control therapy. Optimal control treatment for the combined drug therapy also requires the

dosage of 0.7 in between 55–60 days for Ofloxacin and in between 65–70 days for Dapsone.

After that, the drug dose needs to be decreased gradually and after 90 days, a very low

amount of drug dosage is required. We can clearly observe from our numerical analysis of

the cell dynamics and the control functions u∗1(t), u
∗
2(t) under the optimal treatment policy

that by maintaining an optimum level of drug dose for 100 days, the disease can be brought

under control and it also eliminates the possibility of severe adverse drug reactions. It is

important to note that we have re-scaled the time axis in t/100 for the sake of simplicity of

numerical simulations (i.e. 0.6 in the time axis actually represents 60 days). Therefore the

optimal control therapy has the capability to stabilize the system by reducing infected cells

and bacteria and by increasing the healthy Schwann cell population in a leprosy patient.

2.5 Discussion

In this chapter, we have established a three dimensional non-linear mathematical model to

discover the effect of M. leprae bacteria on healthy Schwann cells and to perceive the dynam-

ical changes of our model cell populations during the disease progression. Our model exhibits

two equilibria which are the disease-free equilibrium and the endemic equilibrium. Existence

of these equilibria has been shown both analytically and through numerical simulations. We

have shown the stability of disease-free equilibrium and also proved the stability of endemic

equilibrium E∗ by using R-H criteria. We have evaluated the basic reproduction ratio ℜ0

and studied its significance in determining the persistence of the disease leprosy. For ℜ0 less

than unity, the disease leprosy is eliminated from human body. For the value of ℜ0 greater

than unity, endemic equilibrium E∗ exists according to Lemma 2.2.1 and hence, the disease

continues to persist. Sensitivity analysis has been done to find the sensitivity indices for

each of our model parameter. It is observed that all the parameters are sensitive for leprosy

pathogenesis.

In this Chapter, we have compared the cell dynamical behavior of our model without

and with the control therapy. Furthermore, the fixed control method and optimal control
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2.5 Discussion

method have been compared in our study. Our findings related to the optimality system and

the control pairs (u∗1, u
∗
2) suggest that optimal control policy of introducing the combined

drugs (Ofloxacin and Dapsone) is more effective for reducing the bacterial load, inhibiting

new infections and stopping the spread of the infection by killing the infected Schwann cells.

Because of extreme side-effects and high cost of the combined drug therapy, we recommend

the optimal control method as a standard treatment policy for leprosy.
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Chapter 3

Mathematical Insights on Density

Dependent growth of

Mycobacterium leprae Bacteria for

the Disease Leprosy

In the previous Chapter, we have described a basic three dimensional ODE-based mathe-

matical model for exploring the fundamental features of the disease leprosy. While dealing

with continuous systems, a discrete cell dynamical model of leprosy has not yet been pro-

posed and investigated. In this regard, recent experimental studies suggests that population

growth rate plays a synergistic effect in describing the various aspects of the proliferation of

Mycobacterium leprae bacteria. It is necessary to understand the density-dependent growth

to forecast a more realistic population trend of M. leprae into the human body. Introducing

theta logistic growth rate instead of classical logistic growth not only makes the dynamics of

a living system more complicated but it adds more pliability and flexibility in terms of the

key relationship of per capita growth rate with the population density of M. leprae. Indeed,

the intraspecific competition for a safe and sustainable intracellular environment with neces-

sary metabolic activities performed by the organism inside Schwann cells ensure the density

dependency when abundance in the bacterial concentration increases. Also, this approach

is mathematically more practical and plausible as it considers the bacteria population not

to grow unboundedly. In this Chapter3, we have considered a three-dimensional non-linear

3The major portion of this chapter is published in Diferential Equations and Dynamical Systems,
Springer, August, 2022.
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3.1 Model Formulation with Suitable Assumptions

mathematical model with healthy Schwann cell, infected Schwann cell, and M. leprae bacteria

population. We have incorporated a theta logistic growth in the M. leprae bacteria popu-

lation due to its vital density dependence property. We have discussed how different values

of the shape parameter θ plays a key role on interpreting the impacts for the infection and

dissemination of leprosy through cell-to-cell interactions into the human body. The stability

of the system and also bifurcation analysis has been investigated in detail. Also, all of our

analytical outcomes have been verified and validated through numerical simulations.

3.1 Model Formulation with Suitable Assumptions

Firstly, we have reconsidered the following three dimensional mathematical model already

developed in Chapter 2.

dxh
dt

= r1xh(1−
xh
K

)− λxhMl,

dxi
dt

= λxhMl − δxi, (3.1.1)

dMl

dt
= r2Ml(1−

Ml

N
)− γxhMl + νxi.

Here, xh(t), xi(t) and Ml(t) are the concentrations of healthy Schwann cells, infected

Schwann cells and M. leprae bacteria, respectively, for any time t. Logistic growth rate is

assumed for both healthy Schwann cells and bacteria population where we have denoted the

intrinsic growth rate and the carrying capacity of the healthy Schwann cell population by

r1 and K and the same for the bacteria population are denoted by r2 and N respectively.

The rate at which healthy Schwann cells getting infected by the M. leprae bacteria is

represented by λ. New free bacteria proliferates from infected cells at a rate ν. The natural

mortality rate of infected Schwann cells and the rate of bacterial clearance due to infection

are represented by δ and γ, respectively.

Theta logistic growth curve is more realistic and accurate than the classical logistic growth

model. Here, we incorporate the discrete version of the model (3.1.1). Based on the above

perception along with the theta logistic growth in M. leprae bacteria population using the
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3.2 Equilibria and Stability Analysis

Forward Euler Scheme for discretization, we have revised the system (3.1.1) as follows:

xht+1 = xht + p
[
r1xht(1−

xht
K

)− λxhtMlt

]
,

xit+1 = xit + p [λxhtMlt − δxit ] , (3.1.2)

Mlt+1 = Mlt + p

[
r2Mlt

[
1−

(
Mlt

N

)θ]
− γxhtMlt + νxit

]
.

Here, θ(> 0) describes the curvature of the relationship and the parameter p(> 0) denotes

the step size.

3.2 Equilibria and Stability Analysis

System (3.1.2) has two equilibrium points, namely, the disease-free equilibrium E0 = (K, 0, 0)

and the unique positive interior equilibrium E∗ = (x∗h, x
∗
i ,M

∗
l ), where the values of x

∗
h, x

∗
i ,M

∗
l

are given by

x∗i =
r1
δ
x∗h

(
1−

x∗h
K

)
, M∗

l =
r1
λ

(
1−

x∗h
K

)
and x∗h is the positive root of the following equation,

g(x∗h) = r2

[
1−

{
1− r1

λN
(1−

x∗h
K

)
}θ]

+

(
νλ

δ
− γ

)
x∗h = 0.

Here, it is important to note that both x∗i > 0 and M∗
l > 0 because x∗h < K always holds

true as the density of healthy Schwann cells can never exceed its carrying capacity K at the

endemic steady state. Now, from the second equation of system (3.1.2), it follows that the

values of x∗h, x
∗
i , M

∗
l are interconnected and actually, x∗h can be written as

x∗h =
δ

λ

x∗i
M∗
l

. (3.2.1)

Now, as we have already obtained x∗i > 0, M∗
l > 0, we can see that equation (3.2.1) clearly

ensures the positivity of x∗h.

3.2.1 Stability of the disease-free equilibrium

The Jacobian matrix of the system (3.1.2) at the disease-free equilibrium point E0 = (K, 0, 0)

is as follows:
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3.2 Equilibria and Stability Analysis

J0 =


1− pr1 0 −pλK

0 1− pδ pλK

0 pν 1 + p(r2 − γK)

 . (3.2.2)

The eigenvalues of J0 are ζi for i = 1, 2, 3 where ζ1 = 1− pr1 and ζ2, ζ3 are the roots of the

following equation:

f(ζ) = ζ2 +A1ζ +A2 = 0. (3.2.3)

Here,

A1 = p(γK + δ − r2)− 2,

A2 = 1 + p(r2 − γK − δ)− p2(λνK + δ(r2 − γK)).

Now, by analyzing the nature of the roots ζi for i = 1, 2, 3 of equation (3.2.3) according to the

well-known Jury conditions [Murray (1989)], we can conclude the following theorem about

the stability situation of E0.

Theorem 3.2.1 The disease-free equilibrium E0 = (K, 0, 0) of system (3.1.2) will be locally

asymptotically stable if |ζ1| < 1 and also if the following three conditions are satisfied:

f(1) > 0, f(−1) > 0 and A2 < 1. (3.2.4)

3.2.2 Stability analysis of the interior equilibrium

Here, we will discuss the stability of the system (3.1.2) at the interior equilibrium point

E∗ = (x∗h, x
∗
i ,M

∗
l ). The Jacobian matrix of system (3.1.2) at E∗ is given by,

J (E∗) =


M11 0 −pλx∗h
pλM∗

l 1− pδ pλx∗h
−pγM∗

l pν M33

 (3.2.5)

where,

M11 = 1 + p(r1 −
2r1
K
x∗h − λM∗

l ),

M33 = p[r2 − r2(θ + 1)(
M∗
l

N
)− γx∗h].
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3.3 Hopf Bifurcation Analysis

From the Jacobian matrix J (E∗) given by (3.2.5), we get the characteristic equation of

system (3.1.2) at E∗ as follows:

|J (E∗)− ξI| = 0. (3.2.6)

Expanding equation (3.2.6), we get

ξ3 + φ1ξ
2 + φ2ξ + φ3 = 0 (3.2.7)

where,

φ1 = δp−M11 −M33 − 1,

φ2 =M11 +M33 +M11M33 − δp(M11 +M33)− p2λx∗h(ν + γM∗
l ),

φ3 =M11M33(δp− 1) + p2λx∗h(νM11 + γM∗
l ) + p3λx∗hM

∗
l (λν + γδ).

Hence, using the Jury conditions [Sen and Mukhejee (2011)], we now obtain the following

theorem which ensures the stability of E∗. This clearly indicates the following theorem.

Theorem 3.2.2 System (3.1.2) will be locally asymptotically stable at the the interior equi-

librium E∗ if and only if

|φ1 + φ3| < 1 + φ2, |φ3| < 1 and |φ2 − φ1φ3| < |1− φ2
3|. (3.2.8)

3.3 Hopf Bifurcation Analysis

In this Section, we will derive conditions for which Hopf bifurcation occurs around the interior

equilibrium E∗ as θ varies in the open interval (0, 1).

Let, Ψ : (0,∞) → R be a continuously differentiable function of θ defined by

Ψ(θ) = φ1(θ)φ2(θ)− φ3(θ). (3.3.1)

For the occurrence of Hopf bifurcation there should exist a θ∗ ∈ (0, 1) such that Re ξ(θ∗) = 0

and Im ξ(θ∗) = ω0 > 0 where the complex conjugate pair of eigenvalues ξ(θ∗), ξ̄(θ∗) ∈ σ(θ).

The transversality condition is given by

d(Reξ(θ))

dθ

∣∣∣
θ=θ∗

̸= 0; (3.3.2)

Also, let us define σ(θ) = {ρ : D(ρ) = 0} is the spectrum of the characteristic equation
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3.3 Hopf Bifurcation Analysis

(3.2.7). For the appearance of Hopf bifurcation, it is necessary for all the other elements of

σ(θ) to have negative real parts.

To prove the existence of such θ∗, we have to solve the equation for ξ(θ∗). Now using

equation (3.3.1), we can rewrite the characteristic equation (3.2.7) as

ξ3 + φ1ξ
2 + φ2ξ + φ1φ2 = 0 [ As φ1φ2 − φ3 = 0]

⇒ ξ2(ξ + φ1) + φ2(ξ + φ1) = 0

⇒ (ξ + φ1)(ξ
2 + φ2) = 0. (3.3.3)

This equation contains three roots ξi for i = 1, 2, 3 which are given by

ξ1 = +i
√
φ2,

ξ2 = −i√φ2,

ξ3 = −φ1.

So, there exists a pair of purely imaginary eigenvalues for φ1φ2 − φ3 = 0. To obtain the

transversality condition, differentiating equation (3.2.7) with respect to θ, we get that

dξ

dθ
= −ξ

2φ̇1 + ξφ̇2 + φ̇3

3ξ2 + 2ξφ1 + φ2

∣∣∣
ξ=i

√
φ2

= −
(φ̇3 − φ2φ̇1 + i

√
φ2φ̇2)

(−2φ2 + 2i
√
φ2φ1)

=
(φ̇3

√
φ2 − φ2

√
φ2φ̇1 −

√
φ2φ1φ̇2) + i(φ1φ̇3 − φ1φ2φ̇1 + φ2φ̇2)

2
√
φ2(φ2

1 + φ2)

=
φ̇3 − (φ̇1φ2 + φ̇2φ1)

2(φ2
1 + φ2)

+ i

√
φ2(φ1φ̇3 + φ2φ̇2 − φ̇1φ1φ2)

2φ2(φ2
1 + φ2)

. (3.3.4)

Now, using (3.3.4),

Re

(
dξ

dθ

)∣∣∣
θ=θ∗

=
d(Reξ)

dθ

∣∣∣
θ=θ∗

=
φ̇3 − (φ̇1φ2 + φ̇2φ1)

2(φ2
1 + φ2)

> 0. (3.3.5)
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i.e.

φ̇3 > (φ̇1φ2 + φ̇2φ1). (3.3.6)

Thus, we achieve the transversality condition (3.3.6) for which Hopf bifurcation occurs at the

critical value of θ = θ∗.

In view of the above discussion, we now present the following theorem.

Theorem 3.3.1 The system (3.1.2) exhibits Hopf bifurcation around the interior equilibrium

E∗ at θ = θ∗ ∈ (0, 1) if and only if the following conditions hold:

1. Ψ(θ∗) = 0

2. φ̇3 > (φ̇1φ2 + φ̇2φ1)

3. All the other eigenvalues have negative real parts

where ξ(θ) is purely imaginary at the critical value of θ = θ∗.

Table 3.1: List of parameter values used in numerical simulation for system
(3.1.2)

Parameter Parameter definition Assigned
Value
(Unit)

Range

r1 growth rate of healthy cell 0.4(day−1) -
r2 growth rate of M. leprae 0.1(day−1) -
K carrying capacity of healthy cell 800(mm−3) 500- 1200
N carrying capacity of bacteria 530(mm−3) 500-600
δ natural death rate of infected cell 0.1(day−1) -
λ infection rate of healthy cell 0.00032(mm3

day−1)
0.00032-
0.0005

ν proliferation rate of free bacteria 0.3(day−1) 0.04-0.4
γ bacteria clearance rate 0.00024(mm3

day−1)
0.0002-
0.00034

tmax maximum time 3000 -
p step size parameter 0.1 -
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3.4 Numerical Simulations

3.4 Numerical Simulations

In this Section, we have studied the dynamics of our system represented by system (3.1.2) nu-

merically by using Matlab 2016A and also validated these results with our analytical findings.

For numerical simulation, most of the parameter values and their ranges have been chosen

from Table 3.1 and collected from Chapter 2 and some previous experimental studies [Wilder-

Smith and Van Brakel (2008); Rees (1994)]. We choose the initial values in number dependent

according to the cardinal rule of scientific hypothesis. For all of our numerical results, we

have chosen the value of the step size parameter p = 0.1.
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Figure 3.1: Time series plot of the densities of healthy Schwann cells, infected Schwann
cells and M. leprae bacteria for θ = 1 (denoted by solid lines) and the same for θ = 1.5
(denoted by the dotted lines) for system (3.1.2). Here, we have chosen the values of
r1 = 0.4, r2 = 0.1, K = 800, N = 530, λ = 0.00034, ν = 0.29, γ = 0.0003 and the
other parameter values are taken from Table 3.1.

In Figure 3.1, we have demonstrated the behaviour of the trajectories of our model cell

populations for system (3.1.2) by the solid lines, choosing the value of the shape parameter

θ = 1. Incorporating the value of θ = 1 in system (3.1.2) actually makes the theta-logistic

growth of M. leprae bacteria into a simple classical logistic growth. All of our model cell

population trajectories fluctuate slightly at the beginning and after almost 1200 days, a

stable density of 170 mm−3, 420 mm−3 and 1030 mm−3 are attained by the healthy Schwann

cells (xh), infected Schwann cells(xi) and M. leprae bacteria (Ml), respectively. Also, in

Figure 3.1, the densities of our system populations are plotted as time increases for the

value of θ = 1.5 and it is represented by the dotted line trajectories. We can see that a

stable cell concentration of 195 mm−3, 590 mm−3 and 970 mm−3 are achieved by the healthy
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3.4 Numerical Simulations

Schwann cells, infected Schwann cells and M. leprae bacteria, respectively, after 1000 days.

In comparison with the solid line trajectories for θ = 1, we can get a conclusion that after

a little initial oscillations, densities of the system populations achieve stability more early if

the value of θ increases from θ = 1 to θ = 1.5.
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Figure 3.2: Phase plots of xh cells, xi cells and Ml bacteria population for system (3.1.2)
corresponding to Figure 3.1. Here, the two values of θ are taken as θ = 1 and θ = 1.5
for generating the Figures. The initial values are taken as (xh, xi,Ml) = (30, 5, 15).
Other parameter values are collected from Table 3.1.

Phase diagrams of xh, xi and Ml corresponding to Figure 3.1 for both the values of θ = 1

and θ = 1.5 have been depicted in Figure 3.2.

In Figure 3.3, we have shown that for θ = 0.5, trajectories of the cell populations oscillate

more rapidly about 1.2×104 days and then gradually tend to proceed toward its stable region.

If the value of θ is decreased further to θ = 0.3 then behaviour of the system trajectories

suddenly alters which is illustrated in Figure 3.4. For θ = 0.3 < 0.48, the system (3.1.2)

becomes unstable and periodic oscillations are observed after almost 2000 days. From this

findings, it is evident that for θ > 0.48, our system is asymptotically stable at the interior

equilibrium point E∗ = (x∗h, x
∗
i ,M

∗
l ) and for θ < 0.48, Hopf bifurcating periodic solution

begins to exist. Hence, we can interpret that our system (3.1.2) exhibits a rich dynamics if

the value of θ decreases from the value of θ = 1. Thus, incorporating theta-logistic growth

instead of classical logistic one for the growth rate of M. leprae bacteria is more realistic and

flexible in nature.

Figure 3.5 exhibits the phase portrait of xh cells, xi cells and Ml bacteria population for
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3.4 Numerical Simulations

0 0.5 1 1.5 2 2.5 3

Time (day) ×10
4

0

200

400

600

800

1000

1200

1400

1600

1800

2000

D
e
n
s
it
ie

s
 (

m
m

- 3
)

θ  = 0.5

x
h

x
i

M
l

Figure 3.3: Time series plot of the densities of xh, xi and Ml for θ = 0.5. Values of
the parameters are chosen as K = 800, N = 530, λ = 0.00038, ν = 0.34, γ = 0.0003
and the other parameter values are taken from Table 3.1.
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Figure 3.4: Time series plot of the densities of xh, xi and Ml for θ = 0.3. We choose
the values of the parameters as K = 800, N = 530, λ = 0.00038, ν = 0.34, γ = 0.0003
and the other parameter values are taken from Table 3.1.

system (3.1.2) for θ = 0.5 while phase diagram of system (3.1.2) for the value of θ = 0.3

has been illustrated in Figure 3.6. From Figure 3.5, we can clearly see that system (3.1.2)

starting with the initial values (30, 5, 15) and finally converges to the interior equilibrium point

E∗ = (x∗h, x
∗
i ,M

∗
l ). Also, the phase portrait of the system populations displayed in Figure 3.6

indicates occurrence of limit cycles. In particular, it reflects the periodic oscillatory behaviour

of the densities of the model cell populations starting from the same initial values.
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3.5 Discussion
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Figure 3.5: Phase plot of xh cells, xi cells and Ml bacteria population for system (3.1.2)
for the value of θ = 0.5 corresponding to Figure 3.3. The initial values are taken as
(xh, xi,Ml) = (30, 5, 15). The other parameter values are collected from Table 3.1.

Our present study emphasizes a special importance for the investigation of Hopf bifurca-

tion for our discrete-time based system (3.1.2). The bifurcation diagram of the densities of

our model populations with respect to the shape parameter θ has been depicted in Figure 3.7.

From the appearance of periodic solutions and presence of limit cycles in the phase diagram,

we can confirm that system (3.1.2) undergoes a Hopf bifurcation whenever the value of θ

crosses the critical value θ = θ∗ = 0.48, which completely clarifies our analytical findings in

Section 3.3. Here, all the other parameter values are chosen from Table 3.1.

In Figure 3.8, the domain of stability of the interior equilibrium E∗ = (x∗h, x
∗
i ,M

∗
l ) of

system (3.1.2) has been manifested by varying r2 i.e. the intrinsic growth rate of M. leprae

bacteria and the shape parameter θ. This completely justifies the analytical findings described

in (3.2.2). If all the conditions denoted by (3.2.8) hold true, then the endemic equilibrium

E∗ of system (3.1.2) exist and it will be locally asymptotically stable for any value of θ as

depicted in Figure 3.8.

3.5 Discussion

In this Chapter, we have constituted and experimented with a discrete-time-based cell dy-

namical mathematical model on leprosy. As we have discussed previously, that mathematical

model in a discrete-time setup exhibits a much more versatile set of results in terms of numer-

ical simulations than continuous-time models. We have studied system (3.1.2) for different

values of shape parameter θ. For the values of θ = 1 i.e. in the classical logistic scenario
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Figure 3.6: Phase plot of xh cells, xi cells and Ml for system (3.1.2) for the value of
θ = 0.3 corresponding to Figure 3.4. The initial values are taken as (xh, xi,Ml) =
(30, 5, 15).

Figure 3.7: Bifurcation diagram of the densities of xh cells, xi cells and Ml bacteria
with respect to the shape parameter θ for system (3.1.2). Values of the parameters used
here are given as: r1 = 0.4, r2 = 0.1, K = 780, N = 550, λ = 0.00036, ν = 0.31,
γ = 0.0003 and the other parameter values are collected from Table 3.1.

and also for θ = 1.5 > 1, the system has responded almost similarly. From the time series

plots depicted in Figure 3.1, we can see that all the model population densities gain stability

after slight initial fluctuations while for the values of θ < 1, a high range of oscillations are

noticed for a larger period of time. Actually for the value of θ = 0.3 < 0.48, the system

becomes unstable because the value of θ crosses the critical value θ∗ = 0.48 in this case.
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Figure 3.8: Stability region of the interior equilibrium with respect to θ and r2. Values
of the parameters used here are given as: r1 = 0.4, K = 820, N = 530, λ = 0.00034,
ν = 0.32, γ = 0.00028. All the other parameter values are chosen from Table 3.1.

The phase diagram demonstrated in Figure 3.5 suggests that all the cell populations with

initial values (30, 5, 15) ultimately converge to E∗ while on the contrary, the phase plot in

Figure 3.6 portrays that for θ = 0.3, the system gives rise to limit cycles. The occurrence

of Hopf bifurcation for our formulated system has been confirmed in Section 3.3. Also, we

have derived the transversality conditions given by (3.3.6) in Theorem 3.3.1 for which Hopf

bifurcating periodic solutions appear for our system (3.1.2) around the interior equilibrium

E∗.

Our present study explicitly suggests that choosing the growth of M. leprae in a density-

dependence manner is certainly needed to decode the disease dissemination process. Both

the analytical and numerical findings indicate that the per capita growth rate of M. leprae

not only controls the infection progression but it also strongly regulates the generation of free

bacteria which are capable of further transmitting the infection to the whole human body. Fi-

nally, we can conclude our current study by asserting that considering the density-dependent

theta logistic approach for M. leprae bacteria is certainly a very beneficial and essential tool

to overcome the obstacles for constructing a perfect control strategy for leprosy and it should

definitely be adopted for any future attempt to implement a novel drug therapeutic regimen

more accurately to eliminate the disease from mankind.
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Chapter 4

Comparisons Between Two

Different Variants of Delay-induced

Mathematical Models for

Interpreting Leprosy Pathogenesis

and the Corresponding Optimal

Control Schedules

Involving intracellular delay into a mathematical model and investigating the delayed systems

by incorporating optimal control is of great importance to study the cell-to-cell interactions

of the disease leprosy. Keeping this in mind, shifting our focus from the discretized system

developed in the previous Chapter, we have now proposed two different variants of delay-

induced mathematical models with time delay in the process of proliferation of M. leprae

bacteria from the infected cells and a similar delay to indicate the time-lag both in the prolif-

eration process and the infection of healthy cells after getting attached with the bacterium.

In this Chapter4, we have performed a comparative study between these two delayed sys-

tems equipped with optimal control therapeutic approach to determine which one acts better

to unravel the complexities of the transmission and dissemination of leprosy into a human

body as far as scheduling a perfect drug dose regime depending on this analysis remains our

4The major portion of this chapter is published in the journal Optimal Control, Applications and
Methods, Wiley, 2023.
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main priority. Stability analysis, Hopf-bifurcation analysis, existence of oscillatory solutions

are examined and corresponding transversality conditions are evaluated analytically. Also,

existence of optimal control solutions are demonstrated in detail. To achieve the optimal

control profiles of the drug therapies and to obtain the whole optimality systems, Pontrya-

gin’s Minimum principle with delay in state are employed for our controlled systems. All the

mathematical results are verified numerically and comparison of the numerical results with

some recent clinical data are presented in this Chapter as well.

Figure 4.1: Schematic diagram of the interactions between the components of the model
including the time delay factors.
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4.1 Delayed Mathematical Model-I

4.1 Delayed Mathematical Model-I

4.1.1 Model formulation and uniqueness of the system solu-

tions:

At first, we consider the three-dimensional ODE model on leprosy described in Chapter 2:

dSH(t)

dt
= r1SH(t)

(
1− SH(t)

k1

)
− λ1SH(t)B(t),

dSI(t)

dt
= λ1SH(t)B(t)− µSI(t),

dB(t)

dt
= r2B(t)

(
1− B(t)

k2

)
− ηSH(t)B(t) + αSI(t).

(4.1.1)

• SH(t), SI(t) and B(t) are the concentrations of healthy Schwann cells, infected Schwann

cells and M. leprae bacteria, respectively, for any time t.

• Logistic growth rate is assumed for both healthy Schwann cells and bacteria population

where we have denoted the intrinsic growth rate and the carrying capacity of the

healthy Schwann cell population by r1 and k1 and the same for the bacteria population

are denoted by r2 and k2, respectively.

• The interaction rate of M. leprae bacteria and healthy Schwann cells is considered the

same as the infection rate of healthy Schwann cells by bacteria and it is represented by

λ1. New free bacteria proliferate from infected cells at a rate α.

• The natural mortality rate of infected Schwann cells and the rate of bacterial clearance

due to infection are represented by µ and η, respectively.

Based on these definitions of the system parameters from the physical interpretations

presented above, we can see that the parameters denote different rates such as growth

rates, death rates, interaction rate and proliferation rate and hence, can never be

negative or zero. Thus, all the parameters r1, k1, r2, k2, λ1, µ, η, α used in the system

(4.1.1) are assumed to be positive from the fundamental biological point of view.

The process of production of new free bacteria from an infected Schwann cell is not instan-

taneous. Here, we have introduced a discrete intracellular time delay into system (4.1.1) to

describe specifically the time between the infection of a Schwann cell and proliferation of new

free M. leprae bacteria from the infected cells. The interaction process has been depicted

in Figure 4.1. Hence, based on the above assumptions, the delayed mathematical model is
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4.1 Delayed Mathematical Model-I

constructed as follows:

dSH(t)

dt
= r1SH(t)

(
1− SH(t)

k1

)
− λ1SH(t)B(t),

dSI(t)

dt
= λ1SH(t− τ)B(t− τ)− µSI(t),

dB(t)

dt
= r2B(t)

(
1− B(t)

k2

)
− ηSH(t)B(t) + αSI(t),

(4.1.2)

with initial conditions:

SH(θ) > 0, SI(θ) > 0 and B(θ ) > 0 where θ ∈ [−τ, 0]. (4.1.3)

Here, τ represents the time delay in days. Let us denote C = C([−τ, 0],R3
+) be the Banach

space of all continuous functions φ : [−τ, 0] −→ R3
+ equipped with the usual supremum

norm defined by

∥φ∥ = sup
−τ<θ<0

{|φ1(θ)|, |φ2(θ)|, |φ3(θ)|},

where φ = (φ1, φ2, φ3). The initial conditions for system (2.1.1) are given as: SH(θ) = φ1(θ),

SI(θ) = φ2(θ), B(θ) = φ3(θ) with θ ∈ [−τ, 0]. To make the model biologically justified, the

initial functions are assumed as φi(θ) ≥ 0 for θ ∈ [−τ, 0] and φi(0) > 0 for all i = 1, 2, 3.

Now, by using the fundamental theory of functional differential equations, we can guarantee

the uniqueness of solutions of system (4.1.2) with initial conditions (4.1.3).

4.1.2 Positivity and boundedness:

Positivity of the solutions of a system means the survival of the model populations. In

this Subsection, we have established the positivity of the solutions of system (2.1.1) by the

following theorem and also evaluated the region where system (2.1.1) is bounded.

Theorem 4.1.1 All the solutions of system (4.1.2) with given initial conditions (4.1.3) are

positive.

Proof. We can see that the region R3
+ contains the solutions of system (4.1.2) and non-

negativity of all these solutions for all t > 0 is a simple consequence of the application of

Lemma 2 described in the article by [Yang et al. (1996)]. Let, X = col(SH(t), SI(t), B(t)) ∈
R3
+, (φ1(θ), φ2(θ), φ3(θ)) ∈ C = C([−τ, 0],R3

+) and

P (X) =


P1(X)

P2(X)

P3(X)

 =


r1SH(t)

(
1− SH(t)

k1

)
− λ1SH(t)B(t)

λ1SH(t− τ)B(t− τ)− µSI(t)

r2B(t)
(
1− B(t)

k2

)
− ηSH(t)B(t) + αSI(t)

 . (4.1.4)
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4.1 Delayed Mathematical Model-I

Then, system (4.1.2) can be re-written in the following form:

dX

dt
= P (X) (4.1.5)

where X(θ) = (φ1(θ), φ2(θ), φ3(θ)) ∈ C and φ1(0) > 0, φ2(0) > 0, φ3(0) > 0. Now, from

equation (4.1.4), we can see that whenever we choose X(θ) ∈ C with SH = 0, SI = 0 or

B = 0, we obtain

Pi(X)|xi=0, X∈R3
+
≥ 0, i = 1, 2, 3

where x1(t) = SH(t), x2(t) = SI(t), x3(t) = B(t). Now, using the Lemma 2 by Yang et al.

(1996) and the Theorem 1.1 by Bodnar et al. [Bodnar (2000)], any solution of (4.1.5) with

X(θ) ∈ C, say X(t) = X(t,X(θ)), satisfies X(θ) ∈ R3
+ for all t ≥ 0. Hence, we can conclude

that the solution of system (4.1.2) exists in R3
+ and remains non-negative for all t > 0. So,

R3
+ is an invariant region for system (4.1.2).

The next theorem describes the boundedness and positive invariance of the delayed system

(4.1.2). Before starting to prove the theorem, let us first present and briefly prove the following

lemma.

Lemma 4.1.1 Consider the following differential inequality given as:

dU(t)

dt
≤ A2 − U2(t)

where A is a positive real constant. Then, U(t) ≤ A holds whenever U(0) ≤ A.

Proof. Rearranging the inequality

dU(t)

dt
≤ A2 − U2(t),

we get that
dU(t)

(A2 − U2(t))
≤ dt, where A > 0. (4.1.6)

We now integrate (4.1.6) with the initial condition U(0). Thus, we obtain the following

inequality,
U(t)−A

U(t) +A
≤ U(0)−A

U(0) +A
e−2At

which clearly indicates that U(0) ≤ A implies U(t) ≤ A.

Another way of interpreting the result of Lemma 4.1.1 is to use the appearance of the

slope field of an autonomous equation as a verification for the asymptotic behaviour of its
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4.1 Delayed Mathematical Model-I

solutions without actually computing this rigorously. we can see that dU(t)
dt = A2 − U2(t) is

an autonomous differential equation of order 1 and U(t) = A is a stable equilibrium solution

of it. So, all the solutions U(t) of this differential equation with initial condition U(0) < A,

will surely approach U(t) = A as t→ ∞.

Theorem 4.1.2 Every positive solution of the system (4.1.2) with the given initial conditions

(4.1.3) is ultimately bounded. Also, all such solutions of system (4.1.2) which starts within

D1 i.e. initiating or with initial values in D1, finally come into the region D1 and stay in it

for all t > 0. D1 is a region of attraction for system (4.1.2) and actually attracts all solutions

initiating in the interior of the positive octant where D1 is defined by

D1 =

{
(SH(t), SI(t), B(t)) : 0 ≤ SH(t) ≤M, 0 ≤ SH(t) + SI(t) ≤M

(
r1
µ

+ 1

)
,

0 ≤ B(t) ≤ k2
2

+

√
k22
4

+
αk2M

r2

(
r1
µ

+ 1

)}
,

where M = max {k1;SH(0)}.

Proof. To prove the boundedness and to find the invariant region for system (4.1.2), we now

consider the first equation of system (4.1.2) and try to predict the maximum concentration

of healthy Schwann cells from which it follows that dSH
dt ≤ r1SH

(
1− SH

k1

)
. Solving the above

inequality and using a standard comparison argument, we get that

lim sup
t→∞

SH(t) ≤M (4.1.7)

where M = max {k1, SH(0)}. Now, we consider the first and second equations of system

(4.1.2). Adding these two equations while using (4.1.7) and assuming (SH + SI)(t) = X(t),

we get,
dX(t)

dt
≤M(r1 + µ)− µX(t). (4.1.8)

Applying the well-known comparison principle [Birkhoff and Rota (1978)] to (4.1.8), we obtain

the inequality :

X(t) ≤M
(r1 + µ)

µ
(1− e−µt) +X(0)e−µt, t > 0. (4.1.9)

For large values of t, we get X(t) ≤M (r1+µ)
µ if X(0) ≤M (r1+µ)

µ i.e.

SH(t) + SI(t) ≤M
(r1 + µ)

µ
(4.1.10)
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4.1 Delayed Mathematical Model-I

and it also implies

SI(t) ≤M
(r1 + µ)

µ
. (4.1.11)

Now, we consider the third equation of system ( 4.1.2) and using the inequality (4.1.11), we

have
dB

dt
≤ r2B − r2B

2

k2
+ αM(

r1
µ

+ 1). (4.1.12)

Now, denoting Z(t) = B(t)− k2
2 , we can write the above inequation in the form

dZ

dt
≤ r2
k2

(ζ2 − Z2) (4.1.13)

where ζ =
√

αk2M
r2

( r1µ + 1) +
k22
4 .

Now, applying the result of Lemma 4.1.1 to the inequality (4.1.13), we get

lim sup
t→∞

Z(t) ≤ ζ if Z(0) ≤ ζ.

Returning to the original variable, this implies that

lim sup
t→∞

B(t) ≤ k2
2

+

√
αk2M

r2
(
r1
µ

+ 1) +
k22
4

(4.1.14)

if

B(0) ≤ k2
2

+

√
αk2M

r2
(
r1
µ

+ 1) +
k22
4
. (4.1.15)

Thus, the region D1 is bounded and all the solutions (SH(t), SI(t), B(t))
⊤ of system (4.1.2)

with the non-negative initial conditions are ultimately bounded. All such solutions of system

(4.1.2) that start within D1, remain in the region for all t > 0. So, the set D1 is a positively

invariant set and acts as the region of attraction for system (4.1.2).

4.1.3 Stability of disease-free equilibrium and the basic repro-

duction number:

The non-delayed system (4.1.1) has two steady states. One is the disease-free equilibrium

E0 = (k1, 0, 0) and the another one is the positive endemic equilibrium E∗ = (S∗
H , S

∗
I , B

∗).

Here, the basic reproduction number is defined as

ℜ0 =
αλ1k1

µ(ηk1 − r2)
. (4.1.16)
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4.1 Delayed Mathematical Model-I

We find that the delayed model given by system (4.1.2) also has two steady states. Without

loss of generalization, we denote them by E0 = (k1, 0, 0) and E
∗
1 = (S∗

H , S
∗
I , B

∗). The values

of S∗
H , S

∗
I and B∗ already have been established in Chapter 2.

Let us first define x(t) = SH(t)− S̃H , y(t) = SI(t)− S̃I and z(t) = B(t)− B̃ where

Ẽ = (S̃H , S̃I , B̃) is any steady state of the delayed system (4.1.2). Then the linearized form

of the system (4.1.2) at Ẽ = (S̃H , S̃I , B̃) is given by



dx(t)

dt
=
(
r1 −

2r1S̃H
k1

− λ1B̃
)
x(t)− λ1S̃Hz(t),

dy(t)

dt
= λ1B̃x(t− τ)− µy(t) + λ1S̃Hz(t− τ),

dz(t)

dt
= − ηB̃x(t) + αy(t) +

(
r2 −

2r2B̃

k2
− ηS̃H

)
z(t).

(4.1.17)

Now system (4.1.17) can be represented in following matrix form:

d

dt


x(t)

y(t)

z(t)

 = P


x(t)

y(t)

z(t)

+Q


x(t− τ)

y(t− τ)

z(t− τ)

 (4.1.18)

where the 3×3 matrices P and Q are given by

P =


(r1 − 2r1

k1
S̃H − λ1B̃) 0 −λ1S̃H
0 −µ 0

−ηB̃ α (r2 − 2r2
k2
B̃ − ηS̃H)

 and Q =


0 0 0

λ1B̃ 0 λ1S̃H

0 0 0

 .

The characteristic equation of system (4.1.17) is given by

∆(λ) = |λI − P − e−λτQ| = 0 (4.1.19)

which implies that the characteristic equation of the jacobian matrix of the linearized form

of system (4.1.2) at E0 becomes (λ+ r1)[(λ+ µ)(λ+ ηk1 − r2)− λ1k1αe
−λτ ] = 0. From this

equation, we can see clearly that λ = −r1 is a negative root of the equation. So, the sign of

the roots of the following equation will be dominant in determining the stability of E0:

(λ+ µ)(λ+ ηk1 − r2)− λ1k1αe
−λτ = 0. (4.1.20)
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4.1 Delayed Mathematical Model-I

By the following two cases, we can discuss the stability of the disease-free equilibrium E0

for the system (4.1.2).

• Case - I (R0 < 1 and τ ≥ 0): For τ = 0, equation (4.1.20) becomes

λ2 + (ηk1 − r2 + µ)λ+ µ(ηk1 − r2)− λ1k1α = 0. (4.1.21)

For ℜ0 < 1, we get that λ1k1α < µ(ηk1 − r2) =⇒ (ηk1 − r2) >
λ1k1α
µ > 0 which

actually confirms that (ηk1− r2+µ) > 0. This implies that both the roots of equation

(4.1.21) are negative and hence, for τ = 0, E0 is locally asymptotically stable whenever

ℜ0 < 1. Let us assume, for τ > 0, λ = κ(τ)+iω(τ) is an eigenvalue of the characteristic

equation (4.1.20) where ω(τ) > 0. Suppose, κ(τ) = 0 for some τ > 0. Now, substituting

λ = iω(τ) in equation (4.1.20) and denoting ω(τ) by simply ω , we obtain

−ω2 + i(ηk1 − r2 + µ)ω − λ1k1α(cosωτ − i sinωτ) + µ(ηk1 − r2) = 0. (4.1.22)

Comparing the real and imaginary parts of equation (4.1.22), we get two equations.

Squaring and adding these gives us:

ω4 + [(ηk1 − r2)
2 + µ2]ω2 + [µ2(ηk1 − r2)

2 − λ21k
2
1α

2] = 0. (4.1.23)

Let, z = ω2 and hence, equation (4.1.23) becomes the following:

z2 + [(ηk1 − r2)
2 + µ2]z + [µ2(ηk1 − r2)

2 − λ21k
2
1α

2] = 0 (4.1.24)

It is evident that ℜ0 < 1 implies µ2(ηk1 − r2)
2 > λ21k

2
1α

2 and thus, it follows that

equation (4.1.24) does not possess any positive root. This implies that there exists

no such ω for which λ = iω(τ) is a purely imaginary eigenvalue of the characteristic

equation (4.1.20). As E0 is locally asymptotically stable for τ = 0 with R0 < 1, it

indicates that κ(0) < 0. Now, using the continuity in τ of the delayed system and the

fact that κ(τ) is never zero for all values of τ , we have that κ(τ) < 0 for all τ > 0

with R0 < 1. So, finally, we can conclude that equation (4.1.20) have all the roots with

negative real parts and thus, E0 is locally asymptotically stable for ℜ0 < 1 and for all

values of τ > 0.

• Case - II (R0 > 1 and τ ≥ 0): Let us assume that h(ω) = ω4+[(ηk1− r2)2+µ2]ω2+

[µ2(ηk1 − r2)
2 − λ21k

2
1α

2]. For ℜ0 > 1, we can observe that µ(ηk1 − r2) < λ1k1α and it

follows that there exists a positive root of equation (4.1.21). So, E0 becomes unstable
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in this case. Also,
∂h

∂ω
= 4ω3 + 2[(ηk1 − r2)

2 + µ2]ω > 0.

Using this inequality and the results [Cooke and Van Den Driessche (1986); Freedman

and Kuang (1991)], we can say that E0 is unstable for all values of τ ≥ 0 whenever

ℜ0 > 1.

Finally, in view of the previous two cases, we can conclude the result about local asymptotic

stability of disease-free equilibrium E0 for system (4.1.2) by the following theorem.

Theorem 4.1.3 The disease-free equilibrium E0 of system (4.1.2) is locally asymptotically

stable for ℜ0 < 1 and becomes unstable for ℜ0 > 1 for all values of τ ≥ 0.

4.1.4 Stability analysis of the endemic equilibrium:

Assuming a0 = [λ1k1k2(λ1α − µη) − µr1r2], the values of S∗
H , S

∗
I and B∗ are given by the

formulae: S∗
H = r2k1µa

−1
0 (λ1k2 − r1), S

∗
I = λ1k1r2a

−2
0 [λ1k2(λ

2
1k1k2α + r1r2µ + r1k1µη +

r1r2µ) − λ21k2(k1k2µη + k2r2µ + k1r1α) − r21r2µ] and B∗ = r1a
−1
0 λ−1

1 [(λ21k1k2α + r1r2µ) −
(λ1k1k2µη + λ1k2r2µ)]. Now, using (4.1.19), we obtain the characteristic equation of the

linearized form of system (4.1.2) at E∗
1 as

λ3 +A1λ
2 +A2λ+A3λe

−λτ +A4e
−λτ +A5 = 0 (4.1.25)

where the coefficients are

A1 = µ+
(
λ1 +

2r2
k2

)
B∗ +

(
η +

2r1
k1

)
S∗
H − (r1 + r2), A2 = µ(a1 + a2) + a1a2 − λ1ηS

∗
HB

∗,

(4.1.26)

A3 = −λ1αS∗
H , A4 = λ21αS

∗
HB

∗ − a1λ1αS
∗
H , A5 = a1a2µ− λ1µηS

∗
HB

∗ and (4.1.27)

a1 = λ1B
∗ +

2r1
k1
S∗
H − r1, a2 = ηS∗

H +
2r2
k2
B∗ − r2. (4.1.28)

The condition for E∗
1 to be asymptotically stable is that equation (4.1.25) will have all the

roots with negative real parts. Let us put τ = 0 in equation (4.1.25). Hence, we will get

equation (2.2.7) in the Chapter 2 which actually refers to the characteristic equation of the

non-delayed system (4.1.1) and let us assume that all the roots of this equation have negative

real parts. This assumption clearly leads us to the conditions derived in Chapter 2 obtained as

an application of the well-known Routh-Hurwitz criteria. Let λ = σ1(τ)+ iσ2(τ) with σ2 > 0

where σ1, σ2 are both dependent on τ . Here, stability of the endemic equilibrium E∗ of the

system without delay (4.1.1) implies that for τ = 0, σ1(0) < 0. Using the neighbourhood
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property of continuous function, we can also say that there exists ϵ > 0 such that for all

values of τ ∈ (0, ϵ), σ1(τ) remains negative. Let us assume that there exists a value of

τ = τ
′
> 0 for which σ1(τ

′
) = 0 i.e λ = iσ2(τ

′
). For this specific value of λ (as a root of

the characteristic equation (4.1.25)) with Re(λ) = σ1(τ
′
) = 0 and also for any other values

of λ with Re(λ) = σ1(τ) > 0, E∗
1 simply becomes unstable as stability requires all the roots

of equation (4.1.25) with negative real parts. Now, putting λ = iσ2 in (4.1.25),

−i(σ2(τ
′
))3−A1(σ2(τ

′
))2+ iA2σ2(τ

′
)+ iA3σ2(τ

′
)e−iσ2(τ

′
)τ +A4e

−iσ2(τ
′
)τ +A5 = 0. (4.1.29)

Comparing the real and imaginary parts of both sides of equation (4.1.29), two new equations

will be obtained. Squaring these two equations and then adding, we get that
(
(σ2(τ

′
))3 −

A2σ2(τ
′
)
)2

+
(
A5 −A1(σ2(τ

′
))2
)2

= A2
4 +A2

3(σ2(τ
′
))2. This equation can be rewritten as

f(ξ) = ξ3 + pξ2 + qξ + r = 0 (4.1.30)

where p = A2
1 − 2A2, q = A2

2 − A2
3 − 2A1A5, r = A2

5 − A2
4, ξ = σ2(τ

′
)2. We can see that

the derived equation is f ′(ξ) = 3ξ2 + 2pξ + q = 0. Now, if the following two conditions i.e.

(1) A2
5 − A2

4 ≥ 0 and (2) (A2
1 − 2A2)

2 ≤ 3(A2
2 − A2

3 − 2A1A5) hold then firstly, f(0) = r ≥ 0

and also f ′(ξ) = 3ξ2+2pξ+ q ≥ 0 for all ξ > 0. There exists at most one value of ξ for which

f ′(ξ) = 0. Hence, we can see that f(ξ) > 0 for all ξ > 0 and it implies that equation (2.2.6)

can not have any positive real root. This contradiction leads us to the fact that λ = iσ2(τ
′
)

can not be an eigenvalue of the characteristic equation (4.1.25). So, equation (4.1.25) does

not have any purely imaginary eigenvalue for all values of τ > 0. Now, Rouche’s Theorem

for transcendental equation [Dieudonné (2011)] tells us that equation (4.1.25) can have roots

with positive real parts if and only if it has purely imaginary roots. Hence, we can get the

conclusion that every root of (4.1.25) lies in the open left half plane and it certainly makes

E∗
1 asymptotically stable for all τ > 0.

In view of the above investigations for the stability of the interior equilibrium E∗
1 =

(S∗
H , S

∗
I , B

∗) of the delay-induced system (4.1.2), we can construct the following theorem.

Theorem 4.1.4 Suppose, Routh-Hurwitz criteria for the non-delayed system (4.1.1) holds

along with the following two inequalities i.e.

(1) A2
5 −A2

4 ≥ 0,

(2) (A2
1 − 2A2)

2 ≤ 3(A2
2 −A2

3 − 2A1A5),

where the A′
is for i = 1, 2 are given by formulae (4.1.26) - (4.1.28). Then, the positive

endemic equilibrium E∗
1 of the delay-induced system (4.1.2) is locally asymptotically stable

for all values of the time delay τ ≥ 0.
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4.2 Delayed Mathematical Model-II

We now introduce the same amount of time delay τ in the second term of the first equation in

our first delayed system (4.1.2) i.e. in the term −λ1SHB to precisely indicate the necessary

time lag between the attachment of M. leprae bacteria with the healthy Schwann cells via

different receptor-mediated mechanisms and finally the healthy cells getting infected. The

interaction process has been described in Figure 4.1. So, our second delayed mathematical

model takes the following form:

dSH(t)

dt
= r1SH(t)(1−

SH(t)

k1
)− λ1SH(t− τ)B(t− τ),

dSI(t)

dt
= λ1SH(t− τ)B(t− τ)− µSI(t),

dB(t)

dt
= r2B(t)(1− B(t)

k2
)− ηSH(t)B(t) + αSI(t),

(4.2.1)

where the initial conditions are given as

SH(θ) > 0, SI(θ) > 0 and B(θ ) > 0 where θ ∈ [−τ, 0]. (4.2.2)

4.2.1 Positive invariance and boundedness:

To make a mathematical model biologically realistic, showing positivity of the populations of

the model is very important. We now have the following theorem to demonstrate the positive

invariance of the delayed system (4.2.1).

Theorem 4.2.1 All the solutions of system (4.2.1) with the given initial conditions (4.2.2)

are positive.

Proof. We skip the detailed proof of this theorem as it is straightforward and similar to

the proof of (4.1.1) in the Subsection 2.2. Using Lemma 2 [Yang et al. (1996)], it is easy

to observe that all the solutions of system (4.2.1) with the initial conditions lie in R3
+ and

remain non-negative for all t > 0 and as a result of this, R3
+ becomes an invariant region for

system (4.2.1).

To show the boundedness of system (4.2.1), we need to look at the basic non-delayed

mathematical model (4.1.1) for which boundedness is established already. Similarly, ap-

proaching in the manner as demonstrated in Theorem 4.1.2 in Section 4.1.2, we obtain that
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the region of attraction D2 of the delayed system (4.2.1) also becomes the following:

D2 =
{
(SH(t), SI(t), B(t)) : 0 ≤ SH(t) ≤M, 0 ≤ SH(t) + SI(t) ≤M

(
r1
µ

+ 1

)
,

0 ≤ B(t) ≤ k2
2

+

√
k22
4

+
αk2M

r2

(
r1
µ

+ 1

)}
,

where M = max {k1;SH(0)}. Thus, the result implies that D2 is a positively invariant set

and all the solutions of system (4.2.1) with initial values in D2 are also attracted and lie in

the region D2.

Remark 4.2.1 The disease-free equilibrium for system (4.2.1) is also denoted by E0 =

(k1, 0, 0) where k1 is the carrying capacity of the healthy Schwann cell population. In an ap-

proach similar to the analysis of the disease-free equilibrium of system (4.1.2), we can state

that for all values of τ ≥ 0, the disease-free equilibrium E0 of system (4.2.1) also remains

locally asymptotically stable whenever the basic reproduction number ℜ0 < 1 and becomes

unstable otherwise. In the very next Section, we are now interested to proceed to the detailed

discussion of the stability analysis of the positive endemic equilibrium for system (4.2.1).

4.2.2 Asymptotic stability of the endemic equilibrium:

System (4.2.1) possesses an endemic equilibrium point which we denote by E∗
2 = (S∗

H , S
∗
I , B

∗)

where values of S∗
H , S

∗
I , B

∗ are same as given by the formulae in Appendix C. To demonstrate

the local asymptotic stability of E∗
2 , let us assume u(t) = SH(t)− S∗

H , v(t) = SI(t)− S∗
I and

w(t) = B(t)−B∗ be the perturbed variables. Then, linearizing system (4.2.1) about E∗
2 , we

have
dY

dt
=M0Y (t) +N0Y (t− τ), (4.2.3)

where Y (t) = (u(t), v(t), w(t))⊤ and matrices M0 and N0 are given by

M0 =


(r1 − 2r1

k1
SH

∗) 0 0

0 −µ 0

−ηB∗ α (r2 − 2r2
k2
B∗ − ηS∗

H)

 and N0 =


−λ1B∗ 0 −λ1S∗

H

λ1B
∗ 0 λ1S

∗
H

0 0 0

 .

The characteristic equation of the delayed system (4.2.1) is given by

det [ϱI −M0 − e−ϱτN0] = 0. Expanding this equation, we get

ϱ3 + L1ϱ
2 + L2ϱ+ L3ϱ

2e−ϱτ + L4ϱe
−ϱτ + L5e

−ϱτ + L6 = 0 (4.2.4)
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where

L1 = µ+ a1 + a2 − λ1B
∗, L2 = µa2 + (a1 − λ1B

∗)(µ+ a2), L3 = λ1B
∗,

L4 = (µ+ a2)λ1B
∗ − λ1αS

∗
H − ηλ1S

∗
HB

∗,

L5 = λ1µa2B
∗ − (a1 − λ1B

∗)λ1αS
∗
H − λ1ηµS

∗
HB

∗, L6 = (a1 − λ1B
∗)µa2.

Now, E∗
2 is locally asymptotically stable if all the roots of the transcendental equation (4.2.4)

have negative real parts. Also, we need to check here the possible occurrence of Hopf-

bifurcation as a system exhibits Hopf-bifurcating periodic solutions if the corresponding

characteristic equation have purely imaginary eigenvalues. To proceed, let us assume, for

τ > 0, ϱ = iω(τ) be a root of (4.2.4) with ω(τ) > 0. Putting ϱ = iω(τ) in equation (4.2.4)

and separating the real and imaginary parts, we get these following pair of equations in ω.{
L2ω − ω3 = (L5 − L3ω

2) sinωτ − L4ω cosωτ

L1ω
2 − L6 = (L5 − L3ω

2) cosωτ + L4ω sinωτ

Squaring and then adding these two equations, it follows that

ω6 + (L2
1 − 2L2 − L2

3)ω
4 + (L2

2 + 2L3L5 − 2L1L6 − L2
4)ω

2 + (L2
6 − L2

5) = 0. (4.2.5)

We can rewrite the equation (4.2.5) in the form,

g(l) = l3 + γ1l
2 + γ2l + γ3 = 0, (4.2.6)

where l = ω2, γ1 = (L2
1 − 2L2 − L2

3), γ2 = (L2
2 + 2L3L5 − 2L1L6 − L2

4), γ3 = (L2
6 − L2

5).

From equation (4.2.6), we get that

dg(l)

dl
= 3l2 + 2γ1l + γ2 = 0. (4.2.7)

Roots of equation (4.2.7) are given by

l1 =
−γ1 +

√
γ21 − 3γ2
3

and l2 =
−γ1 −

√
γ21 − 3γ2
3

.

We can observe that both the roots of equation (4.2.7) are negative if γ1 > 0 and γ2 > 0.

Also, if g(0) = γ3 ≥ 0 holds then (4.2.6) does not contain any positive root. This way,

we can conclude that g(l) doesn’t satisfy ω(τ) > 0, and proceeding as before, E∗
2 is locally

asymptotically stable for τ ≥ 0. Now, we summarize our previous discussion in the following
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theorem.

Theorem 4.2.2 . If the endemic equilibrium of the non-delayed system (4.1.1) is stable and

if the three conditions γ1 > 0, γ2 > 0 and γ3 ≥ 0 hold true, then the endemic equilibrium E∗
2

of the delayed system (4.2.1) is locally asymptotically stable for all τ ≥ 0.

Remark: If the values of all the parameters listed in Table 4.1 satisfies all the conditions of

Theorem 4.2.2 then the steady state E∗
2 of the delayed model (4.2.1) is locally asymptotically

stable for all τ ≥ 0 which indicates that E∗
2 is independent of the delay values in this scenario.

However, we now describe that if the conditions mentioned in Theorem 4.2.2 are not satisfied,

the stability of E∗
2 becomes dependent on the values of delay.

4.2.3 Bifurcation analysis:

In this Subsection, we now analyze the stability switch or stability changes of the endemic

equilibrium E∗
2 by investigating the emergence of Hopf-bifurcating periodic solutions of the

system (4.2.1). To perform this, especially, we concentrate on establishing conditions for

which purely imaginary eigenvalues exist for the characteristic equation (4.2.4).

From equation (4.2.6), we can see that γ3 < 0 ⇒ g(0) < 0. Therefore, since

liml→+∞ g(l) = +∞, the existence of a positive root l0 of equation (4.2.6) (which also implies

the existence of at least one positive root, say ω0 of equation (4.2.5)) is guaranteed. On the

other hand, if γ2 < 0, we get that
√
γ21 − 3γ2 > γ1. So, from equation (4.2.7), it follows that

l1 =
−γ1+

√
γ21−3γ2
3 > 0 and consequently, a minimum of g(l) takes place at the right side. In

addition, if g(l1) < 0 holds true, then it implies that equation (4.2.6) and hence, equation

(4.2.5), have at least one positive root. Therefore, we can conclude that the characteristic

equation (4.2.4) has a pair of purely imaginary roots, says ±iω0, for the aforementioned cases.

Now, we consider again the following pair of equations.{
L2ω − ω3 = (L5 − L3ω

2) sinωτ − L4ω cosωτ,

L1ω
2 − L6 = (L5 − L3ω

2) cosωτ + L4ω sinωτ.

From these two equations, we get the value of τ∗ as follows.

τn =
1

ω
arccos

[(L4 − L1L3)ω
4 + (L1L5 + L3L6 − L2L4)ω

2 − L5L6

L2
3ω

4 + (L2
4 − 2L3L5)ω2 + L2

5

]
+

2nπ

ω
, (4.2.8)

where n = 0, 1, 2, 3... Let us assume τ∗2 = minn≥0{τn} and ω0 = ω(τ∗2 ). Now, denoting
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ϱ(τ) = ϱ and differentiating equation (4.2.4) with respect to τ , we get that(
dϱ(τ)

dτ

)−1

= − 3ϱ2 + 2L1ϱ+ L2

3(ϱ3 + L1ϱ2 + L2ϱ+ L6)
+

2L3ϱ+ L4

3(L3ϱ2 + L4ϱ+ L5)
− τ

ϱ
. (4.2.9)

From this equation, we obtain

sign

{
Re

(
dϱ(τ)

dτ

)
τ=τ∗2

}
= sign

{
Re

(
dϱ(τ)

dτ

)−1

τ=τ∗2

}
= sign

{
3ω4

0 + (2L2
1 − 4L2 − 2L2

3)ω
2
0 + (L2

2 + 2L3L5 − 2L1L6 − L2
4)
}

= sign
{
3ω4

0 + 2ω2
0γ1 + γ2

}
.

Now, Re
(
dϱ
dτ

)
τ=τ∗2

> 0 means 3ω4
0 + 2ω2

0γ1 + γ2 > 0. Hence, the transversality condition is

proved and we can conclude that at the value of τ = τ∗2 , Hopf bifurcation occurs for system

(4.2.1) provided the transversality condition holds. Summarising the above discussions, we

now have the following theorem.

Theorem 4.2.3 Suppose, the endemic equilibrium of the non-delayed system (4.1.1) is sta-

ble. Consider, the root l1 of the equation given as (4.2.7). If, any one of the following two

conditions

• γ3 < 0

• γ3 ≥ 0, γ2 < 0 and g(l1) < 0

is satisfied then by using Butler’s lemma [Freedman and Kuang (1991)], E∗
2 is asymptotically

stable for τ < τ∗2 and unstable for τ > τ∗2 , where

τ∗2 =
1

ω0
arccos

[(L4 − L1L3)ω
4
0 + (L1L5 + L3L6 − L2L4)ω

2
0 − L5L6

L2
3ω

4
0 + (L2

4 − 2L3L5)ω2
0 + L2

5

]
. (4.2.10)

Thus, when τ = τ∗2 , bifurcation occurs i.e. a family of periodic solutions bifurcate as τ crosses

the critical value τ∗2 with the transversality condition

3ω4
0 + 2ω2

0γ1 + γ2 > 0.

Note: Our first delay-induced mathematical model i.e. system (4.1.2) also undergoes Hopf

bifurcation as the value of time delay τ passes through a critical value. Approaching very

similarly like system (4.2.1), we can find out that there exists a critical value of τ = τ∗1

such that the positive endemic equilibrium E∗
1 remains stable for all the values of τ < τ∗1
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and becomes unstable whenever τ > τ∗1 . Avoiding the similar analytical calculations, we

have demonstrated the appearance of Hopf bifurcating periodic solutions for system (4.1.2)

numerically and further, provided the necessary biological interpretations.

4.3 Delayed Systems with Optimal Control

Optimal control approach is a very popular and effective mathematical tool to predict the

optimal treatment policy of a disease by analyzing a mathematical system [Al Basir (2020);

Ali and Zaman (2021)]. Optimal control treatment policy whenever applied on the delay-

induced systems instead of the non-delayed mathematical model produces a much accurate

and realistic result in achieving a perfect drug therapeutic schedule for leprosy. In this Section,

we have discussed the effect of optimal control on both of the two delay induced systems i.e.

on system (4.1.2) and system (4.2.1). We introduce the parameters u1(t) and u2(t) as control

parameters where u1(t) represents the Ofloxacin drug therapy and u2(t) denotes the Dapsone

drug therapy. Delayed model (4.1.2) equipped with optimal control is of the form:

dSH(t)

dt
= r1SH(t)(1−

SH(t)

k1
)− λ1(1− u1)SH(t)B(t),

dSI(t)

dt
= λ1(1− u1)SH(t− τ)B(t− τ)− µSI(t), (4.3.1)

dB(t)

dt
= r2(1− u2)B(t)(1− B(t)

k2
)− η(1− u1)SH(t)B(t) + αSI(t).

with SH(0) = SH0 , SI(0) = SI0 , B(0) = B0. (4.3.2)

It is easy to prove that a unique solution (SH(t), SI(t), B(t)) of system (4.3.1) with initial data

given as (SH0 , SI0 , B0) ∈ C = C([−τ, 0],R3
+) exists. Additionally, for biological justifications,

let us assume that the initial data for system (4.3.1) satisfy the following :

SH0(t) > 0, SI0(t) > 0, B0(t) > 0 ∀t ∈ [−τ, 0].

4.3.1 Objective functional and its description

The problem is to minimize the objective cost functional described as:

J(u1(t), u2(t)) =

∫ tf

0

[
P1u

2
1(t) + P2u

2
2(t) +A1S

2
I (t)−A2S

2
H(t)

]
dt (4.3.3)

subject to the optimal control induced delayed system (4.3.1). Here, in the first two terms

in the objective functional i.e. Piu
2
i , i = 1, 2, Pi is the positive weight parameters associated
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with the control ui(t) and the square of the control variables indicate the severity of the side

effects of the Ofloxacin and Dapsone drug therapies. Also, A1, A2 are chosen as the penalty

multipliers on the benefit of the cost where both A1 > 0, A2 > 0. Our main aim is to reduce

the concentrations of the infected Schwann cells and the M. leprae bacteria population so as

to increase the density of the healthy Schwann cells into the human body while minimizing

the cost of implementing the control therapies, ui(t), i = 1, 2. The control set is defined on

the interval [0, tf ] where tf is the final time of control. Let us define the control set as

U = {u(t) = (u1(t), u2(t))) : ui is Lebesgue measurable on, 0 ≤ ui(t) ≤ 1, t ∈ [0, tf ], i = 1, 2} .
(4.3.4)

The objective of the optimal control problem is to achieve optimal control function de-

noted as (u∗1(t), u
∗
2(t)) for system (4.3.1) such that

J(u∗1, u
∗
2) = min {J(u1(t), u2(t)) : (u1(t), u2(t)) ∈ U} . (4.3.5)

To obtain the necessary conditions for solving this optimal control problem, we have

used Pontryagin’s Minimum Principle [Göllmann and Maurer (2013); Pontryagin (1987)].

For the bounded Lebesgue measurable controls and the non-negative initial conditions, there

exist non-negative bounded solutions [Birkhoff et al. (1989)] to the optimal control induced

delayed system (4.3.1), (4.3.2). Now, first, we investigate the existence of an optimal control

for system (4.3.1) in the next Subsection.

4.3.2 Existence of an optimal control

To prove the existence of an optimal control pair for system (4.3.1), we use the results

described in the articles [Lukes (1982); Fleming and Rishel (2012)]. For the control induced

delayed system (4.3.1), (4.3.2), the objective functional described in (4.3.3) and the control

set defined by (4.3.4), firstly, note the following:

1. The control and state variables are non-negative. Also, the set of controls and the state

variables are non-empty.

2. The control set U is convex and closed by definition.

3. In this minimization problem, the necessary convexity of the objective functional (4.3.3)

are satisfied in u1 and u2.

4. The control induced system (4.3.1) is bounded which provides the required compactness

for the existence of the optimal control.
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5. The integrand
[
P1u

2
1(t) + P1u

2
1(t) +A1S

2
I (t)−A2S

2
H(t)

]
of the objective functional

(4.3.3) is convex on the control set U .

Additionally, we can see that there exists constants κ1, κ2 > 0 and ρ > 1 such that

J(u1, u2) ≥ κ1(| u1 |2 + | u2 |2)
ρ
2 − κ2 as the state variables are bounded.

Now, using the Theorem 4.1 in Fleming and Rishel (2012), existence of an optimal control

solution is guaranteed, and hence, summarizing the previous discussions, we now present the

following theorem.

Theorem 4.3.1 There exists an optimal control pair (u∗1(t), u
∗
2(t)) ∈ U subject to the control

induced system (4.3.1), (4.3.2) such that

J(u∗1, u
∗
2) = min {J(u1(t), u2(t)) : (u1(t), u2(t)) ∈ U} . (4.3.6)

Next, we evaluate the optimal control functions and derive the optimality system for the

optimal control problem.

4.3.3 Characterization of the optimal control

For characterizing the optimal control, we use Pontryagin’s Minimum Principle with delay

in state [Göllmann and Maurer (2013)]. To do this, let us first define the hamiltonian H for

the control problem (4.3.1)-(4.3.5) as

H = P1u
2
1(t) + P2u

2
2(t) +A1S

2
I (t)−A2S

2
H(t) + ξ1f1 + ξ2f2 + ξ3f3 (4.3.7)

where f ′i s, for i = 1, 2, 3, are the right hand sides of system (4.3.1) and ξ′i s for i = 1, 2, 3 are

adjoint functions to be determined suitably. Now, applying Pontryagin’s Minimum Principle

with delay in state [Göllmann and Maurer (2013); Rodrigues et al. (2017)] to the hamiltonian

H, we have the following theorem.

Theorem 4.3.2 If the objective cost function J(u1, u2) is minimum for the optimal control

pair (u∗1(t), u
∗
2(t)) for the optimal control problem (4.3.1)-(4.3.5) and (S∗

H , S
∗
I , B

∗) be cor-

responding optimal state, then there exist adjoint variables ξ1, ξ2 and ξ3 which satisfy the
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corresponding transversality conditions. Moreover, the optimal control solution is given by:

u∗1(t) = max

{
0,min

{
1,

−(ξ1(t)λ1 + ξ3(t)η)S
∗
H(t)B

∗(t) + ξ2(t)λ1S
∗
H(t− τ)B∗(t− τ)

2P1

}}
,

u∗2(t) = max

{
(0,min

{
1,
ξ3(t)r2B

∗(t)(1− B∗(t)
k2

)

2P2

}}
. (4.3.8)

Proof. We use the Pontryagin’s Minimum Principle [Göllmann and Maurer (2013)] to obtain

the adjoint system as

dξ1
dt

= − ∂H

∂SH
(t)− χ[0, tf − τ ](t)

∂H

∂SH
(t+ τ),

dξ2
dt

= − ∂H

∂SI
(t),

dξ3
dt

= −∂H
∂B

(t)− χ[0, tf − τ ](t)
∂H

∂B
(t+ τ)

with the transversality conditions ξi(tf ) = 0 for all i = 1, 2, 3 and χ[0, tf − τ ] is the charac-

teristic function defined on the interval [0, tf − τ ]. So, the adjoint system takes the form

dξ1
dt

= 2A2S
∗
H − ξ1(t)

[
r1(1−

2S∗
H

k1
)− λ1(1− u∗1)B

∗
]
+ ξ3(t) [η(1− u∗1)B

∗]

−χ[0, tf − τ ](t)ξ2(t+ τ)λ1(1− u∗1)B
∗,

dξ2
dt

= −2A1S
∗
I + µξ2(t)− αξ3(t), (4.3.9)

dξ3
dt

= ξ1(t) [λ1(1− u∗1)S
∗
H ]− ξ3(t)

[
r2(1− u∗2)(1−

2B∗

k2
)− η(1− u∗1)S

∗
H

]
−χ[0, tf − τ ](t)ξ2(t+ τ)λ1(1− u∗1)S

∗
H ,

where ξi(tf ) = 0 for all i = 1, 2, 3. Now, to obtain the optimal controls u∗1(t) and u∗2(t), we

use the optimality condition given as

∂H

∂u1

∣∣∣
u1=u∗1(t)

= 0, (4.3.10)

∂H

∂u2

∣∣∣
u2=u∗2(t)

= 0. (4.3.11)
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4.3 Delayed Systems with Optimal Control

The hamiltonian equation (4.3.7) can be rewritten as:

H = P1u
2
1(t) + P2u

2
2(t) +A1S

2
I (t)−A2S

2
H(t)

+ ξ1

[
r1SH(t)(1−

SH(t)

k1
)− λ1(1− u1)SH(t)B(t)

]
+ ξ2 [λ1(1− u1)SH(t− τ)B(t− τ)− µSI(t)] (4.3.12)

+ ξ3

[
r2(1− u2)B(t)(1− B(t)

k2
)− η(1− u1)SH(t)B(t) + αSI(t)

]
.

Differentiating equation (4.3.12) with respect to u1 partially and using condition (4.3.10), we

get

u∗1(t) =
−(ξ1(t)λ1 + ξ3(t)η)S

∗
H(t)B

∗(t) + ξ2(t)λ1S
∗
H(t− τ)B∗(t− τ)

2P1
.

Similarly, from condition (4.3.11), we obtain

u∗2(t) =
ξ3(t)r2B

∗(t)(1− B∗(t)
k2

)

2P2
.

Using boundedness properties of the standard control i.e. using the properties of the control

set U that admissible controls take values such that 0 ≤ ui(t) ≤ 1, i = 1, 2, we can write

u∗1(t) =


0

−(ξ1(t)λ1+ξ3(t)η)S∗
H(t)B∗(t)+ξ2(t)λ1S∗

H(t−τ)B∗(t−τ)
2P1

1

if respectively,

−(ξ1(t)λ1 + ξ3(t)η)S
∗
H(t)B

∗(t) + ξ2(t)λ1S
∗
H(t− τ)B∗(t− τ)

2P1
≤ o,

−(ξ1(t)λ1 + ξ3(t)η)S
∗
H(t)B

∗(t) + ξ2(t)λ1S
∗
H(t− τ)B∗(t− τ)

2P1
∈ (0, 1),

−(ξ1(t)λ1 + ξ3(t)η)S
∗
H(t)B

∗(t) + ξ2(t)λ1S
∗
H(t− τ)B∗(t− τ)

2P1
≥ 1.

and

u∗2(t) =


0 if

ξ3(t)r2B∗(t)(1−B∗(t)
k2

)

2P2
≤ 0,

ξ3(t)r2B∗(t)(1−B∗(t)
k2

)

2P2
if 0 <

ξ3(t)r2B∗(t)(1−B∗(t)
k2

)

2P2
< 1,

1 if
ξ3(t)r2B∗(t)(1−B∗(t)

k2
)

2P2
≥ 1.
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Hence, representing the values of u∗1(t) and u
∗
2(t) in a more compact and convenient form, we

get the optimal control solutions as given in (4.3.8) for the optimal control problem (4.3.1)-

(4.3.5).

The optimal control pair and states are obtained by solving the optimality system which

consists of the state system (4.3.1) along with the boundary condition (4.3.2), the adjoint

system (4.3.9) with the corresponding transversality conditions and the characterization of

the optimal control (u∗1(t), u
∗
2(t)) given by (4.3.8).

Also, we describe the delayed model (4.2.1) equipped with optimal control below.

dSH(t)

dt
= r1SH(t)(1−

SH(t)

k1
)− λ1(1− u1)SH(t− τ)B(t− τ),

dSI(t)

dt
= λ1(1− u1)SH(t− τ)B(t− τ)− µSI(t), (4.3.13)

dB(t)

dt
= r2(1− u2)B(t)(1− B(t)

k2
)− η(1− u1)SH(t)B(t) + αSI(t)

with SH(0) = SH0 , SI(0) = SI0 , B(0) = B0 (4.3.14)

and the initial data given as (SH0 , SI0 , B0) ∈ C = C([−τ, 0],R3
+).

In a similar approach, using the same objective functional and control problem

(4.3.3),(4.3.5), control set (4.3.4) and hamiltonian (4.3.7) for the control induced system

(4.3.13),(4.3.14), we can easily obtain the values of u∗1(t) and u∗2(t). The values of optimal

control solutions for the delayed system equipped with optimal control (4.3.13) are given by

u∗1(t) = max

{
0,min

{
1,

(ξ2(t)− ξ1(t))λ1S
∗
H(t− τ)B∗(t− τ)− ξ3(t)ηS

∗
H(t)B

∗(t)

2P1

}}
,

u∗2(t) = max

{
0,min

{
1,
ξ3(t)r2B

∗(t)(1− B∗(t)
k2

)

2P2

}}
. (4.3.15)

4.4 Numerical Simulation

In this Section, we have performed numerical simulations for both the delayed systems i.e.

system (4.1.2) and system (4.2.1) and validated these findings with our analytical and the

theoretical outcomes. We choose the initial values in number dependant according to the

cardinal rule of scientific hypothesis. The values of the parameters which we have used here

are described in the following table denoted by Table 4.1. All of our numerical findings are

obtained here by using Matlab 2016A.

In Figure 4.2, we have compared the system (4.1.2) with delay and the non-delayed system
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4.4 Numerical Simulation

Parameter Parameter definition Assigned Value (Unit)

r1 growth rate of healthy Schwann cell 0.4 (day−1)
r2 growth rate of M. leprae bacteria 0.01 (day−1)
k1 carrying capacity of healthy Schwann cell 600 (mm−3)
k2 carrying capacity of bacteria 400 (mm−3)
µ natural death rate of infected Schwann cell 0.1 (day−1)
λ1 infection rate of healthy cell and bacteria 0.00035 (day−1)
α proliferation rate of new free bacteria 0.1 (day−1)
η bacteria clearance rate due to infection 0.0003 (day−1)

Table 4.1: Values of the system parameters used in numerical simulations for system
(4.1.2) and system (4.2.1). For the choice of parameters values, we have found the
ranges of few parameters from the numerical tables described in Chapter 2 and Chapter
3. Some of the model parameters are estimated from literature [Masaki et al. (2013);
Fischer (2017)]. Due lack of sufficient primary data related with inter-cellular delay
factors, we have chosen some parameter values that allowed model behaviour to be
biologically feasible. We have also varied the values of our assumed parameters to
predict the different scenario.

(4.1.1). Here, trajectories coloured in red are describing the dynamics of healthy Schwann

cells, infected Schwann cells and M. leprae bacteria in a non-delayed system i.e. trajectories

for system with τ = 0 while trajectories in blue demonstrate the behavior of our model cell

populations for the delayed system (4.1.2) assuming the value of intracellular time delay τ = 2

(in days). All the other parameter values used here for numerical simulations are mentioned

in Table 4.1. This Figure depicts that at the infected steady state, the cell populations of the

non-delayed system i.e. SH , SI and B attain a stable concentration of 180 mm−3, 500 mm−3

and 800 mm−3. On the other hand, it is interesting to see that introducing time lag or time

delay into the system (4.1.1) makes the cell populations oscillate i.e. periodic oscillatory

solutions appear for system (4.1.2).

In Figure 4.3, behavior of the solutions of the cell populations of delay-induced system

(4.1.2) have been depicted for different values of time delay τ ( i.e. τ = 0.01, τ = 2 and

τ = 5). Here, we have used three different values of τ i.e. τ = 0.01, τ = 2 and τ = 5 to

achieve the trajectories of the healthy Schwann cells (SH), infected Schwann cells(SI) and M.

leprae bacterial population (B). For the value of τ = 0.01, the healthy cell, infected cell and

M. leprae densities oscillate at the beginning and achieve local asymptotic stability after a

certain period of time. It completely supports our analytical findings in the Subsection 4.1.4.
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Figure 4.2: Comparison of the behavior of the trajectories of SH , SI and B of the
non-delayed system (4.1.1) and the delayed system (4.1.2). For the delayed system, the
value of time delay is taken as τ = 2. Red color represents system (4.1.1) and blue
represents system (4.1.2).

Indeed, if all the conditions of Theorem 4.1.4 are satisfied then the endemic equilibrium E∗
1

of the delayed system (4.1.2) becomes locally asymptotically stable for all values of τ > 0

i.e. stability of the endemic equilibrium E∗
1 does not depend on the value of time-delay τ if

the previously stated conditions are satisfied. Regular oscillatory solutions appear for larger

values of τ . Biologically, it means that if the amount of time lag between a susceptible

Schwann cell getting infected and production of new free bacteria from that infected cell is

increased, the model cell concentrations fluctuate more quickly and this fluctuation of the

population densities occur in an oscillatory manner. This happens due to the effect of the

formation of reprogrammed Schwann cells which stimulate the dissemination of the disease

by releasing free bacteria and also by exploiting the natural high plasticity property of the

infected Schwann cells during the progression of infection.

Figure 4.4 illustrates the chaotic nature of the trajectories of the cell populations of the

delayed system (4.1.2) for the value of τ = 40. When the value of time delay becomes very

large (i.e τ = 40) in comparison to the values used previously to achieve the trajectories

in Figure 4.2 and Figure 4.3, the concentration of SH cells, SI cells and B of system

(4.1.2) oscillate but an irregular pattern is observed which is completely chaotic in nature.

Actually, for all types of leprosy, whenever slowly progressive, insidious neuropathy occurs

in patients, sudden, unexplained and spontaneous enhancement of an individual’s immune

response to M. leprae is noted [Scollard et al. (2006)]. Also, the immunologic mechanisms

which characterize the skin smears and inflammations, act indiscriminately during the

dissemination of the bacteria into different body parts. This certainly explains and confirms
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Figure 4.3: Time series solution of the model variables of the delayed system (4.1.2)
for different values of time delay τ . Trajectories coloured in red, blue and green are
obtained by considering the values of τ = 0.01, τ = 2 and τ = 5 respectively. Values of
rest of the parameters are chosen from Table 4.1.

the chaotic behavior of the delayed system (4.1.2) around the infected steady state when

the time required for production of free M. leprae bacteria from infected Schwann cells is

sufficiently large.

In Figure 4.5, bifurcation diagrams of E∗
1 for system (4.1.2) have been depicted by taking

τ as the bifurcation parameter. Here, we obtain a critical value of time delay τ = τ∗1 ≈ 1.81

for which Hopf bifurcation occurs. System (4.1.2) exhibits a stable behaviour for the values

of τ < τ∗1 but loses its stability for τ > τ∗1 . We have also demonstrated a feasible limit

cycle on the SH − SI − B phase plane appearing around the infected steady state E∗
1 for

the delayed system (4.1.2). In order to simulate this picture, we have chosen suitable initial

values of the system cell populations and the value of time delay is taken as τ = 1.82. All

the other parameter values are chosen from Table 4.1.

Figure 4.6 describes the comparison of the three systems i.e. the non-delayed system

(4.1.1) and the delayed system (4.1.2) and system (4.2.1) for τ = 2. It is quite interesting

to note that the amplitude of the periodic oscillations is relatively high for the second

delayed system (4.2.1) compared to the first delayed system (4.1.2) but the period of the

oscillations does not change remarkably. The biological interpretation behind this behavior

lies in the presence of an additional intracellular delay into system (4.2.1) which is necessary

to describe the time for getting a healthy Schwann cell finally being infected after binding to

M. leprae through various receptor mediated mechanisms. This whole attachment-infection

process is somehow complicated but significantly effective on the population cell densities
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Figure 4.4: Description of the chaotic situation of the delay-induced system (4.1.2) for
the value of τ = 40. Rest of the parameters are the same as listed in Table 4.1.

and eventually contributes to more rapid fluctuations of the system solution trajectories.

In Figure 4.7, we numerically investigate the dynamics of the trajectories of the delayed

system (4.2.1) for different values of time delay τ (i.e. τ = 0.0002, τ = 0.5, τ = 2). For the

value of τ = 0.0002, solutions of the system fluctuate at the beginning and then, arrive at

a stable steady state concentration after almost 1000 days. For τ = 0.5, behavior of the

trajectories is quite similar to the case of τ = 0.0002 but cell densities attain local asymptotic

stability after approximately 1200 days and the initial fluctuation of the trajectories is more

evident in this scenario. This indicate that the cell densities of both healthy and infected

Schwann cells and also the bacterial load will be sometimes high and sometimes low. From

this Figure it is clear that if we vary the value of τ from very low value to higher values, the

delayed system (4.2.1) exhibits a rich dynamics in terms of behavior of the trajectories of

the system cell populations. The endemic equilibrium E∗
2 of system (4.2.1) remains locally

asymptotically stable for all the values of τ < τ∗2 and becomes unstable when τ > τ∗2 .

Whenever τ crosses the threshold value τ∗2 , system (4.2.1) undergoes a Hopf-bifurcation

which means bifurcating periodic solutions appear around the infected steady state. Indeed,

we can clearly observe that the densities of the model cell populations fluctuate and display

regular periodic oscillation for the value of τ = 2 > τ∗2 . Also, initiation of stable periodic

solutions implies existence of limit cycle for system (4.2.1) for the values of τ > τ∗. The

feasible limit cycle solution of the delayed system (4.2.1) has been illustrated next.

In Figure 4.8, we have demonstrated the bifurcation diagrams of the model cell densities

of system (4.2.1) at the endemic equilibrium E∗
2 by considering τ as a bifurcation parameter.
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Figure 4.5: Bifurcation diagram of the densities of SH cell, SI cell and bacteria B of
the delayed system (4.1.2) taking time delay τ as the bifurcation parameter. The value
of the parameters are same as given in Table 4.1. Here, the steady state values of all
populations are plotted with the minimum/maximum of the periodic solution when it
exists. The feasible limit cycle of the system (4.1.2) on SH − SI − B phase plane by
considering the value of τ = 1.82.

Time delay τ is chosen as the bifurcation parameter for these diagrams. Figure 4.8 clearly

indicates that for τ > 0, E∗
2 is locally asymptotically stable when time delay is suitably small

i.e for τ < τ∗2 ≈ 1.39 and the system becomes unstable whenever τ > τ∗2 . The delayed system

(4.2.1) undergoes Hopf-bifurcation when τ crosses the critical value τ∗2 . These findings

evidently justifies all of our analytical findings in Subsection 4.2.3 and especially Theorem

4.2.3. For τ > τ∗2 , regular oscillatory periodic solutions begins to generate and it confirms

the presence of stable limit cycles for system (4.2.1).

In Figure 4.9, the effect of optimal control therapy has been investigated for both of the

control-induced delayed mathematical models i.e. on system (4.3.1) and system (4.3.13) by
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Figure 4.6: Comparison of the dynamical behaviour of between the system without
delay(4.1.1), System (4.1.2) and System (4.2.1). To exhibit the impact of delay, we
choose the value of τ = 2 here.
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Figure 4.7: Qualitative behavior of the model cell populations of system (4.2.1) for
three different values of τ .

considering a fixed value of time delay τ = 2. Due to the effect of Ofloxacin and Dapsone

drug therapy denoted by u∗1(t), u
∗
2(t) respectively, bacterial load decreases and densities of

healthy cells climbs up significantly. Healthy cell density increases up to 320 mm−3 for

system (4.3.1) while for the system (4.3.13), it reaches a higher value of 500 mm−3 after

2000 days. From the Subfigures (B) and (C) of Figure 4.9, we can observe that densities of

infected Schwann cells (SI) and M. leprae bacteria (B) decline to 410 mm−3 and 405 mm−3

for system (4.3.1) equipped with optimal control but quite interestingly, system (4.3.13)

provides a much better result in this context. Infected cell density and bacterial load for

system (4.3.13) with control decrease up to 320 mm−3 and 290 mm−3 after 2000 days

of treatment which clearly represents a much improved scenario in comparison to system

(4.3.1). Thus, optimal control policy applied on the delayed systems by means of double drug
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Figure 4.8: Bifurcation diagram of the system cell populations for the delayed model
(4.2.1) taking τ as the main bifurcation parameter. Values of the other parameters are
chosen the same as given in Table (4.1). Here, the steady state values of all populations
are plotted with the minimum/maximum of the periodic solutions when it exists. Hopf
bifurcation occurs at the critical value of the time delay τ = τ ∗2 = 1.39. The feasible
limit cycle of the system (4.1.17) on SH − SI − B phase plane has also been depicted
as a Subfigure by considering τ = 1.4.

therapy contributes remarkably on controlling the delay-induced instability and also success-

fully inhibiting the new infections and declining the huge bacterial load into the human body.

In Figure 4.10, the optimal control profiles u∗1 and u
∗
2 are exhibited for both of the delayed

control system (4.3.1) and system (4.3.13) in the Subfigure (A) and Subfigure (B), respec-

tively. We can observe from the Subfigures (A) and (B) that the optimal control profiles of u∗2

remain almost same for both the systems (4.3.1) and system (4.3.13). But notable differences

are observed by looking into the optimal drug doses schedule for the drug therapy Ofloxacin

denoted by u∗1. At the beginning of the treatment, Ofloxacin therapy should be applied in a

very low amount and then, after approximately 200 days, the drug dose should be increased
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Figure 4.9: Qualitative behaviour of both the optimal control-induced delayed systems
denoted as the system (4.3.1) and the system (4.3.13). Trajectories colored in red and
green depict the behavior of the system populations for systems (4.3.1) and (4.3.13),
respectively. This simulation has been made by taking τ = 2 and p1 = p2 = 0.003,
A1 = A2 = 0.15. The other parameter values are taken from Table 4.1.
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Figure 4.10: Optimal control profiles u∗
1(t) and u∗

2(t) for the optimal control induced
delayed systems (4.3.1) and (4.3.13) are presented in Subfigure (A) and Subfigure (B),
respectively. This simulation has been made by taking τ = 2. Values of the other
parameters are chosen from Table 4.1.

upto the range 0.7−0.8 for system (4.3.1). Maintaining this drug dosing up to 1200 days, the

values of u∗1(t) should be decreased a little and can be applied in the dosing range in between

0.5 - 0.6 throughout the completion of the treatment i.e. up to 2000 days. In comparison to

these findings for the controlled system (4.3.1), we can observe that, from the range 0.8−0.9,

control u∗1(t) can be decreased up to 0.3−0.4 after nearly 1100 days for system (4.3.13). The
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main reason behind this behavioral pattern of the control profiles of the drug therapies is

that initially, bacterial concentrations remain very low into the human body. After a certain

period of time, as soon as M. leprae starts accumulating necessary nutrients for performing

metabolic activities inside Schwann cells, proliferation of infected cells and eventually the

bacterial load into the body climbs up rapidly [Masaki et al. (2013)]. After 1100 days, as the

overall progression of the disease gets controlled and bacterial concentration gets stabilized to

a certain stage, dosing of both u∗1(t) and u
∗
2(t) can be reduced and a moderate optimal drug

dose should be maintained up to the completion of the therapy for establishing a cost-effective

and efficient treatment policy according to the numerical findings in Subfigure (B).

4.5 Discussion

In this Chapter, we have proposed and investigated two delay induced mathematical models

referred by system (4.1.2) and system (4.2.1). The fundamental biological understandings

involving the cell-to-cell interactions of our system populations as an effect of intracellular

delays with control theoretic approach remains our key point and focus throughout the

Chapter. Our analytical and numerical findings suggest that for each of the delayed systems,

E0 remains stable whenever ℜ0 < 1 while it loses stability and endemic equilibrium becomes

feasible for ℜ0 > 1 for all values of time delay τ ≥ 0 which shows that the basic reproduction

number ℜ0 plays a pivotal role in determining the local asymptotic stability of E0. Amount

of time lag or delay is small in quantity up to which both the endemic equilibriums E∗
1

and E∗
2 exhibit a stable situation. Therefore, early diagnosis is very much important for

leprosy patients to rule out the possibility of irreversible nerve damages [Camuset et al.

(2016)] so that we can prevent the rapid production of free M. leprae bacteria at an early

stage after its first entry into the human body. These analytical findings for our systems

are well supported and confirmed by several experimental studies [Bekri et al. (1998);

Chu et al. (2020); Ffytche (1989); Duthie et al. (2011)] where the authors have clearly

explained the essence of early detection and hence, starting the optimal control treatment

for eliminating leprosy. In a mouse footprint experiment, Gelber (1987) described the

delayed proliferation of M. leprae which was also confirmed later in 2021 in the form of

a delayed response [van Hooij and Geluk (2021)] of the infected cells contributing to the

peripheral injury. These observations are validated also by our numerical findings which

describe that both the systems undergo Hopf bifurcations at the critical values τ∗1 and τ∗2

where τ∗1 > τ∗2 . System (4.1.2) becomes unstable for τ > τ∗1 = 1.81 while system (4.2.1) loses

its stability much earlier i.e for τ > τ∗2 = 1.39 as suggested by Theorem 4.2.3 which actually
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4.5 Discussion

implicates that Hopf bifurcating periodic solution arises for system (4.2.1) at a lesser value

of time delay. Indeed, system (4.2.1) is more realistic and flexible in nature than system

(4.1.2) as two different aspects of intracellular delays have been incorporated in system (4.2.1).

According to the numerical findings in Figure 4.9, we can claim that delay-induced

instability can effectively be reduced and even removed by applying the optimal control

therapy which is also suggested by Ji et al. (1994) in their clinical study with Ofloxacin and

Dapsone for lepromatous leprosy patients. Both of our proposed optimal treatment policies

developed in (4.3.1) and (4.3.13) are found to be preferable to the fixed control therapy

as it reduces the concerns of the high cost-burden and adverse impacts of Ofloxacin and

Dapsone for maintaining long term treatment schedules. In this context, it is to be noted

that both of our control-induced delayed systems act noticeably but the system (4.3.13)

emerges as a far better option as it declines the bacterial load as well as inhibits occurrence

of new infections more prominently as a crucial impact of administering the optimal control

treatment policy. Although the disease progression gets controlled as infected and bacterial

densities become stabilized after 1000 days of treatment, to attain complete eradication and

elimination of bacterial load from the skin smears especially for the patients with high initial

bacteriological index (B.I.) [Kar et al. (2004); Gupta et al. (2005)], the proposed optimal

control treatment should be continued up to 1500 − 2000 days as suggested by Figure 4.10

for system (4.3.13). Furthermore, comparing the Subfigures (A) and (B) in Figure 4.10, we

can observe that after 1100 days, the optimal drug dose of u∗1 can be reduced and maintained

up to completion of the therapy in the range 0.3 − 0.4 for system (4.3.13) and hence, we

can conclude that the delayed control system (4.3.13) provides us the best cost-effective

profiles of the combined drug therapy. Results obtained from our investigations related to

the optimal treatment policy predict that as we recommend the combination of Dapsone and

Ofloxacin drug therapy instead of three different drugs (classical W.H.O. MDT regimen),

our control induced delayed system exhibits a stable behaviour after approximately 1000

days. Morphological index (M.I.) in skin smears during the combined treatment verifies that

more than 90% of viable M. leprae are killed after 56 days [Ji et al. (1994)] of therapy but

because of the crucial interplay of the delay factors in the infection process, our system in

the form of a more realistic approach to decode the M. leprae induced infection suggests

that the combined therapy equipped with optimal control should necessarily be applied on a

leprosy patient for at least 800− 1000 days. Thus, the re-occurrence of leprosy into a human

body can also be inhibited effectively by adopting our prescribed regime. Our proposed

combined treatment method is scheduled for a little longer period of time than the W.H.O.

recommended regime as we intend to successfully avoid the concerns of high cost and drug
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resistance effects of Rifampicin [Organization et al. (1982); Cambau and Williams (2019)].

This completely supports and justifies our analytical and numerical findings of optimal

control therapeutic approach for finding a cost-effective and safe drug dose policy.
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Chapter 5

Critical Observation of WHO

Recommended Multidrug Therapy

on the Disease Leprosy through

Mathematical Study

For finding suitable leprosy control strategies, we now specifically concentrate on gaining

a much deeper insight on the efficacy of the WHO recommended MDT therapy. In this

Chapter5, we have formulated a four-dimensional ODE-based mathematical model which

consists of the densities of healthy Schwann cells, infected Schwann cells, M. leprae bacteria,

and the concentration of multidrug therapy (MDT). This Chapter primarily aims on exploring

the dynamical changes and interrelations of the system cell populations during the disease

progression. Also, evaluating a critical value of the drug efficacy rate of MDT remains our key

focus so that a safe drug dose regimen for leprosy can be framed more effectively. We have

examined the stability scenario of different equilibria, the Poincare section and Lyapunov’s

exponent analysis method for our proposed system, and the occurrence of Hopf-bifurcation

for the densities of our system cell populations with respect to the drug efficacy rate of MDT

to decode the precise impact of the efficiency rate on both the infected Schwann cells and

the bacterial populations. Throughout the Chapter, our main objective remains to explore

the variety of neurological manifestations and pathophysiology of nerve damage in leprosy

which enables us to predict the perfect drug dose regimen for the treatment of the nerve-

5The major portion of this chapter is published in the Journal of Theoretical Biology, Elsevier, 567,
111496, April 2023.
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function impairment. Also, we have studied the precise effects of multidrug therapy on

various system cell populations. In particular, we have investigated how MDT treatment

regulates the recovery of infected cells and the infection process of the healthy cells due

to the waning effect of MDT and established that it is actually the drug efficacy rate of

MDT which plays a significant dominant role in the pathogenesis and treatment of leprosy.

All the analytical outcomes obtained in this Chapter have been verified through numerical

simulations. Furthermore, based on the clinical, histological and immunological differences,

Ridley–Jopling classification of leprosy provides a complete spectrum of five main categories

i.e. TT, BT, BB, BL and LL [Ridéey et al. (1966)]. Ridley’s bacterial index (BI) with BI

≥ 2 (skin lesions > 5) forms the multibacillary group (MB) consisting of BB, BL and LL

patients while BT and TT leprosy patients are categorized as paucibacillary group (PB)

[Parkash (2009)]. In real life scenario, clinical correlations of our findings in this Chapter are

also compared and discussed in detail with the U-MDT regimen, Ridley–Jopling classification

and WHO recommended guidelines for leprosy.

5.1 Formulation of the Mathematical Model

Following assumptions are made for the formulation of desired mathematical model:

• The concentrations of healthy Schwann cells, infected Schwann cells, M. leprae bacteria

and MDT drug therapy are represented by Sh(t), Si(t), B(t) and X(t) respectively, at

any time t.

• Π denotes the constant production rate of healthy Schwann cells from neural crest cells

into human body. β is the effective contact rate between the healthy Schwann cells

and the bacteria. α be the rate at which infected cells become recovered due to the

effect of MDT. The rate at which healthy Schwann cells are getting infected again as

a result of waning effect of MDT is indicated by λ.

• The parameters, r and K describe the intrinsic growth rate and carrying capacity of

M. leprae bacteria as presented in a logistic manner.

• The level of treatment i.e. the concentration of MDT is proportional to the number

of infected Schwann cells and it is represented by the term, eηSi, where e denotes the

proportionality constant and η denotes the efficacy rate of MDT. Moreover, θ reflects

the natural drug washout rate through various physiological processes into a human

body.

97



5.1 Formulation of the Mathematical Model

• d, di and db signify the natural death rate or mortality rate healthy Schwann cells,

infected Schwann cells and the rate at which M. leprae bacteria is killed by MDT,

respectively.

• The effective drug-treatments is directed by the increasing function, f(X) with f(0) = 0

and sup f(X) = 1. It is considered that the effectiveness of drug is fading for which

the healthy Schwann cells are becoming infected again. Therefore, g(X) is chosen as a

decreasing function of X with g(0) = 1 and inf g(X) = 0.

Figure 5.1: Schematic diagram of the interactions of the cell populations for system
(5.1.1)

Based on the above assumptions, we have the following mathematical model which depict the

various interactions between the compartments (see the Schematic diagram in Figure 5.1):

dSh
dt

= Π− βShB + αf(X)Si − λg(X)Sh − dSh,

dSi
dt

= βShB − αf(X)Si + λg(X)Sh − diSi,

dB

dt
= rB

(
1− B

K

)
− dbXB, (5.1.1)

dX

dt
= eηSi − θX

with initial values Sh(0) = Sh0 > 0, Si(0) = Si0 > 0 and B(0) = B0 > 0 and X(0) = X0 > 0

at t = 0.
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5.2 Model Properties

5.2.1 Non-negative invariance and boundedness

In this Subsection, we discuss the non-negativity of the solutions and boundedness of our

proposed mathematical model to prove that the system (5.1.1) is biologically well-posed and

plausible. We now present the following theorem which ensures the non-negativity of the

solutions of system (5.1.1).

Theorem 5.2.1 All the solutions of the system (5.1.1) along with the initial conditions are

non-negative for all t > 0.

Proof. To prove the theorem, let us first assume that y1(t) = Sh(t), y2(t) = Si(t), y3(t) =

B(t) and y4(t) = X(t). Now, we can rewrite system (1) in the following form:

dY

dt
= Γ(Y ), Γ = (Γ1,Γ2,Γ3,Γ4)

⊤, Y = (y1, y2, y3, y4)
⊤ (5.2.1)

where ⊤ denotes the transpose and Γi’s denote the right hand sides of system (5.1.1).

Now, for system (5.2.1), it is easy to check that

Γi(Y )|yi=0, Y ∈R4
+
≥ 0. (5.2.2)

Indeed, we can see that the following relations hold.

Γ1(0, y2, y3, y4) = Π + αf(y4)y2 ≥ 0, whenever y2 ≥ 0, y3 ≥ 0, y4 ≥ 0,

Γ2(y1, 0, y3, y4) = βy1y3 + λg(y4)y1 ≥ 0, whenever y1 ≥ 0, y3 ≥ 0, y4 ≥ 0,

Γ3(y1, y2, 0, y4) = 0, whenever y1 ≥ 0, y2 ≥ 0, y4 ≥ 0,

Γ4(y1, y2, y3, 0) = eηy2 ≥ 0, whenever y1 ≥ 0, y3 ≥ 0, y4 ≥ 0.

Thus, using the result in the article [Krasnosel’skii (1968)], we can say that the conditions

denoted by (5.2.2) clearly ensures the non-negativity of the solutions y1(t), y2(t), y3(t) and

y4(t) of system (5.1.1) under the given initial conditions. It means that all the solutions of

the system (5.1.1) exists in the region R4
+ and the solutions remain non-negative for all t > 0.

This also implies that the non-negative octant R4
+ becomes an invariant region for system

(5.1.1).

It is also very essential to prove that all the model cell populations of system (5.1.1) are

bounded for all time t > 0. This justifies that the system (5.1.1) is well-posed and realistic.

The next theorem demonstrates the boundedness of the solutions of system (5.1.1).
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Theorem 5.2.2 All the non-negative solutions of system (5.1.1) enter the domain denoted

by D ⊂ R4
+ and are ultimately bounded for all possible time t > 0 where the region B is defined

as:

B =

{
(Sh, Si, B,X) ∈ R4

+ : 0 ≤ Sh + Si ≤ D1, 0 ≤ B ≤ D2, 0 ≤ X ≤ D3

}
(5.2.3)

where Di’s for i = 1, 2, 3 are given as:

D1 =
Π

d
, D2 = max {K,B(0)} and D3 =

eηΠ

θd
.

Proof. First, let us consider the first two equations of system (5.1.1). Adding these two

equations, we get
d(Sh + Si)(t)

dt
= Π− (d+ di)(Sh + Si)(t)

which implies

dU(t)

dt
≤ Π− dU(t) = dD1 − dU(t), (5.2.4)

where U(t) = (Sh + Si)(t). Now, using the well-known comparison principle [Birkhoff and

Rota (1978)] to (5.2.4), we achieve the following inequality:

0 < U(t) < D1(1− e−dt) + U(0)e−dt for t > 0. (5.2.5)

This implies that U(t) ≤ D1 if U(0) ≤ D1.

Now, we consider the third equation of system (5.1.1). Using Theorem 5.2.1, we can write

the following inequality:

dB(t)

dt
≤ rB(t)(1− B(t)

K
). (5.2.6)

Integrating this inequality with the corresponding initial condition i.e. B(0) > 0, we get

0 ≤ B(t) ≤ KB(0)

B(0)(1− e−rt) +Ke−rt
≤ D2 (5.2.7)

where D2 = max {K,B(0)}.
Again, using the result 0 ≤ Si ≤ Π

d and repeating the similar argument, we also obtain

the following:
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0 < X(t) < D3(1− e−θt) +X(0)e−θt for t > 0 (5.2.8)

which implies that X(t) ≤ D3 if X(0) ≤ D3.

Hence, all the solutions (Sh, Si, B,X) of system (5.1.1) which start in the region B, remain

within it for all t > 0. This evidently makes B an invariant region for system (5.1.1). Also,

the region B is bounded and this implies that all the mentioned solutions of the system (5.1.1)

are ultimately bounded.

Here, it is important to note that all such solutions of system (5.1.1) with the non-negative

initial conditions finally arrive into B and stay in it. This property is justified by the definition

of the region B and the following relationships:

dSh
dt

(t)

∣∣∣∣
∂B

< 0,
dSi
dt

(t)

∣∣∣∣
∂B

< 0,

dB

dt
(t)

∣∣∣∣
∂B

< 0,
dX

dt
(t)

∣∣∣∣
∂B

< 0, (5.2.9)

which are actually carried out at the points of the boundary ∂B of B. Also, note that, the

relationships in (5.2.9) hold outside the region B which completely ensures the boundedness

of all solutions (Sh, Si, B,X) of system (5.1.1) with the above mentioned non-negative initial

conditions.

5.2.2 Equilibrium points and their existence

In this Section, some basic properties such as existence and stability of equilibria for system

(5.1.1) are illustrated.

The equilibrium points are obtained by equating the right-hand side of each equation in

(5.1.1) to zero and it is found that system (5.1.1) has two non-negative equilibria, namely

• the trivial disease-free equilibria E0 =

(
Π
d , 0, 0, 0

)
, which always exists,

• for the endemic equilibrium E∗(S∗
h, S

∗
i , B

∗, X∗) ̸= 0 to exist, its coordinates must satisfy

the following conditions: S∗
h > 0, S∗

i > 0, B∗ > 0 and X∗ > 0 where

S∗
h =

r[αf(X∗) + di]θX
∗

eη[βK(r − dbX∗) + rλg(X∗)]
, S∗

i =
θX∗

eη
, B∗ =

K

r
(r−dbX∗) and X∗ =

r

db
(1−B

∗

K
).

Here, using Theorem 5.2.2 i.e the fact that the bacterial concentration B(t) can not

exceed the carrying capacity K of the M. leprae bacterial population, it follows that
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X∗ = r
db
(1− B∗

K ) > 0. Also, this implies that S∗
i = θX∗

eη > 0 as X∗ > 0.

Now, considering the formulas of S∗
h and B∗, we can see that both S∗

h > 0 and B∗ > 0

provided that the condition r > dbX
∗ holds. This ensures the existence of positive endemic

equilibrium E∗ of system (5.1.1). We now summarize the previous discussions by constructing

the following lemma.

Lemma 5.2.1 The positive endemic equilibrium E∗ of system (5.1.1) exists if r > dbX
∗ is

satisfied.

Remark 5.2.1 The sufficient condition for the existence of the endemic equilibrium E∗ is

that whenever the ratio of intrinsic growth rate and the rate at which M. leprae bacteria is

killed by the drug therapy, exceeds X∗. Biologically, this is well supported as it means that the

growth rate (r) of the bacterial population and the killing rate (db) of the bacteria by MDT

plays a crucial role in this scenario and if the ratio becomes relatively higher than endemic

state MDT concentration X∗, the infected steady state becomes feasible i.e begins to exist.

5.2.3 Stability analysis

In this Section, at first, we deduce the basic reproduction number R0 and discuss the local

asymptotic stability of the disease-free equilibrium E0.

Biologically, we can say that R0 is the average number of new secondary infections in

a completely susceptible Schwann cell population. To evaluate R0, we choose the next-

generation matrix method [Heffernan et al. (2005)]. We consider only the infected compart-

ments (Si(t), B(t) and X(t)) of system (5.1.1) i.e. to be precise, the second, third and fourth

equations of system (5.1.1). Now, let us define the three dimensional matrices F and V as the

matrices describing the new infection terms and the remaining transfer terms evaluated at

the disease-free equilibrium E0 =
(
Π
d , 0, 0, 0

)
, respectively. The linearization of the second,

third and fourth equations of system (5.1.1) at the disease-free state E0 can be rewritten in

the following form:
dW

dt
= (F − V)W

where W = (Si, B,X)⊤ and the matrices F and V are given as:

F =


0 βΠ

d
λqΠ
d

0 0 0

eη 0 0

 and V =


di 0 0

0 −r 0

0 0 θ

 . (5.2.10)
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Using the spectral radius of the next-generation matrix a threshold criterion i.e. the basic

reproduction number R0 can be determined which is actually the largest eigenvalue (ρ) of

the matrix FV−1. Hence,

R0 = ρ(FV−1) = max
|κ|

det(κI −FV−1)

where I is the identity matrix of order 3 and

FV−1 =


0 −βΠ

dr
λqΠ
dθ

0 0 0
eη
di

0 0

 . (5.2.11)

So, finally we have

R0 =

√
λΠqeη

ddiθ
. (5.2.12)

Now, the discussion of local stability of the disease-free equilibrium E0 with respect to the

basic reproduction number R0 can be summarised in the following theorem.

Theorem 5.2.3 The system is stable at E0 if R0 < 1 and becomes unstable for R0 > 1.

Consequently, a transcritical bifurcation occurs at the critical value R0 = 1.

At the endemic equilibrium E∗ = (S∗
h, S

∗
i , B

∗, X∗), the Jacobian matrix of system (5.1.1)

takes the following form:

J (E∗) =


M∗

11 M∗
12 −M∗

13 −M∗
14

M∗
21 M∗

22 M∗
13 M∗

14

0 0 M∗
33 M∗

34

0 M∗
42 0 M∗

44

 .

where

M∗
11 = −(βB∗ + λg(X∗) + d) = −(M∗

21 + d), M∗
12 = αf(X∗), M∗

13 = βS∗
h,

M∗
14 = −αf ′(X∗)S∗

i + λg′(X∗)S∗
h, M∗

21 = βB∗ + λg(X∗), M∗
22 = −αf(X∗) − di,

M∗
33 = r − 2rB∗

K − dbX
∗, M∗

34 = −dbB∗, M∗
42 = eη, M∗

44 = −θ.

Expanding det(J − υI) = 0, we get the characteristic equation of system (5.1.1) at the

endemic equilibrium point E∗ as follows:

Y (υ) = υ4 + ψ1υ
3 + ψ2υ

2 + ψ3υ + ψ4 = 0 (5.2.13)

where
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ψ1 = −(M∗
11 +M∗

22 +M∗
33 +M∗

44),

ψ2 =M∗
33M

∗
44 +M∗

33(M
∗
11 +M∗

22) +M∗
44(M

∗
11 +M∗

22) +M∗
11M

∗
22 −M∗

42M
∗
14 −M∗

21M
∗
12,

ψ3 =M∗
42M

∗
14(M

∗
11 +M∗

21 +M∗
33)−M∗

33M
∗
44(M

∗
11 +M∗

22)−M∗
33(M

∗
11M

∗
22 −M∗

21M
∗
12)

−M∗
44(M

∗
11M

∗
22 −M∗

21M
∗
12)−M∗

13M
∗
34M

∗
42,

ψ4 =M∗
13M

∗
34M

∗
42(M

∗
11 +M∗

21) +M∗
33M

∗
44(M

∗
11M

∗
22 −M∗

21M
∗
12)−M∗

14M
∗
33M

∗
42(M

∗
11 +M∗

21).

The characteristic equation Y (υ) = υ4 + ψ1υ
3 + ψ2υ

2 + ψ3υ + ψ4 = 0 denoted by equation

(5.2.13) will play the dominant role in determining the local asymptotic stability of E∗ for

system (5.1.1). Hence, using Routh-Hurwitz criterion for system (5.1.1), we can obtain the

following theorem:

Theorem 5.2.4 At the endemic equilibrium point E∗, all the roots of the characteristic

polynomial of system (5.1.1) will be negative real or possess negative real parts i.e. system

(5.1.1) will be locally asymptotically stable at E∗ if the following four conditions hold true:

ψ1 > 0, ψ4 > 0, ψ1ψ2 > ψ3 and ψ1ψ2ψ3 − ψ2
3 − ψ2

1ψ4. (5.2.14)

In view of the above discussion, we can also present the following result.

Proposition 5.2.1 The endemic equilibrium point E∗ is stable if the condition R0 > 1 is

satisfied.

5.3 Hopf-bifurcation Analysis of the System

A system exhibits Hopf-bifurcation at the endemic steady state if the characteristic equa-

tion of the system at that state possesses a pair of purely imaginary eigenvalues and

all the other eigenvalues are negative real or with negative real parts. We now study

the local Hopf-bifurcation at the endemic equilibrium E∗. Here, for E∗, we consider

ζ(= (Π, β, α, λ, d, di, r,K, db, e, η, θ)) ∈ R is the generic bifurcation parameter of the system.

Let, Φ : (0,∞) −→ R be a continuously differentiable function of ζ defined as

Φ(ζ) = ψ1(ζ)ψ2(ζ)ψ3(ζ)− ψ2
3(ζ)− ψ4(ζ)ψ

2
1(ζ). (5.3.1)

For the Hopf-bifurcation to occur, there exists a ζ∗ ∈ (0,∞) in the spectrum ψ(ζ) = {υ :

Y (υ) = 0} of the characteristic equation (5.2.13), at which a pair of complex eigenvalues
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5.3 Hopf-bifurcation Analysis of the System

υ(ζ∗) and ῡ(ζ∗) ∈ ψ(ζ) satisfy the following two conditions:

Re[υ(ζ∗)] = 0, Im[υ(ζ∗)] = ω0 > 0.

In addition, the following transversality condition also must have to be satisfied :

dRe(υj(ζ))

dζ

∣∣∣∣
ζ=ζ∗

̸= 0 for j = 1, 2. (5.3.2)

Theorem 5.3.1 The endemic equilibrium E∗ of system (5.1.1) undergoes Hopf-bifurcation

at ζ = ζ∗ ∈ (0,∞) if and only if

ψ2(ζ
∗) > 0, ψ3(ζ

∗) > 0, ψ4(ζ
∗) > 0, ψ1(ζ

∗)ψ2(ζ
∗)− ψ3(ζ

∗) > 0, (5.3.3)

Φ(ζ∗) = 0 and ψ3
1ψ

′
2ψ3(ψ1 − 3ψ3)− (ψ2ψ

2
1 − 2ψ2

3)(ψ
′
3ψ

2
1 − ψ′

1ψ
2
3) ̸= 0. (5.3.4)

In addition, at ζ = ζ∗, the characteristic equation contains a pair of purely imaginary eigen-

values and the other two eigenvalues will be negative real or having negative real parts where

differentiation with respect to ζ is denoted by primes.

Proof. From the condition, Φ(ζ∗) = 0, the characteristic equation (5.2.13) can be rewritten

in the form

(υ2 +
ψ3

ψ1
)(υ3 + ψ1υ +

ψ1ψ4

ψ3
) = 0. (5.3.5)

We now denote the four roots of equation (5.3.5) in the complex domain by υi for i = 1, 2, 3, 4

and let, the pair of imaginary roots at ζ = ζ∗ being υ1 = ῡ2. Hence, we get that{
υ3 + υ4 = −ψ1, ω2

0 + υ3 + υ4 = ψ2,

ω2
0(υ3 + υ4) = −ψ3, ω2

0υ3υ4 = ψ4

where ω0 = Im[υ1(ζ
∗)]. Considering this set of equations, we can see that ω0 =

√
ψ3

ψ1
and

if ψ3, ψ4 are chosen as complex conjugates then we have that 2Re[υ3] = −ψ1. From the

characteristic equation (5.2.13), it follows that υ3 < 0, υ4 < 0 if υ3, υ4 are real roots. Now, to

verify the transversality conditions, we substitute υj(ζ) = σ1(ζ)± iσ2(ζ) in equation (5.2.13)

and differentiating, it follows thatK(ζ)σ′1(ζ)− L(ζ)σ′2(ζ) +M(ζ) = 0,

L(ζ)σ′1(ζ) +K(ζ)σ′2(ζ) +N(ζ) = 0,
(5.3.6)

where the values of K(ζ), L(ζ), M(ζ) and N(ζ) are given as
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K(ζ) = 4σ31 − 12σ1σ2 + 3ψ1(σ
2
1 − σ22) + 2ψ2σ1 + ψ3,

L(ζ) = 12σ21σ2 + 6ψ1σ1σ2 − 4σ31 + 2ψ2σ1,

M(ζ) = ψ1σ
3
1 − 3ψ′

1σ1σ
2
2 + ψ′

2(σ
2
1 − σ22) + ψ′

3σ1,

N(ζ) = 3ψ′
1σ

2
1σ2 − ψ′

1σ
3
2 + 2ψ′

2σ1σ2 + ψ′
3σ1.

Now, solving (5.3.6) for σ′1(ζ), we get that

dRe(υj(ζ))

dζ

∣∣∣∣
ζ=ζ∗

= σ′1(ζ)
∣∣
ζ=ζ∗

= − [L(ζ∗)N(ζ∗) +K(ζ∗)M(ζ∗)]

K2(ζ∗) + L2(ζ∗)

=
ψ3
1ψ

′
2ψ3(ψ1 − 3ψ3)− 2(ψ2ψ

2
1 − 2ψ2

3)(ψ
′
3ψ

2
1 − ψ′

1ψ
2
3)

ψ4
1(ψ1 − 3ψ3)2 + 4(ψ2ψ2

1 − 2ψ2
3)

2
.

From this result, we can see that ψ4
1(ψ1 − 3ψ3)

2 + 4(ψ2ψ
2
1 − 2ψ2

3)
2 > 0 always. Hence,

dRe(υj(ζ))

dζ

∣∣∣∣
ζ=ζ∗

̸= 0

holds if

ψ3
1ψ

′
2ψ3(ψ1 − 3ψ3)− 2(ψ2ψ

2
1 − 2ψ2

3)(ψ
′
3ψ

2
1 − ψ′

1ψ
2
3) ̸= 0.

Thus, Hopf-bifurcation occurs for the critical value ζ = ζ∗ at a neighbourhood of the endemic

equilibrium E∗ of system (5.1.1).

Remark 5.3.1 Hopf-bifurcating periodic solutions appear for our system cell populations in

the neighbourhood of E∗. This indicates that the system (5.1.1) undergoes stability switches

as an effect of administering MDT drug concentrations into the human body. The impact

of λ as well as the infection rate β is notable here while the drug efficacy rate of MDT η

contributes most significantly to this behavior of the densities of the steady state populations.

5.4 Numerical Simulations

In this Section, we perform numerical simulations for our four dimensional mathematical

model using Matlab 2016A to validate and justify all of our analytical findings achieved in

the Subsections 5.2.2, 5.2.3 and Section 5.3. These numerical findings help us interpreting

the dynamical shifts of our system cell populations in presence of MDT and more specifically,

the procedure of infection of recovered Schwann cells as a resultant of gradually waning drug
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Table 5.1: List of parameter values used in numerical simulations for system
(2.1.1)

Parameter Assigned Value (Unit) Range

Π 35 (cells day−1) 20-50
β 0.0022 (mm3 day−1) 0.0012-0.0058
α 0.0001 (mm3 day−1) 0.00008-0.0002
λ 0.00042 (mm3 day−1) 0.0002-0.00045
d 0.004 (day−1) 0.0015-0.006
di 0.0036 (day−1) 0.0001-0.0046
η 0.026 -
r 0.1 (day−1) -
K 500 (mm−3) 200-700
db 0.0022 (day−1) 0.0014-0.003
e 1.1 -
θ 0.00012 (µM day−1) 0.0001-0.0002

dose efficiency. Separate simulations have been performed for PB and MB cases considering

different values of infection rates depending on bacterial index (BI) and drug efficacy rates.

To carry this out, we use a set of parameters provided in Table 5.1. Some of the values of

these parameters for system (5.1.1) are assumed and other values are either obtained from

several literatures or estimated from different elemental sources [Fischer (2017); Talhari

et al. (2015)]. For the purpose of numerical simulations, we have used the explicit forms as

f(X) = X
1+X and g(X) = 1

1+X . We choose the initial values in number dependant according

to the cardinal rule of scientific hypothesis.

In Figure 5.2, we have demonstrated the behaviour of the trajectories of the system

without drugs for R0 > 1 at the endemic state E∗. It is evident that in this scenario,

system cell populations exhibits periodic oscillatory solutions i.e. the densities of healthy

Schwann cells (SH(t)), infected Schwann cells (SI(t)) and M. leprae bacteria (B(t)) fluctuate

rapidly in the neighbourhood of E∗ in the absence of drug. Biologically, it clearly justifies

the essence of incorporating MDT therapy into the system for the densities of the system

populations to arrive in a stable state.

Next, in Figure 5.3, solution trajectories of the populations of system (5.1.1) the

endemic state E∗ have been described for three different values of η i.e. for the values

of η = 0.018, 0.02, 0.022. Our findings suggests that amplitude of the fluctuation in the
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Figure 5.2: Dynamical nature of the trajectories the healthy Schwann cells (SH(t)),
infected Schwann cells (SI(t)), M. leprae bacteria (B(t)) of the system without drugs
at the endemic state E∗ for R0 > 1. The initial values of the system populations
are considered as: SH(0) = 100, SI(0) = 5, B(0) = 20 and values of all the other
parameters are chosen from Table 5.1.

densities of SH cells, SI cells and M. leprae bacteria B decreases as η is increased from

the value 0.018. This specific pattern indicates that the system populations tends to a sta-

ble concentration gradually with the increasing of the value of the drug efficacy rate η of MDT.

In Figure 5.4, bifurcation diagrams of the populations of system (5.1.1) with respect

to the efficacy rate η are depicted at a neighbourhood of the endemic equilibrium E∗. For

the value of η < 0.024, periodic oscillatory solutions are observed but as the value of η

crosses the critical value η = η∗ = 0.024, system becomes stable. Thus, it clearly indicates

that the efficacy rate of MDT, η plays a crucial role in leprosy pathogenesis as the whole

dynamical shifting of the behaviour of the trajectories of the system cell populations depends

primarily on this parameter. Biologically, this reflects that MDT therapy with an efficacy

rate η greater than the threshold value η = η∗ is strictly recommended to reduce the disease

dissemination process effectively into the human body.

In Figure 5.5, we have demonstrated the Poincare section for the parameter values of
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Figure 5.3: Comparison of the oscillatory solutions of the healthy Schwann cells
(SH(t)), infected Schwann cells (SI(t)), M. leprae bacteria (B(t)) of system (5.1.1)
for different values of drug efficacy rate η at the steady state when R0 > 1. Trajecto-
ries coloured in blue, red and brown indicate the densities of the system population for
the values of η = 0.018, η = 0.02 and η = 0.022. Values of rest of the parameters used
in the simulation of this Figure are taken from Table 5.1.

system (5.1.1) represented in Table 5.1. Here, we have actually plotted Ṡi(t) vs Si(t) using

six different values of η. The discrete dynamical behaviour of our continuous system (5.1.1)

through the intersection of periodic orbits in the state space is investigated and represented

here to establish a permissible range of drug efficacy η for which the system remains stable.

This Figure describes that the points assemble together to form a definite pattern occupying

a subset of the phase space. The values of Ṡi(t) ranges over nearly ≈ 1 to 3.56 for all the

Subfigures but we can see that this specific pattern is not deviated or more particularly,

for the values of η = 0.024, 0.025, 0.026, it does not lose the shape as the values of Si(t)

is increased. This dynamical nature of system (5.1.1) precisely forms the origination of an

attractor such that the system trajectories intersect the plane in this pattern. This attractor

is a limit cycle and hence, we can conclude that the system is stable for this specific ranges

of values of η. Also, from this Figure, our findings confirm the global asymptotical stability

of system (5.1.1) as we have opted for Poincare section method here in exhibiting this
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Figure 5.4: Demonstration of bifurcation diagrams and oscillation of the model pop-
ulations for system (5.1.1) plotted as a function of drug efficacy rate η for R0 > 1.
Here, steady state values of all the populations are plotted together with the mini-
mum/maximum of the periodic solutions when it exists. We choose the values of the
parameters as given in Table 5.1. Unstable and stable zones are clearly displayed by
the dotted vertical line drawn at the critical value η = η∗ = 0.024.

phenomenon instead of extensive and tedious analytical calculations.

Next, in Figure 5.6, we have plotted time evolution of the sum of all four Lyapunov’s

exponents of the model populations for system (5.1.1) for different values of η and the

corresponding dynamics of Lyapunov’s exponents are described. To indicate the PB types

of cases, the value of β is chosen considerably low i.e. β = 0.0032 mm3 day−1. The values of

drug-efficacy rate η are chosen as η = 0.027, 0.06 and 0.07 and all the other parameter values

are chosen here according to the values given in Table 5.1. Investigating the Lyapunov’s

exponents for our system enables us to detect the presence of chaos and quantify the

stability or instability of the system. Figure 5.6 actually determines the system’s sensitivity

to initial conditions and more precisely, measures the robustness of the densities of the

system populations: Sh0 , Si0 , B0 and X0 at the time t = 0. Moreover, positivity of the

110



5.4 Numerical Simulations

48.2 48.4 48.6 48.8 49

S
i
(t)

1

1.2

1.4

1.6
d

o
t 

S
i
(t

)
Poincare map for η = 0.02

48 48.2 48.4 48.6 48.8 49

S
i
(t)

1

1.5

2

d
o

t 
S

i
(t

)

Poincare map for η = 0.021

47.5 48 48.5 49

S
i
(t)

1

1.5

2

2.5

d
o

t 
S

i
(t

)

Poincare map for η = 0.023

47 47.5 48 48.5 49

S
i
(t)

1

1.5

2

2.5

3

d
o

t 
S

i
(t

)

Poincare map for η = 0.024

46.5 47 47.5 48 48.5 49

S
i
(t)

1

1.5

2

2.5

3

3.5

d
o

t 
S

i
(t

)

Poincare map for η = 0.025

46.5 47 47.5 48 48.5 49

S
i
(t)

1

2

3

4

d
o

t 
S

i
(t

)

Poincare map for η = 0.026

Figure 5.5: Poincare section for the set of parameter values for system (5.1.1). Here,
the investigation is performed for six different values of efficacy rate η to achieve the
six Subfigures. The values of parameters are chosen as Π = 50 cells day−1, β = 0.00014
mm3 day−1 and all the other parameters are taken from Table 5.1.

sum of Lyapunov’s exponents means that the system is sensitive to the initial values and

possesses chaotic nature. The obtained dynamics of Lyapunov’s exponents explains that for

η = 0.027, the sum of the exponents remains negative suggesting that system (5.1.1) remains

stable in this case. This finding also supports the results achieved in Figure 5.4. Also,

for higher values of efficacy rate i.e. for η = 0.06, 0.07, system exhibits chaotic behaviour

and ultimately, becomes unstable again which is validated by the positive values of sum

of Lyapunov’s exponents of all the system populations. Specifically, it suggests us that

applying MDT for a prolonged period of time i.e. from 6 months to 12 months in PB cases

with a very high efficacy rate (i.e. for η > 0.059) on a leprosy affected person, does not

actually exhibit any fruitful result [Narang et al. (2022)]. Rather, it induces substantial

drug resistance [Sansarricq et al. (2004)] and severe adverse drug effects [Deps et al. (2007);

Kaluarachchi et al. (2001)] into the human body. This indicates a treatment tenure of at

least 120 days for PB cases which also supports the WHO recommended PB multidrug
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Figure 5.6: Plot of the sum of all the Lyapunov’s exponents of the model cell populations
for system (5.1.1) for Paucibacillary (PB) types of infection. Values of the parameters
are taken β = 0.0032 mm3 day−1 and K = 420 mm−3 and the values of the other
parameters are chosen from Table 5.1. Trajectories coloured in blue, pink and red
indicate the dynamics of the sum of the exponents of SH cells, SI cells, bacteria B(t)
and MDT concentration X(t) with time for the values of η = 0.027, η = 0.06 and
η = 0.07 respectively.

therapy regimen completely [Organization et al. (2012)].

Similarly, in Figure 5.7, time evolution of the sum of all the Lyapunov’s exponents of our

system cell populations are demonstrated for the values of η = 0.055, 0.06 and 0.07 for 300

days. To simulate this Figure, value of β is considered as β = 0.0071 to specifically indicate

the infection rate of multibacillary (MB) types of leprosy patients. Simulation shows that

our system populations starts getting stabilized after 300 days of treatment with safe and

effective efficacy zone of η ∈ (0.025, 0.059) which is also recognized by the WHO mentioned

guidelines for multibacillary leprosy patients.

Figure 5.8 investigates and presents the sensitivity of the level of treatment i.e. the drug

efficacy rate (η) which we incorporate in the system with time as the infection rate (β)

increases. The values of β has been varied in the range 0.001− 0.009 to simulate this Figure.
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Figure 5.7: Plot of the sum of all the Lyapunov’s exponents of the model cell populations
for system (5.1.1) for Multiibacillary (MB) types of infection. Values of the parameters
are taken β = 0.0071 mm3 day−1 and K = 480 mm−3 and the values of the other
parameters are chosen from Table 5.1. Trajectories coloured in blue, pink and red
indicate the dynamics of the sum of the exponents of SH cells, SI cells, bacteria B(t)
and MDT concentration X(t) with time for the values of η = 0.055, η = 0.07 and
η = 0.06 respectively.

According to the sensitivity profile displayed in this Figure, we can clearly see that η is

highly sensitive to the infection rate β which regulates the overall progression of infection

into a leprosy patient.

Finally, the combined impact of η and λ on the basic reproduction number R0 and also

the impact of η and β on R0 has been displayed in the Subfigure (a) and Subfigure (b)

respectively in Figure 5.9. In Subfigure (a), we have demonstrated the contour plot of η, λ

and R0 in the three dimensional space where both the values of η and λ are varied over the

interval (0, 1). The plane denoted by R0 = 1 plays a decisive role here as it intersects the

other two planes. This intersection particularly contributes to present the coupled threshold

values of level of treatment where η plays a determining role for the control of the disease

progression. In the contour plot denoted by Subfigure (b), the intersection of the plane

R0 = 1 provides us a decisive criteria for the feasibility of the endemic state E∗ and its
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Figure 5.8: Analysis of the sensitivity of the drug efficacy rate (η) with time as the
infection rate (β) increases for system (5.1.1) for 100 days of treatment. As the colour
becomes darker from light, the figure indicates a higher sensitivity profile. All the
parameter values are chosen from Table 5.1 to simulate this Figure.

dependency on the two most significant parameters η and β for finding an effective yet safe

drug dose regimen for leprosy.

In view of the above numerical simulations and the analytical results obtained in the

previous Sections, we now present the following Table 5.2 which describes the dynamical

behaviour of the system and overall impact of the multidrug therapy for different values of

efficacy rate η into a leprosy affected person.

Table 5.2: Classification of the influence of MDT based on the values of η for
system (5.1.1)

Range of values of η Overall impact of MDT on a leprosy patient

0 < η ≤ 0.024 Ineffective or mildly effective
0.025 < η < 0.059 Safe and strongly effective

η ≥ 0.06 Unsafe
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Figure 5.9: Three dimensional contour plots of different pairs of parameters with the
basic reproduction number R0 for system (5.1.1). Values of rest of the parameters used
here are chosen from Table 5.1.

5.5 Discussion

Fundamental issues involving the drug-effectiveness of MDT therapy, drug overdose situation,

proper length or duration of treatment, adverse therapeutic effects and re-emergence of the

infection [Sales et al. (2013); Gelber and Grosset (2012); Penna et al. (2014)] in leprosy are

hardly investigated and analyzed from a mathematical point of view. To fill these gaps,

we have presented a four dimensional nonlinear ODE based mathematical model describing

the infection of healthy Schwann cells and recovery of the infected cells through multidrug

therapy and reinfection of the recovered cells of the peripheral nervous system.

In this Chapter, we have obtained mathematical constraint about the existence of the

positive endemic equilibrium E∗ in Lemma 5.2.1 in Section 5.2.2 and the local asymptot-

ical stability conditions of system (5.1.1) at E∗ in Theorem 5.2.4 by using the well-known

Routh-Hurwitz criterion. We have also derived the basic reproduction number R0 for system

(5.1.1). For R0 < 1, the disease leprosy is eliminated and this clearly indicates occurrence of

a transcritical bifurcation at the critical value R0 = 1. The necessarily required transversal-

ity condition for the occurrence of Hopf-bifurcation is established by the Theorem 5.3.1 in

Section 5.3 which indicates that system (5.1.1) behaves in a stable manner as η crosses the

threshold value η∗. This behavioural change in the pattern of the solutions of the system is

observed due to the downregulating and reprogramming effect of healthy adult cells within

the body of a leprosy affected person as demonstrated by Masaki et al. (2013). The numer-
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ical interpretations in Figure 5.3, Figure 5.4, Figure 5.5 and Figure 5.6 completely suggest

us that varying the drug efficacy rate of all the three components of MDT within the fixed

range 0.025− 0.059 for approximately 120 days in PB cases and 300 days in MB cases helps

the system getting stabilized and thus, the dissemination of leprosy to different human or-

gans can evidently be controlled. Impact of MDT has explored two simultaneously occurring

phenomenon i.e. the spontaneous recovery of the infected cells Si and the re-infection of the

recovered cells due to the waning effect of MDT which predicts that the drug efficacy rate η

of MDT is the most influential parameter for system (5.1.1) monitoring the overall stability

situation and dynamical shift of the system. For very low efficacy rate, weak bactericidal

activity of MDT against M. leprae is noted. Due to this, for η ≤ η∗ = 0.024, oscillatory

periodic solutions of system (5.1.1) are noticed which indicates that MDT in this low efficacy

zone is ineffective and any notable improvement in the reduction of the bacterial load are

not observed [Shepard et al. (1981); Prasad and Kaviarasan (2010)]. This findings is also

supported by the recent clinical studies [Penna, Buhrer-Sekula, Pontes, Cruz, Gonçalves and

Penna (2014); Penna et al. (2017)] where based on the randomized and controlled clinical

trial on 613 newly diagonized untreated leprosy patients in China, India and Bangladesh, the

authors have confirmed that an uniform treatment method called uniform multidrug therapy

(U-MDT) can be an acceptable option for future treatment of leprosy worldwide especially

in the endemic countries. Moreover, from the findings of Figure 5.6, Figure 5.8 and Table

5.2, we can interpret that for the range of values of η > 0.06, solutions of system (5.1.1)

becomes chaotic and ultimately unstable. Hence, incorporating an abruptly higher drug dose

is unsafe for the leprosy patients and would eventually have a negative effect on the human

body because it induces drug resistance and severe adverse drug effects such as irreversible

nerve damages, blindness etc. [Guragain et al. (2017); Sansarricq et al. (2004)].

Considering the Ridley–Jopling classification of leprosy Ridley et al. (1962), we can

see that due to higher values of intrinsic growth rate (r) and carrying capacity (K) of M.

leprae, higher range of values of η in between 0.052 − 0.059 should necessarily be used as

an effective treatment method for lepromatous leprosy cases (LL). For PB cases (especially

in tuborculoid TT), our analytical and numerical findings from Figure 5.5, Figure 5.6 and

Figure 5.8 suggests that a lesser efficacy rate of varying η within the range 0.025 − 0.04 for

nearly 120 days will be more beneficial due to the smear-negative property and low bacterial

index with BI < 2 (skin lesions ≤ 5). Furthermore, recent experimental studies suggest

that framing a shorter period of effective treatment policy is of major importance always to

avoid relapse and irregularities in treatment [Gelber et al. (2004)]. The reduced multidrug

therapy regimen recommended by WHO for leprosy is scheduled as 6 months in PB cases

and 6 - 12 months in MB cases [Organization et al. (1998); Rodrigues and Lockwood (2011)].
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5.5 Discussion

During the numerical simulation portion, specifically in Fig. 5.6, we have chosen the value

of infection rate β = 0.0032 considerably low to indicate actually the infection of PB types

of leprosy patients. This produces the result that the system starts getting stabilized after

120 days i.e. at least 120 days (or 4 months) of treatment with maintaining the efficacy

range η ∈ (0.025, 0.059) is recommended for PB cases. For the infection of MB types of

patients, bacterial load is much higher as BI ≥ 2 and hence, β = 0.0071 is chosen to simulate

Fig 5.7. In this case, our outcomes in Figure 5.4, Figure 5.7 suggest that drug efficacy rate

η cannot be increased more than 0.059 as the cell concentrations of our system becomes

unstable. After 12 months, presence of viable load of bacilli after treatment with MDT are

observed in some specific cases for patients with high bacillary load [Shetty et al. (2003); Kar

et al. (2004); Gupta et al. (2005); Narang et al. (2022)]. Hence, strict long-term followup

is needed and the overall health situations of every leprosy patient should be monitored

very carefully after RFT (release for treatment). Indeed, if required, for the PB patients

and especially, for the MB patients with high initial BI [Prasad and Kaviarasan (2010)], the

pattern of sensitivity profile of η vs. β demonstrated in Figure 5.8 and Table 5.2 suggests

that treatment can be continued after the recommended period within the prescribed drug

efficacy zone for some cases considering different status of the disease.
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Chapter 6

A Caputo-Fabrizio Fractionalized

Mathematical Model for

Investigating the Memory-regulated

Infection Mechanism in Leprosy

Dynamical behavior of any living microorganism such as M. leprae not only depends on the

conditions of its current state (e.g., substrate concentration, medium condition, etc.) but

also on those of its previous states. The associated M. leprae-induced infection procedure

and the pattern of cellular interactions are distinguishable in different memory stages.

We have precisely utilized this phenomena in this Chapter6 and extended our previously

constructed integer-order derivative model to a fractionalized system. Here, we have

developed a three-dimensional Caputo-Fabrizo fractionalized mathematical model involving

concentrations of healthy Schwann cells, infected Schwann cells, and M. leprae bacteria

in order to predict the dynamical changes in the cells during the disease dissemination

process while incorporating the effect of memory on system cell populations, especially

on the M. leprae bacterial population. The memory effect can be incorporated into an

ODE-based system by introducing fractional-order (ζ ∈ (0, 1]) derivatives as an index of

memory [Du et al. (2013)]. The significance of varying the fractional order in (0, 1] is

that ζ tends to zero, which indicates that the fractionalized system has ideal memory

and that the system is free from memory as ζ approaches 1. Most importantly, we have

6The major portion of this chapter is published in the Journal Mathematics, MDPI, 11, 3630,
August, 2023.
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formulated and investigated a fractionalized optimal-control-induced system comprising

the combined drug dose therapy of Ofloxacin and Dapsone intended to achieve a more

realistic treatment regime for leprosy. We have proved the existence and uniqueness of

solutions of the fractionalized model with the help of the renowned Banach Fixed-Point

theorem and investigated the stability by adopting Picard’s T-stability theory. Furthermore,

we have generated the necessary conditions for optimality by investigating a generalized

fractional optimal control problem (FOCP) and then, utilized the results for our system.

The main goal of this Chapter is to compare this fractional-order system with the cor-

responding integer-order model and also to distinguish the rich dynamics exhibited by

the optimal-control-induced system based on different values of the fractional order ζ ∈ (0, 1).

6.1 The Basic Integer-Order Model and the

Caputo–Fabrizio Fractionalized Mathematical

Model Formulation

In recent years, fractional-order derivatives have gained huge importance in the field of mod-

eling real-world biological phenomena. The fractional-order derivative is in fact a much

generalized version of the integer-order derivative. In this Chapter, we now introduce the

basic three-dimensional nonlinear ODE-based mathematical model developed in Chapter 2

that describes the fundamental disease dynamics of leprosy.

dSu
dt

= ν1Su

(
1− Su

Sumax

)
− β1SuBl,

dSi
dt

= β1SuBl − µSi, (6.1.1)

dBl
dt

= ν2Bl

(
1− Bl

Blmax

)
− β2SuBl + σSi,

with initial values Su(0) = Su0 ≥ 0, Si(0) = Si0 ≥ 0 and Bl(0) = B0 ≥ 0 at t = 0. Here,

Su(t), Si(t) and Bl(t) denote the concentrations of healthy Schwann cells, infected Schwann

cells and M. leprae bacteria at any time t. ν1 and ν2 describe the intrinsic growth rates

of the Su(t) and Bl(t) populations, where Sumax and Blmax are the carrying capacity of the

same. β1 is the rate at which healthy cells are infected by M. leprae and µ denotes the

natural mortality rate of Si cells. The bacterial clearance rate results from the infection

and the proliferation rates of newly produced free M. leprae bacteria, which are indicated
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by the parameters β2 and σ, respectively. Modifying the above system in terms of the CF

(Caputo–Fabrizio) fractional differential system of equations, we obtain

CFDζ
t Su(t) = ν1Su

(
1− Su

Sumax

)
− β1SuBl,

CFDζ
t Si(t) = β1SuBl − µSi, (6.1.2)

CFDζ
tBl(t) = ν2Bl

(
1− Bl

Blmax

)
− β2SuBl + σSi

with initial values Su(0) = Su0 ≥ 0, Si(0) = Si0 ≥ 0 and Bl(0) = B0 ≥ 0 at t = 0.

6.1.1 The iterative scheme

We now consider system (6.1.2). The term SuBl is a nonlinear term and, hence, applying the

Laplace transformation operator (L) on both sides of the system (6.1.2), we obtain that

pL (Su(t))− Su(0)

p+ ζ(1− p)
= L

(
ν1Su

(
1− Su

Sumax

)
− β1SuBl

)
,

pL (Si(t))− Si(0)

p+ ζ(1− p)
= L (β1SuBl − µSi) , (6.1.3)

pL (Bl(t))−Bl(0)

p+ ζ(1− p)
= L

(
ν2Bl

(
1− Bl

Blmax

)
− β2SuBl + σSi

)
.

The set in Equation (6.1.3) can now be rewritten in the following form:

L(Su(t)) =
Su(0)

p
+

(
p+ ζ(1− p)

p

)
L
(
ν1Su

(
1− Su

Sumax

)
− β1SuBl

)
,

L(Si(t)) =
Si(0)

p
+

(
p+ ζ(1− p)

p

)
L(β1SuBl − µSi), (6.1.4)

L(Bl(t)) =
Bl(0)

p
+

(
p+ ζ(1− p)

p

)
L
(
ν2Bl

(
1− Bl

Blmax

)
− β2SuBl + σSi

)
.

Using the inverse Laplace, we obtain

Su(t) = Su(0) + L−1

[
p+ ζ(1− p)

p
L
(
ν1Su

(
1− Su

Sumax

)
− β1SuBl

)]
,

Si(t) = Si(0) + L−1

[
p+ ζ(1− p)

p
L (β1SuBl − µSi)

]
, (6.1.5)

Bl(t) = Bl(0) + L−1

[
p+ ζ(1− p)

p
L
(
ν2Bl

(
1− Bl

Blmax

)
− β2SuBl + σSi

)]
.

120



6.1 The Basic Integer-Order Model and the Caputo–Fabrizio Fractionalized
Mathematical Model Formulation

We now present the series solutions generated by this method as follows:

Su =
∞∑
n=0

Sun , Si =
∞∑
n=0

Sin , Bl =
∞∑
n=0

Bln . (6.1.6)

Furthermore, the series solution representation of the only existing nonlinear term SuBl

is given as

SuBl =

∞∑
n=0

Gn where Gn =

n∑
k=0

Suk

n∑
k=0

Blk −
n−1∑
k=0

Suk

n−1∑
k=0

Blk . (6.1.7)

We now use the initial conditions to achieve the following recursive formulas:

Sun+1 = Sun(0) + L−1

[
p+ ζ(1− p)

p
L
(
ν1Sun

(
1− Sun

Sumax

)
− β1SunBln

)]
,

Sin+1 = Sin(0) + L−1

[
p+ ζ(1− p)

p
L (β1SunBln − µSin)

]
, (6.1.8)

Bln+1 = Bln(0) + L−1

[
p+ ζ(1− p)

p
L
(
ν2Bln

(
1− Bln

Blmax

)
− β2SunBln + σSin

)]
.

The approximate solution is assumed to be obtained as a limit when n→ ∞, i.e., Su(t) =

limn→∞ Sun(t), Si(t) = limn→∞ Sin(t) and Bl(t) = limn→∞Bln(t).

6.1.2 Stability analysis

It is known that iteration methods are numerical procedures which compute a sequence of

gradually accurate iterations to approximate the solution of a class of problems. These

methods are truly useful tools of applied mathematics for solving real life problems ranging

from economics, finance, various types of biological problems to transportation, network

analysis, or optimization. An iteration method is considered to be sound if it possesses some

qualitative properties such as convergence and stability. That is why several scientists paid

and still pay attention to the qualitative study of iteration methods. In this Section, first,

we present the detailed definition of the T-stability of Picard’s iteration [Qing and Rhoades

(2008)].

Definition 6.1.1 Suppose T is a self-map on a complete metric space (Y, d). Consider an

iteration yn+1 = g(T, yn). Furthermore, let us assume that P(T ) is the fixed-point set of T

with P(T ) ̸= ϕ and let {yn} converge to some point y ∈ P(T ). Let {zn} ⊂ Y and define

{un} = d(Zn+1, g(T, zn)). Now, if un → 0 implies that zn → y, then the iteration method

yn+1 = g(T, yn) is said to be T-stable. Furthermore, note that the convergence of {zn}
guarantees that {zn} must be bounded above. If all these conditions hold true for yn+1 =
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g(T, yn), then Picard’s iteration method is called T-stable.

Let (X, ∥.∥) be a Banach space. As every Banach space is a complete metric space with the

metric induced by the associated norm, Definition 6.1.1 holds true for (X, ∥.∥) also. [In this

context, it is important to mention that in general, a metric space is said to be complete if

every Cauchy sequence defined on it converges to a point in the space with respect to the

metric defined on it.]

Theorem 6.1.1 Let T be a self-map on the space (X, ∥.∥), which satisfies the following:

∥Tx − Ty∥ ≤ Λ∥x− Tx∥+ ϱ∥x− y∥ for all x, y ∈ X

where Λ ≥ 0 and ϱ ∈ [0, 1). Suppose T has a fixed point. Then, T is Picard’s T-stable.

Now, let us define a self-map T as

T (Sun(t)) = Sun+1 = Sun(0) + L−1

[
p+ ζ(1− p)

p
L
(
ν1Sun

(
1− Sun

Sumax

)
− β1SunBln

)]
,

T (Sin(t)) = Sin+1 = Sin(0) + L−1

[
p+ ζ(1− p)

p
L (β1SunBln − µSin)

]
, (6.1.9)

T (Bln(t)) = Bln+1 = Bln(0) + L−1

[
p+ ζ(1− p)

p
L
(
ν2Bln

(
1− Bln

Blmax

)
− β2SunBln + σSin

)]
.

For all m,n ∈ N, let us first construct the following differences:

T (Sun(t))− T (Sum(t)) = Sun(t)− Sum(t)

+ L−1

[
p+ ζ(1− p)

p
L
(
ν1Sun

(
1− Sun

Sumax

)
− β1SunBln

)]
− L−1

[
p+ ζ(1− p)

p
L
(
ν1Sum

(
1− Sum

Sumax

)
− β1SumBlm

)]
,

T (Sin(t))− T (Sim(t)) = Sin(t)− Sim(t) + L−1

[
p+ ζ(1− p)

p
L (β1SunBln − µSin)

]
− L−1

[
p+ ζ(1− p)

p
L (β1SumBlm − µSim)

]
,

T (Bln(t))− T (Blm(t)) = Bln(t)−Blm(t)

+ L−1

[
p+ ζ(1− p)

p
L
(
ν2Bln

(
1− Bln

Blmax

)
− β2SunBln + σSin

)]
− L−1

[
p+ ζ(1− p)

p
L
(
ν2Blm

(
1− Blm

Blmax

)
− β2SumBlm + σSim

)]
(6.1.10)
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where p+ζ(1−p)
p is a Lagrange multiplier in fractional form. As all the solutions Sun , Sin ,

Bln are Cauchy sequences in the Banach space (X, ∥.∥), it is true that ∥Sun − Sum∥ → 0,

∥Sin − Sim∥ → 0 and ∥Bln − Blm∥ → 0 as n,m → ∞. Due to this similar behavior of the

solutions, i.e., comparative influence of the solutions [Gao et al. (2021)], we have

∥Sun(t)− Sum(t)∥ ∼= ∥Sin(t)− Sim(t)∥,

∥Sun(t)− Sum(t)∥ ∼= ∥Bln(t)−Blm(t)∥.
(6.1.11)

Now, applying the norm on both sides of the first equation of (6.1.10), we obtain

∥T (Sun(t))− T (Sum(t))∥ = ∥Sun(t)− Sum(t)

+ L−1

[
p+ ζ(1− p)

p
L
(
ν1Sun

(
1− Sun

Sumax

)
− β1SunBln

)]
− L−1

[
p+ ζ(1− p)

p
L
(
ν1Sum

(
1− Sum

Sumax

)
− β1SumBlm

)]
∥

= ∥Sun(t)− Sum(t) + L−1

[
p+ ζ(1− p)

p
L
[
ν1(Sun(t)− Sum(t)

+

(
− ν1
Sumax

Sun(Sun − Sum)

)
+

(
− ν1
Sumax

Sum(Sun − Sum)

)
+ (−β1Bln(Sun − Sum)) + (−β1Sum(Bln −Blm))

]]
∥.

Using triangle inequality, we obtain

∥T (Sun(t))− T (Sum(t))∥ ≤ ∥Sun(t)− Sum(t)∥+ L−1

[
p+ ζ(1− p)

p
L
[
∥ν1(Sun(t)− Sum(t)∥

+ ∥ − ν1
Sumax

Sun(Sun − Sum)∥+ ∥ − ν1
Sumax

Sum(Sun − Sum)∥

+ ∥ − β1Bln(Sun − Sum)∥+ ∥ − β1Sum(Bln −Blm)∥
]]
.
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Then, using the relations in (6.1.11), we obtain

∥T (Sun(t))− T (Sum(t))∥ ≤ ∥Sun(t)− Sum(t)∥+ L−1

[
p+ ζ(1− p)

p
L
[
∥ν1(Sun(t)− Sum(t)∥

+ ∥ − ν1
Sumax

Sun(Sun − Sum)∥+ ∥ − ν1
Sumax

Sum(Sun − Sum)∥

+ ∥ − β1Bln(Sun − Sum)∥+ ∥ − β1Sum(Sun − Sum)∥
]]

≤ ∥Sun(t)− Sum(t)∥
[
1 + ν1E1(ζ)− 2M1

ν1
Sumax

E2(ζ)

− β1(M1 +M3)E3(ζ)

]
(6.1.12)

where E1(ζ), E2(ζ) and E3(ζ) are functions of L−1
[
p+ζ(1−p)

p L(.)
]
and ∥Sun∥ < M1, ∥Sin∥ <

M2 and ∥Bln∥ < M3. Proceeding similarly, we obtain from the second and third equations of

(6.1.10),

∥T (Sin(t))− T (Sim(t))∥ ≤ ∥Sin(t)− Sim(t)∥
[
1 + β1(M1 +M3)E3(ζ)− µE4(ζ)

]
(6.1.13)

and

∥T (Bln(t))− T (Blm(t))∥ ≤ ∥Bln(t)−Blm(t)∥
[
1 + ν2E5(ζ)− 2M3

ν2
Blmax

E6(ζ)

− β2(M1 +M3)E3(ζ) + σE7(ζ)

] (6.1.14)

where E4(ζ), E5(ζ), E6(ζ) and E7(ζ) are functions of L−1
[
p+ζ(1−p)

p L(.)
]
and

[
1 + ν1E1(ζ)− 2M1

ν1
Sumax

E2(ζ)− β1(M1 +M3)E3(ζ)

]
< 1,[

1 + β1(M1 +M3)E3(ζ)− µE4(ζ)

]
< 1, (6.1.15)[

1 + ν2E5(ζ)− 2M3
ν2

Blmax

E6(ζ)− β2(M1 +M3)E3(ζ) + σE7(ζ)

]
< 1.

So, we can conclude that the self-map T defined in (6.1.9) has a fixed point. In view
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of (6.1.15) and also choosing ϱ = (0, 0, 0) and

Λ =


1 + ν1E1(ζ)− 2M1

ν1
Sumax

E2(ζ)− β1(M1 +M3)E3(ζ),

1 + β1(M1 +M3)E3(ζ)− µE4(ζ),

1 + ν2E5(ζ)− 2M3
ν2

Blmax
E6(ζ)− β2(M1 +M3)E3(ζ) + σE7(ζ),

we can see that all the conditions of Theorem 6.1.1 are satisfied. Thus, the self-mapping T

is Picard’s T-stable. Summarizing the discussions, we now present the following theorem.

Theorem 6.1.2 Consider system (6.1.2) with the set of equations in system (6.1.8). Let T

be a self-map as defined by (6.1.9). If the conditions (6.1.15) are satisfied by T , then T has

a fixed point and, hence, T is Picard’s T-stable.

6.1.3 Existence of the solutions

Using fixed-point theory, we now show the existence of the solutions of system (6.1.2) in this

Subsection. For this, let us first observe that

Su(t)− Su0(t) =
2(1− ζ)

M(ζ)(2− ζ)

(
ν1Su(t)

(
1− Su(t)

Sumax

)
− β1Su(t)Bl(t)

)
+

2ζ

M(ζ)(2− ζ)

∫ t

0

(
ν1Su(y)

(
1− Su(y)

Sumax

)
− β1Su(y)Bl(y)

)
dy,

Si(t)− Si0(t) =
2(1− ζ)

M(ζ)(2− ζ)
(β1SuBl − µSi)

+
2ζ

M(ζ)(2− ζ)

∫ t

0
(β1Su(y)Bl(y)− µSi(y)) dy,

Bl(t)−Bl0(t) =
2(1− ζ)

M(ζ)(2− ζ)

(
ν2Bl(t)

(
1− Bl(t)

Blmax

)
− β2Su(t)Bl(t) + σSi

)
+

2ζ

M(ζ)(2− ζ)

∫ t

0

(
ν2Bl(y)

(
1− Bl(y)

Blmax

)
− β2Su(y)Bl(y) + σSi(y)

)
dy.

Let T1 be an operator on H to itself, i.e., T1 : H → H. Here, T1 is chosen as an operator

for the entire system. Applying it, we obtain that

T1(Su(t)) =
2(1− ζ)

M(ζ)(2− ζ)
K1(t, Su(t)) +

2ζ

M(ζ)(2− ζ)

∫ t

0
(K1(y, Su(y))) dy,

T1(Si(t)) =
2(1− ζ)

M(ζ)(2− ζ)
(K2(t, Si(t))) +

2ζ

M(ζ)(2− ζ)

∫ t

0
(K2(y, Si(y))) dy,

T1(Bl(t)) =
2(1− ζ)

M(ζ)(2− ζ)
(K3(t, Bl(t))) +

2ζ

M(ζ)(2− ζ)

∫ t

0
(K3(y,Bl(y))) dy

125



6.1 The Basic Integer-Order Model and the Caputo–Fabrizio Fractionalized
Mathematical Model Formulation

where

K1(t, Su(t)) = ν1Su(t)

(
1− Su(t)

Sumax

)
− β1Su(t)Bl(t),

K2(t, Si(t)) = β1Su(t)Bl(t)− µSi(t),

K3(t, Bl(t)) = ν2Bl(t)

(
1− Bl(t)

Blmax

)
− β2Su(t)Bl(t) + σSi(t).

Let P ⊂ H be bounded. We aim to show that T1(P) is compact to ensure the existence

and boundedness of the solutions of system (6.1.2), where T1 is defined as above. We can see

that there exist positive reals κ1, κ2 and κ3 such that ∥Su∥ < κ1, ∥Si∥ < κ2 and ∥Bl∥ < κ3.

From the definition of T1, we can write

∥T1(Su(t))∥ = ∥ 2(1− ζ)

M(ζ)(2− ζ)
K1(t, Su(t)) +

2ζ

M(ζ)(2− ζ)

∫ t

0
(K1(y, Su(y))) dy∥

≤ 2(1− ζ)

M(ζ)(2− ζ)
∥K1(t, Su(t))∥+

2ζ

M(ζ)(2− ζ)
∥
∫ t

0
(K1(y, Su(y))) dy∥

≤
[

2(1− ζ)

M(ζ)(2− ζ)
+ a1

2ζ

M(ζ)(2− ζ)

]
∥K1(t, Su(t))∥

≤ R1

[
2(1− ζ)

M(ζ)(2− ζ)
+ a1

2ζ

M(ζ)(2− ζ)

]
which implies

∥T1(Su(t))∥ ≤ 2R1

M(ζ)(2− ζ)
(1 + ζa1 − ζ)

and also proceeding similarly, we can obtain

∥T1(Si(t))∥ ≤ 2R2

M(ζ)(2− ζ)
(1 + ζa2 − ζ),

∥T1(Bl(t))∥ ≤ 2R3

M(ζ)(2− ζ)
(1 + ζa3 − ζ)

where

R1 = max
t∈[0,1]

Su∈[0,κ1]

K1(t, Su(t)),

R2 = max
t∈[0,1]
Si∈[0,κ2]

K2(t, Si(t)),

R3 = max
t∈[0,1]
Bl∈[0,κ3]

K3(t, Bl(t)).
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Hence, we have proved that T1(P) is bounded. Let, t2 > t1 and Su, Si, Bl ∈ P. So, for a

given ϵ > 0, there exists η satisfying that ∥(t2 − t1)∥ < η, and we can write the following:

∥K1(t2, Su(t2))−K1(t1, Su(t1))∥ ≤ ν1∥Su(t2)− Su(t1)∥

+
ν1

Sumax

∥Su(t2) + Su(t1)∥ ∥Su(t2)− Su(t1)∥

+ β1∥Bl∥ ∥Su(t2)− Su(t1)∥

≤ ν1∥Su(t2)− Su(t1)∥+ 2κ1
ν1

Sumax

∥Su(t2)− Su(t1)∥

+ β1κ3∥Su(t2)− Su(t1)∥

≤
[
ν1 +

2κ1ν1
Sumax

+ β1κ3

]
∥Su(t2)− Su(t1)∥.

(6.1.16)

Assuming that if the function Su(t) is Lipschitz-continuous, i.e., for some real number

L1 ≥ 0 and for all t1, t2, the inequality ∥Su(t2)− Su(t1)∥ ≤ L1∥t2 − t1∥ holds, we can rewrite

(6.1.16) as

∥K1(t2, Su(t2))−K1(t1, Su(t1))∥ ≤ G1∥t2 − t1∥ (6.1.17)

where G1 = L1

[
ν1 +

2κ1ν1
Sumax

+ β1κ3

]
. Similarly, we have

∥K2(t2, Si(t2))−K2(t1, Si(t1))∥ ≤ G2∥t2 − t1∥, (6.1.18)

∥K3(t2, Bl(t2))−K3(t1, Bl(t1))∥ ≤ G3∥t2 − t1∥ (6.1.19)

if Si(t) and Bl(t) are also Lipschitz-continuous, i.e., for some real numbers L2, L3 ≥ 0, the

conditions

∥Si(t2)− Si(t1)∥ ≤ L2∥t2 − t1∥,

∥Bl(t2)−Bl(t1)∥ ≤ L3∥t2 − t1∥ hold, respectively, for all t1, t2.
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Furthermore,

∥T1(Su(t2))− T1(Su(t1))∥ ≤ 2(1− ζ)

M(ζ)(2− ζ)
∥K1(t2, Su(t2))−K1(t1, Su(t1))∥

+
2ζ

M(ζ)(2− ζ)
R1∥K1(t2, Su(t2))−K1(t1, Su(t1))∥

≤ 2(1− ζ)

M(ζ)(2− ζ)
G1∥t2 − t1∥+

2ζ

M(ζ)(2− ζ)
R1G1∥t2 − t1∥

(using inequality (6.1.17)).

Finally, choosing

η =
ϵ

2(1−ζ)
M(ζ)(2−ζ)G1 +

2ζ
M(ζ)(2−ζ)R1G1

,

we can see that ∥T1(Su(t2))− T1(Su(t1))∥ ≤ ϵ holds.

Similarly proceeding and using inequalities (6.1.18) and (6.1.19), we can also easily show

that ∥T1(Si(t2))− T1(Si(t1))∥ ≤ ϵ and ∥T1(Bl(t2))− T1(Bl(t1))∥ ≤ ϵ hold, which guarantees

the equicontinuity of T1. Hence, according to the well-known Arzela–Ascoli theorem, we

can say that T1(P) is compact. Next, we present the following theorem by summarising the

previous discussions on the existence of the solutions of system (6.1.2), and then we move

forward to show the uniqueness of the solutions of system (6.1.2).

Theorem 6.1.3 Let P ⊂ H be bounded. Then, for the operator T1, there exist κ1, κ2 and

κ3 such that if the functions Su(t), Si(t) and Bl(t) are Lipschitz-continuous, i.e., if for some

real numbers, L1, L2 and L3 ≥ 0, the following conditions hold

∥Su(t2)− Su(t1)∥ ≤ L1∥t2 − t1∥,

∥Si(t2)− Si(t1)∥ ≤ L2∥t2 − t1∥,

∥Bl(t2)−Bl(t1)∥ ≤ L3∥t2 − t1∥,

for all t1, t2, then T1(P) is compact. Thus, all the solutions of system (6.1.2) exist and are

bounded.
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(a) (b)

Figure 6.1: Behavior of the solutions of the system populations and 3-D phase portrait
diagrams of the CF fractionalized system (6.1.2) depicting the oscillatory dynamics
and appearance of limit cycles for ζ = 1. Values of ν2 = 0.03, Sumax = 1000 were
used to simulate the Subfigures in this Figure, where all the other parameter values
were chosen from Table 6.1. (a) Behavior of the trajectories of system (6.1.2); (b) 3-D
phase diagram for system (6.1.2) in Su − Si −Bl space.

6.1.4 Uniqueness of the solutions

To prove the uniqueness of the solutions of system (6.1.2), let us consider the mapping T1

again which was defined previously. Now,

∥T1(Su(t))− T1(S̃u(t))∥ = ∥ 2(1− ζ)

M(ζ)(2− ζ)
(K1(t, Su(t))−K1(t, S̃u(t)))

+
2ζ

M(ζ)(2− ζ)

∫ t

0
(K1(y, Su(y))−K1(y, S̃u(y)))∥

≤
[

2D1

M(ζ)(2− ζ)

]
∥Su(t)− S̃u(t)∥.

Similarly, we can obtain

∥T1(Si(t))− T1(S̃i(t))∥ ≤
[

2D2

M(ζ)(2− ζ)

]
∥Si(t)− S̃i(t)∥,

∥T1(Bl(t))− T1(B̃l(t))∥ ≤
[

2D3

M(ζ)(2− ζ)

]
∥Bl(t)− B̃l(t)∥
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(a) (b)

Figure 6.2: Behavior of the solutions of the system populations and 3-D phase portrait
diagrams of the CF fractionalized system (6.1.2) depicting the stable behavior for ζ = 1.
Values of ν2 = 0.05 and Sumax = 1000 were used to simulate the Subfigures in this
Figure where other parameter values were chosen from Table 6.1. (a) Behavior of the
trajectories of system (6.1.2); (b) 3-D phase diagram for system (6.1.2) in Su−Si−Bl

space.

whereD1, D2, D3 ∈ R. Hence, the operator T1 is a contraction if the following conditions hold:

2D1

M(ζ)(2− ζ)
∥Su(t)− S̃u(t)∥ < 1,

2D2

M(ζ)(2− ζ)
∥Si(t)− S̃i(t)∥ < 1,

2D3

M(ζ)(2− ζ)
∥Bl(t)− B̃l(t)∥ < 1

which ensures the existence of unique positive solutions of system (6.1.2) using fixed-point

theorem.

6.2 Equilibria and Stability

Our CF fractionalized mathematical model (6.1.2) has two equilibria, namely the disease-free

equilibrium E0 and the endemic equilibrium E∗. Here, E0 is given as E0 = (Sumax , 0, 0). The

value of the basic reproduction number R0 is given as R0 = β1σSumax
µ(β2Sumax−ν2)

. R0 is actually

interpreted as the secondary number of new infections in a completely susceptible healthy
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(a) (b)

Figure 6.3: Time series and phase portrait diagram of the CF fractionalized system
(6.1.2) depicting the unstable oscillatory behavior of the system state populations and
appearance of stable limit cycles for ζ = 0.8. Values of ν2 = 0.03 and Sumax = 1200
were used to simulate the Subfigures in this Figure where other parameter values were
chosen from Table 6.1. (a) Behavior of the trajectories of system (6.1.2); (b) 3-D
phase diagram for system (6.1.2) in Su − Si −Bl space.

Schwann cell population and, based on the above, we now present the following theorem on

the stability of E0 for our system (6.1.2) as follows:

Theorem 6.2.1 The disease-free equilibrium E0 of system (6.1.2) is locally asymptotically

stable if R0 < 1.

To obtain the coordinates of the endemic equilibrium E∗, we now set the right-hand

sides of system (6.1.2) to zero. Hence, we obtain the values of S∗
u, S

∗
i and B∗

l , which are

already described in Chapter 2. In this context, we now present the following theorem, which

describes the required criterion about the stability of E∗ [Li et al. (2019)].

Theorem 6.2.2 If the matrix (I − (1− ζ)J ) is invertible, then the endemic equilibrium E∗

of the CF fractionalized system (6.1.2) is locally asymptotically stable if all the roots of the

characteristic equation det(x(I − (1 − ζ)J ) − ζJ ) = 0 of system (6.1.2) evaluated at E∗

are negative real or have negative real parts where J denotes the Jacobian matrix of system

(6.1.2) at E∗ = (S∗
u, S

∗
i , B

∗
l ).
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(a) (b)

Figure 6.4: Time series and phase portrait diagram of the CF fractionalized system
(6.1.2) depicting the asymptotically stable behavior of the system state populations for
ζ = 0.8. Here, values of ν2 = 0.05 and Sumax = 1200 were used to simulate the Subfig-
ures in this Figure. Values of all the other parameters were chosen from Table 6.1. (a)
Behavior of the trajectories of system (6.1.2); (b) 3-D phase diagram for system (6.1.2)
in Su − Si −Bl space.

6.3 Optimal Control Induced Caputo-Fabrizio

Fractional Mathematical Model

Optimal control is a very useful tool for controlling the progression of a disease in the human

body. Furthermore, this tool has gained major importance lately for the investigation of

efficient and cost-effective drug treatment policies for various infectious diseases and for other

different important biological problems based on fractional mathematical models [Kamocki

(2014); Chatterjee et al. (2021); Vellappandi et al. (2022); Baba and Bilgehan (2021)]. In this

Chapter, we have analyzed our formulated CF fractionalized model (6.1.2) by incorporating

two control functions, u1(t) and u2(t); one is an effect of the drug Ofloxacin and another is

of Dapsone on various cell densities, respectively. Here, Ofloxacin blocks the occurrence of

new infections, and by preventing the formation of folic acid, Dapsone specifically inhibits

replication of M. leprae bacteria. The optimal-control-induced CF fractional mathematical
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model is presented as:

CFDζ
t Su(t) = ν1Su

(
1− Su

Sumax

)
− β1(1− u1(t))SuBl,

CFDζ
t Si(t) = β1(1− u1(t))SuBl − µSi, (6.3.1)

CFDζ
tBl(t) = ν2(1− u2(t))Bl

(
1− Bl

Blmax

)
− β2(1− u1(t))SuBl + σSi

with initial values Su(0) = Su0 ≥ 0, Si(0) = Si0 ≥ 0 and Bl(0) = B0 ≥ 0 at t = 0.

Our main aim is to decrease the number of infected cells and the bacterial density as well

as to increase the healthy cell concentrations. Let us now consider the state system given by

(6.3.1) with the class of admissible controls defined as

U = {(u1(·), u2(·)) : u1, u2 are Lebesgue measurable functions on [0,1]

and 0 ≤ ui(t) ≤ 1 for i = 1, 2}.
(6.3.2)

So, the objective function for the CF fractionalized optimal control system (6.3.1), (6.3.2)

is given as

J (u1(·), u2(·)) =

tf∫
0

[
1

2
C1u

2
1(t) +

1

2
C2u

2
2(t) + S2

i (t) +B2
l (t)

]
dt (6.3.3)

where C1 and C2 measure the cost associated with the control functions u1(t) and u2(t),

respectively. Then, we find the optimal controls u1 and u2 to minimize the cost function

J (u1, u2) =

tf∫
0

[ψ(Su(t), Si(t), Bl(t), u1(t), u2(t), t)] dt (6.3.4)

subject to the constraints CF
0 Dζ

t (Su(t)) = α1,
CF
0 Dζ

t (Si(t)) = α2 and CF
0 Dζ

t (Bl(t)) = α3,

where αj = αj(Su, Si, Bl, u1, u2, t) and j = 1, 2, 3, and the given initial conditions are

Su(0) = Su0 and Si(0) = Si0 , Bl(0) = Bl0 .

Now, we first present a formulation of a generalized fractional optimal control problem

(FOCP) and deduce the necessary conditions for its optimality. For this, let us consider a

generalized FOCP as

J(v) =

tf∫
0

[L(t, x, v)dt] dt (6.3.5)

subject to the constraints CF0 Dζ
t (x(t)) = g(t, x, v) with initial condition x(0) = x0. Here, x(t)

and v(t) are state and control vectors, respectively, and L and g are differentiable functions
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(a) (b)

(c) (d)

(e)

Figure 6.5: Times series and phase portrait diagrams of the CF fractionalized system
(6.1.2) depicting the sustained oscillatory unstable behavior of the system state pop-
ulations and appearance of limit cycles for ζ = 1. Here, values of ν2 = 0.035 and
Sumax = 1200 were used for simulating the Subfigures in this Figure. All the other pa-
rameter values were chosen from Table 6.1. (a) Behavior of the trajectories of system
(6.1.2); (b) 3-D phase diagram for system (6.1.2) in Su−Si−Bl space; (c) 2-D phase
diagram of system (6.1.2) in the Su − Bl plane; (d) 2-D phase diagram for system
(6.1.2) in the Su − Si plane; (e) 2-D phase diagram for system (6.1.2) in the Si − Bl

plane.
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with 0 < ζ ≤ 1.

Theorem 6.3.1 We define a Hamiltonian as follows:

H(t, x, v, ϕ) = L(t, x, v) + ϕ ∗ g(t, x, v) (6.3.6)

where ϕ ∈ C1[0, tf ] is a function. If ϕ, x, v satisfy the following equations:

CF
0 Dζ

t (x(t)) =
∂H(t, x(t), v(t), ϕ(t))

∂ϕ
, CF

t Dζ
tf
(ϕ(t)) =

∂H(t, x(t), v(t), ϕ(t))

∂x
,

∂H(t, x(t), v(t), ϕ(t))

∂v
= 0, ϕ(tf ) = 0

then (x, v) is the minimizer of (6.3.5).

Proof. Let us first substitute Equation (6.3.6) in (6.3.5); hence, we obtain

J(v) =

tf∫
0

{H(t, x, v, ϕ)− ϕ ∗ g(t, x, v)} dt. (6.3.7)

The necessary condition for the optimality of the FOCP is

δJ(v) = 0. (6.3.8)

To obtain the optimal control laws, we choose the variation of equation (6.3.7) as

δJ(v) =

[
δx
∂H
∂x

+ δv
∂H
∂v

+ δϕ
∂H
∂ϕ

− δϕ CF
0 Dζ

t (x(t))− ϕ
(
CF
0 Dζ

t (δx(t))
)]
dt (6.3.9)

where δx, δv, δϕ are variations of x, v and ϕ, respectively.

Again,

tf∫
0

ϕ(t)
(
CF
0 Dζ

t (δx(t))
)
dt =

tf∫
0

δx
(
CF
0 Dζ

t (ϕ(t))
)
dt−

(
CF
t I1−ζtf

(ϕ(t)
)
δx. (6.3.10)

Substituting (6.3.10) in (6.3.9), we obtain

δJ(v) =

tf∫
0

[
δ(x)

[
∂H
∂x

− CF
0 Dζ

t (ϕ(t))

]
+ δvs.

∂H
∂v

+ δϕ

[
∂H
∂ϕ

− CF
0 Dζ

t (x(t))

]]
dt

+ CF
t I1−ζtf

(ϕ(t))δx
∣∣∣
t=tf

.

(6.3.11)

135



6.3 Optimal Control Induced Caputo-Fabrizio Fractional Mathematical Model

Now, we know δJ(v) = 0. Hence, considering equation (6.3.11), the coefficients of δx, δv,

δϕ must be equal to zero, which leads us to the following equations:

CF
0 Dζ

t (x(t)) =
∂H(t, x(t), v(t), ϕ(t))

∂ϕ
, CF

t Dζ
tf
(ϕ(t)) =

∂H(t, x(t), v(t), ϕ(t))

∂x
,

∂H(t, x(t), v(t), ϕ(t))

∂v
= 0, CF

t I1−ζtf
(ϕ(t))

∣∣∣
t=tf

= ϕ(tf ) = 0.

In addition, the following necessary conditions must also hold for the optimality of the

FOCP defined in (6.3.5), which are noted here in the form of the following lemma.

Lemma 6.3.1 The following conditions hold true for the generalized FOCP described in

(6.3.5):

CF
t Dζ

tf
(ϕ(t)) =

∂H(t, x(t), v(t), ϕ(t))

∂x
(6.3.12)

and CF
0 Dζ

t (ϕ(tf − t)) =
∂H(tf − t, x(tf − t), v(tf − t), ϕ(tf − t))

∂x
(6.3.13)

where 0 < ζ ≤ 1.

Proof. The definition of the CF fractional derivative (1.10.14) is given as

CF
0 Dζ

t (f(t)) =
1

1− ζ

∫ t

0
exp

[
−ζ(t− x)

1− ζ

]
f ′(x)dx, t ≥ 0, 0 < ζ < 1.

From the above-mentioned definition of the CF fractional derivative, it follows that

CF
tf−tD

ζ
tf
(ϕ(tf − t)) =

1

1− ζ

∫ tf

tf−t
exp

[
−
ζ(tf − t− x)

1− ζ

]
ϕ′(x)dx. (6.3.14)

Now, assuming tf − x = y, from equation (6.3.14), we obtain that

CF
tf−tD

ζ
tf
(ϕ(tf − t)) =

1

1− ζ

∫ 0

t
exp

[
−ζ(y − t)

1− ζ

]
ϕ′(tf − y)(−dy)

=
1

1− ζ

∫ t

0
exp

[
−ζ(y − t)

1− ζ

]
ϕ′(tf − y)dy.

(6.3.15)
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Hence, the optimality conditions are achieved as

CF
0 Dζ

t (x(t)) =
∂H(t, x(t), v(t), ϕ(t))

∂ϕ
,

CF
0 Dζ

t (ϕ(tf − t)) =
∂H(tf − t, x(tf − t), v(tf − t), ϕ(tf − t))

∂x

and
∂H
∂v

= 0 where H := H(t, x(t), v(t), ϕ(t)).

(6.3.16)

We now shift our focus from the generalized point of view, specifically to our CF fraction-

alized optimal-control-induced (CFOC) system (6.3.1), (6.3.3), (6.3.4). Let us first consider

the following modified cost function:

Ẑ =

T∫
0

H(Su, Si, Bl, u1, u2, t)−
3∑
j=1

θjαj(Su, Si, Bl, u1, u2, t)

 dt. (6.3.17)

Hence, the Hamiltonian is defined as

H(Su, Si, Bl, u1, u2, t) = ψ(Su, Si, Bl, u1, u2, t) +

3∑
j=1

θjαj(Su, Si, Bl, u1, u2, t). (6.3.18)

Then, utilizing (6.3.16), the necessary and sufficient conditions for the CF fractional

optimal control (CFOC) problem defined in (6.3.1), (6.3.3), (6.3.4) are given as

CF
0 Dζθ1 =

∂H
∂Su

, CF
0 Dζθ2 =

∂H
∂Si

, CF
0 Dζθ3 =

∂H
∂Bl

,
∂H
∂ui

= 0, i = 1, 2,

and CF
0 Dζ

t (Su(t)) =
∂H
∂θ1

, CF
0 Dζ

t (Si(t)) =
∂H
∂θ2

, .CF0 Dζ
t (Bl(t)) =

∂H
∂θ3

.

Moreover, θ1, θ2 and θ3 are Lagrange’s multipliers, which express the necessary and

sufficient conditions in terms of the Hamiltonian for the fractional optimal control problem

defined above.

Now, consider system (6.3.1). Let us consider the Hamiltonian defined in (6.3.18). Rewrit-
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ing it in the following form, we obtain

H(Su, Si, Bl, u1, u2, θ) =
1

2
C1u

2
1 +

1

2
C2u

2
2 + S2

i +B2
l

+ θ1

(
ν1Su

(
1− Su

Sumax

)
− β1(1− u1(t))SuBl

)
+ θ2

(
β1(1− u1(t))SuBl − µSi

)
+ θ3

(
ν2(1− u2(t))Bl

(
1− Bl

Blmax

)
− β2(1− u1(t))SuBl + σSi

)
.

(6.3.19)

Theorem 6.3.2 If u∗1, u
∗
2 are optimal controls of the given CFOC system defined by (6.3.1),

(6.3.3), (6.3.4), and if S∗
u, S

∗
i , B

∗
l are the corresponding optimal paths, then there exist

co-state variables θ∗1, θ
∗
2, θ

∗
3 such that besides the given control system being satisfied, the

following conditions, i.e., the co-state equations, hold true also. The co-state equations are

given as

CF
0 Dζ

t θ
∗
1 = −θ∗1

[
ν1 −

2Suν1
Sumax

− β1(1− u1)Bl

]
− θ∗2β1(1− u1)Bl

+θ∗3β2(1− u1)Bl,

CF
0 Dζ

t θ
∗
2 = θ∗2µ− θ∗3σ − 2Si, (6.3.20)

CF
0 Dζ

t θ
∗
3 = θ∗1β1(1− u1)Su − θ∗2β1(1− u1)Su

−θ∗3
[
ν2(1− u2)

[
1− 2Bl

Blmax

]
− β2(1− u1)Su

]
− 2Bl

with transversality conditions θ∗1(tf ) = 0, θ∗2(tf ) = 0, θ∗3(tf ) = 0, and the optimality conditions

are given by

H(S∗
u(t), S

∗
i (t), B

∗
l (t), u

∗
1(t), u

∗
2(t)) = min

0≤ui≤1
H(S∗

u, S
∗
i , B

∗
l , u

∗
i ),

u∗1(t) = min

{
1,max

(
0,
SuBl(β1θ

∗
2 − β2θ

∗
3 − β1θ

∗
1)

C1

)}
,

u∗2(t) = min

1,max

0,
θ∗3ν2Bl

(
1− Bl

Blmax

)
C2

 .

(6.3.21)

Proof. The adjoint system (6.3.20) is obtained from H as follows

−dθ1
dt

=
∂H
∂Su

, − dθ2
dt

=
∂H
∂Si

, − dθ3
dt

=
∂H
∂Bl
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with transversality conditions given as θ1(tf ) = θ2(tf ) = θ3(tf ) = 0. Furthermore, the

characterization of the CF fractionalized optimal controls u∗1(t) and u∗2(t) are achieved by

solving the following equations

∂H
∂u1

= 0,
∂H
∂u2

= 0

on the interior of the control set and utilizing the properties of the control space U .

The analytical Sections of our study come to an end here and next we proceed to the

numerical outcomes for validation of the analytical portions of our proposed systems.

6.4 Numerical Simulation

In this Section, we perform numerical simulations for both the Caputo–Fabrizo fractional

system denoted by (6.1.2) and also the CF fractionalized optimal control system (6.3.1). All

the numerical results are compared with the analytical and theoretical outcomes previously

achieved. We chose the initial values according to the cardinal rule of scientific hypothesis.

Some values of the parameters were chosen from the numerical table in Chapter 2 and the

research article [Masaki et al. (2013)], and the other values were estimated. The values of the

parameters which we have used here are described in the following table denoted by Table

6.1. All of our numerical findings here were obtained using MATLAB 2016A. Throughout

the Chapter, the interval of consideration was chosen as [0, 2.5× 103].

Here, we want to mention that Table 6.1 actually refers to the values of the system

parameters for system (6.1.2) and system (6.3.1) for the fractional order ζ = 1. During

the simulations of the Figures for ζ ∈ (0, 1), we adopted the technique proposed by Atan-

gana et al. [Khan and Atangana (2020)]. To avoid the dimension mismatching of (time)−1

and (time)(−ζ) between the left- and right-hand sides of the systems, the dimensions of the

system parameters were modified accordingly and the corresponding values were utilized for

the numerical simulations.

In Figures 6.1 and 6.2, the behavior of the cell densities and the phase portrait diagrams

of the healthy Schwann cells, infected Schwann cells and M. leprae bacteria for system (6.1.2)

in the 3-D phase space are exhibited, respectively, for ζ = 1, i.e., for the classical integer-

order system. Figure 6.1 depicts oscillatory periodic solutions and stable limit cycles. On the

contrary, in Figure 6.2, stable solutions are observed whenever the value of ν2 is increased

from 0.03 to 0.05, which describes that the intrinsic growth rate of the bacterial population

is a very crucial parameter for demonstrating the dynamical shift in system (6.1.2).
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(a) (b)

(c) (d)

(e)

Figure 6.6: Times series and phase portrait diagrams of the CF fractionalized system
(6.1.2) depicting the asymptotically stable dynamics of the system state populations for
ζ = 0.6. Here, major observations are noted by studying the comparative behavior of
system (6.1.2) between the CF-fractional order ζ = 1 (unstable in the form of stable
periodic solutions and limit cycles shown in Figure 6.5) and ζ = 0.6 (stable behavior
demonstrated in this Figure, i.e., in Figure 6.6). Here, values of ν2 = 0.035 and
Sumax = 1200 were used for simulating the Subfigures in this Figure. All the other
parameter values were chosen from Table 6.1. (a) Behavior of the trajectories of system
(6.1.2); (b) 3-D phase diagram for system (6.1.2) in Su−Si−Bl space; (c) 2-D phase
diagram of system (6.1.2) in the Su − Bl plane; (d) 2-D phase diagram for system
(6.1.2) in the Su − Si plane; (e) 2-D phase diagram for system (6.1.2) in the Si − Bl

plane.
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(a) (b)

(c)

Figure 6.7: Representation of the stability regions for the Caputo–Fabrizio (CF) frac-
tionalized system (6.1.2) for different values of CF fractional order ζ. Values of the
parameters were chosen as ν1 = 0.4, Blmax = 530, µ = 0.1, β1 = 0.00032, σ = 0.3,
β2 = 0.00024 and all the values of other parameters were taken from Table 6.1. (a)
Stability region for CF fractional order ζ = 1; (b) stability region for CF fractional
order ζ = 0.8; (c) stability region for CF fractional order ζ = 0.6.

Table 6.1: List of parameter values used in numerical simulation for systems (6.1.2)
and (6.3.1) for ζ = 1.

Parameter Parameter Definition Assigned Value

ν1 growth rate of Su 0.4
ν2 growth rate of Bl 0.01–0.05

Sumax carrying capacity of Su 600–1400
Blmax carrying capacity of Bl 400–550
µ natural death rate of Si 0.1
β1 infection rate 0.0003–0.0046
σ proliferation rate of Bl 0.1–0.35
β2 clearance rate of Bl 0.00015–0.0003
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(a) (b)

(c) (d)

Figure 6.8: Trajectories of the cell populations of the optimal-control-induced Caputo–
Fabrizio fractional (CFOC) system (6.3.1). Scenarios for both with and without control
are exhibited here in Subfigures (a), (b) and (c), respectively, denoted by green and red
color. In Subfigure (d), optimal control profiles of u∗

1 and u∗
2 are shown for CFOC sys-

tem (6.3.1). Values of the parameters were chosen as ζ = 0.9, ν2 = 0.03, Sumax = 1200
for simulating the Subfigures of this Figure and other parameter values were selected
from Table 6.1. (a) Behavior of the densities of healthy Schwann cells Su; (b) behav-
ior of the densities of infected Schwann cells Si; (c) behavior of the concentrations of
M. leprae bacteria Bl; (d) dynamics of the optimal control profiles u∗

1 and u∗
2 for system

(6.3.1).
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We now move on to understand the behavior of system (6.1.2) in the previous memory

states, i.e., for the non-integer cases or fractional-order cases for the value of ζ ∈ (0, 1).

Considering ζ = 0.8, Figure 6.3 shows that system (6.1.2) produces oscillatory solutions and

stable limit cycles for ν2 = 0.03, while Su cell, Si cell and Bl bacteria reach the stable con-

centrations of approximately 50 mm3, 120 mm3 and 1100 mm3, respectively, at the endemic

steady state E∗ described in Figure 6.4.

Next, a comparison of system (6.1.2)’s behavior is investigated for two different values

of ζ. Keeping the whole parameter set fixed, we varied the fractional order from ζ = 1 to

ζ = 0.6. The numerical outcomes in Figure 6.5 exhibit unstable behavior with sustained

oscillations of the cell population densities of system (6.1.2) for ζ = 1, but moving towards

the previous memory state for ζ = 0.6, Figure 6.6 shows that after a little initial fluctuation,

the system state populations become asymptotically stable. In addition, in Figure 6.7, the

stability regions of the interior equilibrium E∗(S∗
u, S

∗
i , B

∗
l ) for the CF fractionalized system

(6.1.2) for three different values of ζ, i.e., for ζ = 1, 0.8, 0.6, are clearly demonstrated in

Figures 6.7a, 6.7b and 6.7c, respectively.

In Figures 6.8 and 6.9, the effect of the optimal control treatment policy has been demon-

strated on the Caputo–Fabrizio fractionalized optimal control (CFOC) system for the frac-

tional orders ζ = 0.9 and ζ = 0.6, respectively. In both cases, the concentrations of healthy

Schwann cells (Su) are observed to be increased, and also the densities of Si and Bl are

decreased in the body of a leprosy-infected person. The bacterial concentration Bl decreases

to 510 mm3 in Figure 6.8c, while it decreases to a stable concentration of 420 mm3 depicted

in Figure 6.9c. This indicates that the CFOC system (6.3.1) acts better when more previous

memory states are considered for ζ = 0.6. Now, looking into the optimal control profiles of

u∗1 and u∗2, we can see that the drug therapy Dapsone denoted by u∗2(t) needs to be increased

after 520 days in case of ζ = 0.9, while it should be increased after nearly 1100 days up to

the range 0.8–0.9 for ζ = 0.6 described in Figures 6.8d and 6.9d, respectively. This happens

due to the memory effect of M. leprae-induced infection and as the previous memory stages

of the bacteria are extremely correlated with the drug resistance scenarios during the treat-

ment [Wolf et al. (2008)]. Indeed, the M. leprae bacteria are highly Dapsone-resistant [Wu

et al. (2022); Williams et al. (2018)]. To tackle the dissemination of leprosy into the hu-

man body and to effectively inhibit bacterial drug resistance, applying the optimal control

treatment approach for the previous memory state of ζ = 0.6 is more realistic in nature and

appropriate than the present state or the states very adjacent to ζ = 0.9.
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(a) (b)

(c) (d)

Figure 6.9: Trajectories of the cell populations of the optimal-control-induced Caputo–
Fabrizio fractional (CFOC) system (6.3.1). Scenarios for both with and without control
are exhibited here in Subfigures (a), (b) and (c), respectively, denoted by green and red
colors. In Subfigure (d), optimal control profiles of u∗

1 and u∗
2 are shown for CFOC sys-

tem (6.3.1). Values of the parameters were chosen as ζ = 0.6, ν2 = 0.03, Sumax = 1200
for simulating the Subfigures of this Figure and other parameter values were selected
from Table 6.1. (a) Behavior of the densities of healthy Schwann cells Su; (b) behav-
ior of the densities of infected Schwann cells Si; (c) behavior of the concentrations of
M. leprae bacteria Bl; (d) dynamics of the optimal control profiles u∗

1 and u∗
2 for system

(6.3.1).
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6.5 Discussion

In this Chapter, we have formulated and analyzed a three-dimensional CF fractional-order-

based mathematical system and, most importantly, investigated the impacts of memory ef-

fects on the CF fractionalized optimal control system by incorporating a combined drug

therapy. We have formulated an iterative scheme using the Laplace and inverse Laplace

transformations in Section 6.1.1. Following that, we established the stability of the solutions

using Picard’s T-stability iterative criterion in Theorem 6.1.2 in Section 6.1.2. For demon-

strating the existence and uniqueness of the solutions (Theorem 6.1.3 in Section 6.1.3 and

Section 6.1.4) of system (6.1.2), we used the well-known Banach fixed-point theorem and

Arzela–Ascoli theorem. The formula for the basic reproduction number R0 was derived and

the local asymptotic stability of E0 for the CF fractionalized system (6.1.2) was investigated

with respect to the threshold value of R0 = 1. Besides this, we also described the stability

criterion of the endemic equilibrium E∗ of system (6.1.2) in Theorem 6.2.2 in Section 6.2.

Furthermore, the CFOC system (6.3.1) was investigated by suitably defining the control set

U in Equation (6.3.2) and the objective function (6.3.3) in Section 6.3. A generalized FOCP

was formed in (6.3.5) and optimality conditions were proven in detail for this FOCP denoted

by (6.3.16). Then, the formulas in (6.3.16) were applied to achieve the necessary and suffi-

cient optimality conditions for system (6.3.1), and also the values of the optimal control pair

u∗1 and u∗2 and the co-state or the adjoint equations with the corresponding transversality

conditions were described elaborately in Theorem 6.3.2.

In Chapter 2, we have described three strategies and among them, Strategy-III was found

to be the most effective one. However, serious matters of concern in determining a realistic

and accurate therapy for leprosy are the high cost and extreme adverse effects of the combined

drug therapy. Here, in this Chapter, from Figures 6.8d and 6.9d, we can observe that after

introducing the memory effect, the amount of the drugs needed initially is much less for system

(6.3.1) than for Strategy-III in both the memory-free model and integer-ordered system, which

is much better in terms of cost-effectiveness and safe therapeutics.

Furthermore, comparing Figures 6.8 and 6.9, we can notice that if the value of ζ is

decreased from 0.9 to 0.6, oscillatory solutions appear for the specific range of the parameter

set, but in both cases, under the optimal treatment policy, the densities of the cell populations

approach a stable concentration. The dynamics of the optimal control profile of Ofloxacin

remain almost similar for both ζ = 0.9, 0.6, but the control profile of Dapsone provides notable

differences. More specifically, for ζ = 0.6, the drug dose of Dapsone, i.e., u∗2(t), needs to be

increased after 1100 days to tackle the highly Dapsone-drug-resistant M. leprae [Wu et al.

(2022); Williams et al. (2018)] and the associated infection procedure. Thus, to build a perfect
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regimen for combined therapy, acquiring enough knowledge from the previous memory states

about drug-resistance issues [Matsuoka (2010); Williams and Gillis (2012); Benjak et al.

(2018)] is essential and, hence, CFOC system (6.3.1) with ζ = 0.6 is very fruitful in this

context. The more we reduce the value of ζ and approach the previous memory states, the

more accurate the precision will be. Still, future works on leprosy in this aspect should also

focus on investigating the memory stages for the value of ζ < 0.6, and before implementation,

the outcomes should be validated properly by clinical and experimental researchers.
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Chapter 7

Analysis of a Stochastic

Mathematical Model for Examining

the Extinction of Infected Schwann

Cells in Leprosy

Stochastic systems has the capacity to handle uncertainties in the inputs applied. Stochastic

models possess some inherent randomness i.e. noise and the unique characteristic a stochastic

system holds is that the same set of parameter values and initial conditions will lead to an

ensemble of different outputs. In this Chapter7, we have extended the deterministic ODE-

based system developed in Chapter 5 and formulated a stochastic version of the system. Long

term behavior of the model is investigated by calculating a stationary distribution and normal

approximation of the distribution. The quasi-stationary distribution of the model is studied

to examine the models’ behavior before extinction and to achieve the time to extinction of the

infected Schwann cells. Our main aim of this Chapter is to predict the probability that the

infectious cells have died out at a given time while comparing different scenarios incorporated

as a result of the most dominant parameter, the drug-efficacy rate of MDT treatment. All of

the analytical results are validated through numerical simulations in Matlab 2016a and are

compared with existing clinical data.

7The bulk of this chapter is communicated in a peer-reviewed journal.
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7.1 The Deterministic Mathematical Model

We have first considered the four-dimensional mathematical model developed in Chapter 5

here in this Section and extended this system later through constructing a stochastic version

of it. The four dimensional nonlinear ODE-based system is presented as:

dSh
dt

= Π− βShB + αf(X)Si − λg(X)Sh − dSh,

dSi
dt

= βShB − αf(X)Si + λg(X)Sh − diSi,

dB

dt
= rB

(
1− B

K

)
− dbXB + κSi, (7.1.1)

dX

dt
= eηSi − θX

with initial values Sh(0) = Sh0 > 0, Si(0) = Si0 > 0 and B(0) = B0 > 0 and X(0) = X0 > 0

at t = 0.

Here, the concentrations of healthy Schwann cells, infected Schwann cells, M. leprae

bacteria and MDT drug therapy are represented by Sh(t), Si(t), B(t) and X(t), respectively,

at any time t. Π denotes the constant production rate of healthy Schwann cells from neural

crest cells into human body. β is the effective contact rate between the healthy Schwann

cells and the bacteria. α be the rate at which infected cells become recovered due to the

effect of MDT. The rate at which healthy Schwann cells are getting infected again as a

result of waning effect of MDT is indicated by λ. The parameters, r and K describe the

intrinsic growth rate and carrying capacity of M. leprae bacteria as presented in a logistic

manner. The level of treatment i.e. the concentration of MDT is proportional to the number

of infected Schwann cells and it is represented by the term, eηSi, where e denotes the

proportionality constant and η denotes the efficacy rate of MDT. Moreover, θ reflects the

natural drug washout rate through various physiological processes into a human body. d,

di and db signify the natural death rate or mortality rate healthy Schwann cells, infected

Schwann cells and the rate at which M. leprae bacteria is killed by MDT, respectively.

By the rate κ, we have denoted the proliferation rate of newly produced free M. leprae

bacteria from infected Schwann cells which via releasing bacteria-laden macrophages, further

disseminates the infection into the whole human body. The effective drug-treatment is

directed by the increasing function, f(X) with f(0) = 0 and sup f(X) = 1. It is considered

that the effectiveness of drug is fading for which the healthy Schwann cells are becoming

infected again. Therefore, g(X) is chosen as a decreasing function of X with g(0) = 1 and

inf g(X) = 0.
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7.1 The Deterministic Mathematical Model

Let us denote the total number of Schwann cells at any time t into a human body by

NS(t) i.e NS(t) = Sh(t) + Si(t). Adding the first and second equations of system (7.1.1), we

get

NS

dt
= Π− dsSh (7.1.2)

where ds = d+ di. From equation (7.1.2), we get

dNS

Π− dsNS
= dt. (7.1.3)

Integrating this, we obtain

NS(t) =
1

ds
(Π− ce−dst) where c is an arbitrary constant.

This clearly implies that

Ns →
Π

ds
as t→ ∞. (7.1.4)

Using equation (7.1.4) in system (7.1.1), we get that

dSi
dt

= β(NS − Si)B − αf(X)Si + λg(X)(NS − Si)− diSi,

dB

dt
= rB

(
1− B

K

)
− dbXB + κSI , (7.1.5)

dX

dt
= eηSi − θX.

For the quasi-steady state (QSS) approximation to achieve an accurate and precise in-

terpretation of the dynamics of the system, it is required to consider the MDT drug dose

concentration in an equilibrium state i.e. more precisely, we need to put the third equation

of system (7.1.5) to be zero which implies that dX
dt = 0.

From this equation, we get

X =
eηSi
θ

. (7.1.6)

From equation (7.1.6), substituting the value of X, model (7.1.5) assumes the following

form: 
dSi(t)

dt
= β(NS − Si)B − αf(

eηSi
θ

)Si + λg(
eηSi
θ

)(NS − Si)− diSi,

dB(t)

dt
= rB

(
1− B

K

)
− db

eηSi
θ

B + κSi.

(7.1.7)

Previously, it was mentioned in the model formulation and assumption Section that f and g
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7.1 The Deterministic Mathematical Model

are chosen as two functions of X, monotonically increasing and decreasing, respectively such

that f(0) = 0, g(0) = 1, lim sup f(X) = 1 and lim inf g(X) = 0. Let us now use the explicit

forms in place of the functional forms f(X) and g(X) as f(X) = X
1+X and g(X) = 1

1+X .

Under these assumptions, the deterministic system (7.1.7) can be written as:
dSi(t)

dt
= β(NS − Si)B − αeη

θ + eηSi
S2
i +

λθ

θ + eηSi
(NS − Si)− diSi,

dB(t)

dt
= rB

(
1− B

K

)
− dbeη

θ
SiB + κSi.

(7.1.8)

To investigate the dynamical behaviour of system (7.1.8), we have to discuss the local asymp-

totic stability of the equilibrium points for the system. For evaluating the equilibrium points,

let us put the right hand sides of the equations of system (7.1.8) equals to zero. Hence, we

obtain the following set of equations:

β(NS − S∗
i )(B

∗)− αeη

θ + eηS∗
i

(S∗
i )

2 +
λθ

θ + eηS∗
i

(NS − S∗
i )− diS

∗
i = 0, (7.1.9)

κS∗
i −

dbeη

θ
S∗
i (B

∗) + r(B∗)
(
1− (B∗)

K

)
= 0. (7.1.10)

From equation (7.1.9), it implies that

S∗
i =

rB∗(K −B∗)θ

K(dbeηB∗ − κθ)
. (7.1.11)

Replacing the value of S∗
i in the equation (7.1.10) , we get

h(B∗) = (B∗)5 + ψ1(B
∗)4 + ψ2(B

∗)3 + ψ3(B
∗)2 + ψ4(B

∗) + ψ5 = 0 (7.1.12)

where

ψ1 =
G2H2 +G1H3

G2H3
, ψ2 =

G2H1 +G1H2 +G0H3 + Λ1

G2H3
, ψ3 =

G1H1 +G0H2 + Λ2

G2H3
,

ψ4 =
G0H1 + Λ3

G2H3
, ψ5 =

Λ4

G2H3

and

G0 = −κKθ2, G1 = eηrθK + Kθdbeη, G2 = −eηrθ, H1 = −(KβNSκθ + dirθK), H2 =

(KβNSdbeη+ dirθ− rθKβ), H3 = rθβ, Λ1 = θ2rλKdbeη, Λ2 = λθNSK
2d2be

2η2 + αeηrθ−
rλθ2K2dbeη − rλθ3κK, Λ3 = rθ3κK − 2λθNSK

2dbeηκθ, Λ4 = λθNSκ
2K2θ2 − αreθηKβ.

Positive interior equilibrium E∗ = (S∗
i , B

∗) exists for system (7.1.8) if there exists S∗
i ,

B∗ such that both S∗
i > 0 and B∗ > 0. The endemic state bacterial density can not exceed
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the carrying capacity of the population which means B∗ < K always holds true. So, from

equation (7.1.11), it follows that S∗
i > 0 whenever

dbeηB
∗ > κθ (7.1.13)

where B∗ is the positive root of equation (7.1.12). Now, it is remaining to show that there

exists a positive root of (7.1.12) i.e. there exists B∗ > 0 such that h(B∗) = 0. It is important

to note that h(+∞) is always positive and hence, existence of at least one positive root of

h(B∗) = 0 is guaranteed if ψ5 < 0. So, there exists at least one positive B∗ ∈ (0,∞) satisfying

equation (7.1.12) if the following condition is satisfied:

αreηβ < λNSKκ
2θ2. (7.1.14)

In view of the previous discussion, we now construct the following lemma.

Lemma 7.1.1 For the positive value of B∗ i.e. if αreηβ < λNSKκ
2θ2 holds and if dbeηB

∗ >

κθ, then the positive endemic equilibrium E∗ = (S∗
i , B

∗) of system (7.1.8) exists.

The Jacobian matrix of system (7.1.8) at the endemic equilibrium point E∗ = (S∗
i , B

∗) is

given as:

J (Si, B) =

(
A11 A12

A21 A22

)
. (7.1.15)

where

A11 = −βB∗ − (2αeηS∗
i + λθ)

θ + eηS∗
i

+
eη

(θ + eηS∗
i )

2
(αeηS2

i − λθNS)− di, A12 = β(NS − S∗
i ),

A21 = −−dbeη
θ

B∗ + κ, A22 = r − 2rB∗

K
− dbeη

θ
S∗
i .

This implies that the corresponding characteristic equation of system (7.1.8) at E∗ is

det(J − ωI2) = 0 (7.1.16)

which indicates that

ω2 +D0ω +D1 = 0 (7.1.17)

where the values of D0 and D1 are given as:

D0 = −(A11 +A14), D1 = (A11A14 −A12A13). (7.1.18)

Clearly, equation (7.1.8) is quadratic equation with real coefficients. Either both of the two
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roots ωi, i = 1, 2 are real or complex conjugate to each other. So, two cases are arising in

this situation and are described below.

• When the roots are real, we can see that ω1 +ω2 = −D0 and ω1ω2 = D1. This implies

that both of the roots will be negative if the conditions D0 > 0 and D1 > 0 are satisfied.

• When the roots are complex conjugate to each other, let us assume that these roots are

in the form ω and ω̄. From equation (7.1.17), it follows that −D0 = ω + ω̄ = 2Re(ω)

where Re(ω) denotes the real part of ω. This clearly implies that complex roots with

negative real part exists whenever D0 > 0.

Considering the previous discussions and results, we now present the following theorem which

explains the local asymptotic stability of E∗ for system (7.1.8).

Theorem 7.1.1 The endemic equilibrium E∗ = (S∗
i , B

∗) of system (7.1.8) will be locally

asymptotically stable i.e. the characteristic equation (7.1.17) possesses negative real roots or

roots with negative real parts if the following inequalities are satisfied:

A11 +A14 > 0 and A11A14 > A12A13.

7.2 Stochastic Model Formulation

A full stochastic version of our modified deterministic system (7.1.8) is formulated and de-

scribed in this Section. Here, we have considered two state variables at time t, namely

• the number of infected Schwann cells denoted by Si(t),

• the number of M. leprae bacteria denoted by B(t).

These state variables take the values in the state space S which is specifically described in

the form: S = {(Si, B) : Si = 0, 1, 2, .... ;B = 0, 1, 2....}. Let us consider that PSi,B be the

joint probability distribution of the number of infected Schwann cells and the number of M.

leprae bacteria with possible transition rate at the time interval [t, t+∆t].

7.2.1 Formulation of Kolmogorov’s forward equation

Our model accounts for seven basic events namely, new infections of healthy Schwann cells,

reinfection of the recovered cells for fading effect of MDT, removal of infected cells due to

recovery through MDT treatment, natural death of infected cells, intracellular growth of M.
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leprae bacteria, proliferation of M. leprae from the infected Schwann cells and the natural

death rate of the bacteria. All these state transitions and the corresponding transition rates

are demonstrated in detail in the fully stochastic version of the model mentioned in Table

7.1. Then, the Kolmogorov’s forward equation which constructs a set of differential equation

for the state probabilities along with the appropriate transition rates is as follows:

dPSi,B

dt
= lim

∆t→0

PSi,B(t+∆t)− PSi,B(t)

∆t

= PSi−1,B

[
βB +

λθ

θ + eη(Si − 1)
(Ns − Si + 1)

]

+ PSi+1,B

[
αeη

θ + eη(Si + 1)
(Si + 1)2 + di(Si + 1)

]
+ PSi,B−1

[
κSi + r

(
1− (B − 1)

K

)
(B − 1)

]

+ PSi,B+1

[
dbeη

θ
Si(B + 1)

]
− PSi,B Λ(Si, B). (7.2.1)

Now, rewriting equation (7.2.1), we obtain the compact form of the Kolmogorov’s forward

equation given as:

ṖSi,B = λ1(Si − 1, B)PSi−1,B + µ1(Si + 1, B)PSi+1,B

+ λ2(Si, B − 1)PSi,B−1 + µ2(Si, B + 1)PSi,B+1 − Λ(Si, B)PSi,B (7.2.2)

where

λ1(Si − 1, B) = βB +
λθ

θ + eη(Si − 1)
(Ns − Si + 1) ,

µ1(Si + 1, B) =
αeη

θ + eη(Si + 1)
(Si + 1)2 + di(Si + 1),

λ2(Si, B − 1) = κSi + r

(
1− (B − 1)

K

)
(B − 1),

µ2(Si, B + 1) =
dbeη

θ
Si(B + 1)

and

Λ(Si, B) = λ1(Si, B) + µ1(Si, B) + λ2(Si, B) + µ2(Si, B).

Furthermore, we construct a method to map the two-dimensional PSi,B into a one-dimensional
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vector P such that the equation (7.2.2) gets converted into the following form:

dP

dt
= PV. (7.2.3)

Here, the probability PSiB is set to be as the (NS +1)(K+1) th element of the vector and V

is a matrix which is comprised of the transition rates obtained from the transition rate table

denoted by Table 7.1.

Now, The matrix V is of the form :

V = {Vij} =



V11 V12 V13 V14 ..... 0

V21 V22 V23 V24 ..... 0

. V31 V33 V34 ..... 0

. V41 ...... V44 ..... 0

. . . . . .

. . . . . .


(7.2.4)

where

V11 = − λθ

θ + eη
(NS + 1) + di, V22 = β +

λθ

θ + eη
NS + κ+ r(1− 1

K
) +

2dbeη

θ

and the other diagonal elements {Vjj} can be obtained by increasing the value of j in place

of (Si, B). The sub-diagonal elements are described as

V21 = κ+ r(1− 1

K
) +

2dbeη

θ
, V31 = 2κ+ 2r(1− 2

K
) + 1 +

2dbeη

θ
, and so on ....

The rest of the sub-diagonal terms are evaluated also by increasing the value of (Si, B).

Similarly, the super-diagonal elements are determined as follows:

V12 = β +
λθ

θ + eη
Ns + 2

[
αeη

θ + eη
+ 1

]
,

V23 = 2β +
λθ

θ + 2eη
(Ns − 1) + 2

[
2αeη

θ + 2eη
+ di

]
and so on ....

Similarly, by performing one increment of (Si, B), one can get the rest of the elements of the

super-diagonal of V .

Since, all the parameters of our model are strictly positive, then our disease process is a

Markov process on a finite, irreducible state space C. Therefore, it is to be considered that
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7.2 Stochastic Model Formulation

the transition rate matrix V has a unique left eigenvector denoted by

Γ = (γ1, γ2, ...., γ(NS+1)(K+1)) (7.2.5)

with eigenvalue 0. i.e,
(NS+1)(K+1)∑

i=1

γi = 1. (7.2.6)

The remaining eigenvalues are negative. Thus, this eigenvector gives the unique limiting

distribution of the process and irrespective of the initial state of the process, it can be written

that

lim
t→∞

P (Si(t), B(t)) = γ. (7.2.7)

Figure 7.1: The distribution of infected Schwann cells (Si) and M. leprae bacteria
(B) generated by the bivariate normal distribution approximation. The values of the
parameters for simulating this Figure are chosen as: β = 1.5, α = 0.8, λ = 0.1,
d = 0.0016, di = 0.0046, η = 0.026, r = 1, K = 10, db = 0.0046, e = 0.25, θ = 0.0007,
κ = 0.05, Ns = 20, N = Ns +K.
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7.3 Quasi Stationary Distribution

Figure 7.2: Contour plot of the approximated bivariate normal distribution of of Si and
B. We have simulated this Figure by keeping the parameter set same as mentioned for
Figure 7.1.

7.3 Quasi Stationary Distribution

In our Stochastic model, we can observe that the disease transmission process is a Markov

process on a finite reducible state space. The state space (0, 0) is the only absorbing state

here and the rest of the states are transient states. Thus, instead of studying stationary

distribution, here we consider especially the quasi stationary distribution which is applicable

for the transient states.

Now, we reconstruct the joint probability distribution Pmn(t) = P{Si(t) = m;B(t) = n}
and putting m = 0 on our Kolmogorov’s forward equation (7.2.2), we get

Ṗ00 = P−1,0 λ1(−1, 0) + P1,0 µ1(1, 0) + P0,−1 λ2(0,−1) + P0,1 µ2(0, 1) (7.3.1)

=

(
αeη

θ + eη
+ di

)
P10. (7.3.2)

Since P−1,0 and P0,−1 are not the feasible states here, the corresponding probabilities are

set to zero. Let us assume that qmn(t) be the corresponding state probability condition on
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7.3 Quasi Stationary Distribution

non-extinction. Then, qmn(t) can be rewritten in the following form:

qmn(t) = P{Si(t) = m,B(t) = n |Si(t) ̸= 0}

=
Pmn(t)

1− P00(t)
.

(7.3.3)

Differentiating equation (7.3.3), we get

q̇mn(t) =
(1− P00(t))Ṗmn(t) + Pmn(t)Ṗ00(t)

(1− P00(t))2

=
Ṗmn(t)

1− P00(t)
+

Pmn(t)

(1− P00(t))2

(
αeη

θ + eη
+ di

)
P10

=
Ṗmn(t)

1− P00(t)
+

Pmn(t)

(1− P00(t))

(
αeη

θ + eη
+ di

)
q10.

(7.3.4)

Thus,

q̇(t) = q(t)V0 +

(
αeη

θ + eη
+ diq10

)
q(t) (7.3.5)

where the sub-matrix V0 is derived by eliminating first row and first column of the matrix V.

Therefore, the quasi stationary distribution is the stationary solution of our Kolmogorov’s

forward equation (7.2.2).

Figure 7.3: Surface plot of the bivariate normal distribution of Si and B considering
the proliferation rate of M. leprae bacteria κ = 0. Rest of the parameter values are
chosen from Table 7.2.
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7.3 Quasi Stationary Distribution

Figure 7.4: Contour plot of the bivariate normal distribution of Si and B considering
κ = 0. Values of the other parameters are chosen from Table 7.2.

Figure 7.5: Demonstration of different contour plots for the bivariate normal distribu-
tion by varying κ. Contours of colors green, blue and red are obtained for the three
different values of κ; i.e. for κ = 0, 0.01 and 0.05, respectively. For this simulation,
we have chosen the other parameter values from Table 7.2.

7.3.1 Exact distribution of the time to extinction

Let us consider that τ be the time to extinction for the Markov process. Then, we have

P (τ > t) = P{Si(t) > 0, B(t) > 0}

P (τ ≤ t) = P{Si(t) = 0, B(t) = 0} = P00(t)
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So, from equation (7.3.4), we get

q̇mn(t) =
Ṗmn(t)

1− P00(t)
+

Pmn(t)

(1− P00(t))

[
αeη

θ + eη
+ di

]
q10 (7.3.6)

=⇒ Ṗmn(t) = (1− P00(t))q̇mn − Pmn(t)

[
αeη

θ + eη
+ di

]
q10. (7.3.7)

Now, for obtaining stabilized condition, we put q̇mn(t) = 0 which presents us the result given

as

Ṗmn(t) = −Pmn(t)
[
αeη

θ + eη
+ di

]
q10 (7.3.8)

Furthermore, integrating equation (7.3.8) with respect to the initial condition Pmn(0) = qmn,

we have

Pmn(t) = qmn exp

[
−
(

αeη

θ + eη
+ di

)
q10t

]
.

Therefore,

P00(t) = q00(t) exp

[
−
(

αeη

θ + eη
+ di

)
q10t

]
=

P00(t)

1− P00(t)
exp

[
−
(

αeη

θ + eη
+ di

)
q10t

]
which gives us

P00(t) = 1− exp

[
−
(

αeη

θ + eη
+ di

)
q10t

]
. (7.3.9)

Thus, if the initial condition equals the quasi stationary distribution, then from result (7.3.9),

we get the distribution of τ is exponential with the exact parameter
(
αeη
θ+eη + di

)
q10. Hence,

it can be written that

E(τ) =
1(

αeη
θ+eη + di

)
q10

. (7.3.10)

7.4 Normal Approximation and Approximation of

the Quasi Stationary Distribution

It is important to note that when the number of infected Schwann cells is extremely large, the

behaviour of the stochastic process tends to a deterministic limit. Thus, we now approximate
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7.4 Normal Approximation and Approximation of the Quasi Stationary Distribution

Table 7.1: Hypothesized transition rates for the fully stochastic version of model (7.1.8)

Description of events State transitions Transition rates

New infections of Sh cells (Si, B) → (Si + 1, B) β(NS − Si)B
Reinfection of Sh cells (Si, B) → (Si + 1, B) λθ

θ+eηSi
(NS − Si)

Removal of Si cells due to recovery (Si, B) → (Si − 1, B) αeη
θ+eηSi

S2
i

Natural death of Si cells (Si, B) → (Si − 1, B) diSi

Intracellular growth of M. leprae (Si, B) → (Si, B + 1) rB
(
1− B

K

)
Proliferation of M. leprae from Si (Si, B) → (Si, B + 1) κSi

Natural death of M. leprae (Si, B) → (Si, B − 1) dbeη
θ
SiB

a diffusion process to investigate the statistical properties of the stationary distribution.

To do this i.e. to approximate system (7.1.8), we first define a family of scaled process.

Let us consider, N = NS +K. Utilizing this and also, assuming

X =
Si
N

and Y =
B

N
,

we now parameterize system (7.1.8) which takes the following form:
dX(t)

dt
= βNY (

NS

N
−X)− αeη

θ + eηNX
NX2 +

λθ

θ + eηNX
(
NS

N
−X)− diX,

dY (t)

dt
= rY

(
1− NY

K

)
− dbeη

θ
NXY + κX.

(7.4.1)

System (7.1.8) has endemic equilibrium (S∗
i , B

∗) and it is locally asymptotically stable which

is previously discussed in the Section 7.1. Therefore, the endemic point (X∗, Y ∗) of our

parameterised version of system (7.1.8) denoted by system (7.4.1) also satisfies system (7.1.8)

and hence, is essentially locally asymptotically stable also.

Now, we consider a process, ZN (t) =
√
N [VN (t) − (X(t) − Y (t))] which can be approxi-

mated by a two dimensional Ornstein-Uhlenbeck process, whose local drift matrix U(X∗, Y ∗)

and local covariance matrix C∗, close to the equilibrium, are evaluated. The local drift matrix

of system (7.1.8) is given as

U(X∗, Y ∗) =

(
A11 A12

A21 A22

)
(7.4.2)
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7.4 Normal Approximation and Approximation of the Quasi Stationary Distribution

where the entries of U(X∗, Y ∗) are given as

A11 = −βNY ∗ +
eηNθX∗(λ− 2α)− λθ2 − λθeη(Ns +NX∗)− αe2η2N2(X∗)2

(θ + eηNX∗)2
− di,

A12 = β(Ns −NX∗),

A21 = −dbeη
θ

NY ∗ + κ,

A22 = r − 2rNY ∗

K
− dbeη

θ
NX∗.

The local covariance matrix C∗ is of the form

C∗ =

(
B11 0

0 B22

)
(7.4.3)

where
B11 = βNY ∗(

NS

N
−X∗)− αeη

θ + eηNX∗NX
∗2 +

λθ

θ + eηNX∗ (
NS

N
−X∗)− diX

∗,

B22 = rY ∗
(
1− NY ∗

K

)
− dbeη

θ
NX∗Y ∗ + κX∗.

Now, we proceed to obtain the distribution of the Ornstein-Uhlenbeck Process at time t

associated with the bivariate normal distribution where the mean vector and the variance

matrix are denoted as (X̂, Ŷ ) and S(t), respectively. From Theorem 7.1.1 in Section 7.1, we

can observe that all the eigenvalues of the matrix U(X∗, Y ∗) will be negative which results in

the strict positivity of det (U(X∗, Y ∗)). This further indicates that for the bivariate normal

distribution process, the mean vector in equilibrium is zero vector and the variance matrix∑
in equilibrium is actually a solution of the following equation,

U(X∗, Y ∗)
∑

+
∑

U⊤(X∗, Y ∗) = −C∗(X∗, Y ∗) (7.4.4)

where U⊤ is the transpose of the matrix U .

Therefore, we conclude that the quasi-stationary distribution is approximated with bi-

variate normal distribution with mean Ŝi i.e. (NX∗) and standard deviation
√

σ1
N obtained

from ∑
=

(
σ1 σ2

σ2 σ3

)
. (7.4.5)
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Here, formulas for evaluating σ1, σ2 and σ3 are described as

σ1 =
−A11B11 +A12B22 + B11A22 − B11A21

2(A2
11 +A11A22 −A11A21 −A12A21)

,

σ2 =
A11B22 + B11A21

2(A2
11 +A11A22 −A11A21 −A12A21)

,

σ3 =
−A2

11B22 −A11B22A22 +A12B22A21 − B11A2
21

2A22(A2
11 +A11A22 −A11A21 −A12A21)

.

The equilibrium distribution of the disease process (Si(t), B(t)) can be approximated by a

bivariate normal distribution with mean (NX∗, NY ∗) and variance matrix NΣ. The normal

density function at the point (Si, B) can be written as:

P (Si(t), B(t)) =
1

2π
√
det(NΣ)

e−(Si−NX∗, B−NY ∗)(2NΣ)−1(Si−NX∗, B−NY ∗)⊤ .

Now, for maintaining consistency with the positivity of the number of infected Schwann

cells into the human body i.e. Si > 0, the approximated normal distribution is modified by

truncation of 0.5 and given as

qm. ≃
1

(
√

σ1
N )

ϕ
[
(m−Ŝi)

(
√

σ1
N

)

]
Φ
[
(Ŝi−0.5)

(
√

σ1
N

)

] (7.4.6)

where ϕ and Φ are the bivariate normal probability density function (PDF) and normal

cumulative distribution function (CDF), respectively.

7.4.1 The expected time to extinction

In this Subsection, using the result (7.4.6), we approximate (7.3.10) to obtain that

E(τ) =
1(

αeη
θ+eη + di

)
q1.

(7.4.7)

where

q1. =
1

(
√

σ1
N )

ϕ
[
(m−Ŝi)√

σ1
N

]
Φ
[
(Ŝi−0.5)√

σ1
N

] . (7.4.8)

Thus, we find the expected time to extinction of the infected Schwann cells by putting m = 1

in the previous approximation of quasi-stationary distribution qm..
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7.5 Numerical Simulations

Table 7.2: List of parameter values used in numerical simulations for our
systems

Parameter Parameter definition Assigned Value (Unit) Range

Π Production rate of Sh 35 (cells day−1) 20 - 70
β Contact rate of B and Sh 1.5 (mm3 day−1) 0.012 - 1.8
α Recovery rate of Si 0.8 (mm3 day−1) 0.2 - 0.9
λ Reinfection rate of Sh 0.1 (mm3 day−1) 0.02 - 0.4
d Natural death rate of Sh 0.0016 (day−1) 0.001 - 0.008
di Natural death rate of Si 0.00046 (day−1) 0.0001 - 0.00071
η Drug efficacy rate of MDT 0.026 0.01 - 0.4
r Growth rate of B 1.01 (day−1) 0.01 - 1.32
K Carrying capacity of B 10 (mm−3) 5 - 60
db Killing rate of B by MDT 0.0022 (day−1) 0.0014 - 0.005
e Proportionality constant 0.25 0.1 - 1.2
θ flushing out rate of MDT 0.00007 (µM day−1) 0.00001 - 0.0009
κ proliferation rate of B 0.02 0.01 - 0.18

7.5 Numerical Simulations

Exhibiting numerical examples is essential for validating the analytical results. Setting suit-

able parameter values while estimating some of them from existing literatures and Chapter

5, we have performed a few numerical simulations for various distribution processes for our

proposed systems. Parameter values are specified in the corresponding Figure diagrams,

otherwise collected from Table 7.2.

In Figure 7.1 and Figure 7.2, distribution of infected Schwann cells andM. leprae bacteria

are exhibited by using the bivariate normal approximation method. for performing this,

the density function of the normal approximation and the left eigenvector of the matrix V

with respect to the eigenvalue 0, are solved during simulating these Figures numerically.

In this context, it is important to note that the proliferation rate of newly produced free

M. leprae bacteria is one of most important parameters for our system. If the infection of

healthy Schwann cells are inhibited by MDT therapy, it eventually reduce or even stops the

production of free bacteria. This is the fundamental reason why investigating the distribution

of normal approximation is of utmost importance for κ = 0 which is exactly shown in Figure

7.3 and Figure 7.4. Comparisons between Figure 7.1 and Figure 7.3 clearly indicates that

large probabilities are obtained for lower values of B and higher ranges of values of Si in 7.1

while for κ = 0, we get large probabilities for higher values of B and lower values of Si. Also,

to make the impact of κ clearer on the system dynamics, intersection three different contours
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7.5 Numerical Simulations

Figure 7.6: Quasi-stationary distribution of the infected Schwann cells for three dif-
ferent values of N = Ns + K. Here, K remains fixed and is assigned the value of
K = 10. The values of Ns are varied as Ns = 40, 50 and 60 to respectively denote the
simulations for the colors green, red and blue. The values of the other parameters are
chosen as β = 1.5, α = 0.8, λ = 0.1, d = 0.0016, di = 0.00046, η = 0.026, r = 1,
K = 10, db = 0.0046, e = 0.25, θ = 0.00007 and κ = 0.02.

for the values of κ = 0, 0.01, 0.05 for the normal approximations are manifested in Figure

7.5.

In Figure 7.6, we plot the marginal distribution profile of the infected Schwann cells Si by

varying the values of N , in quasi-stationary state. We consider N = Ns +K and the values

of Ns are varied as Ns = 40, 50 and 60 to plot the graphs. Trajectories in this Figure show

that the distribution is positively skewed for comparatively lower values of N and gradually

becomes symmetric for higher magnitude of N . Thus, we can conclude that the density of

infected Schwann cells raises with increasing values of N .

In Figure 7.7, we have described the expected time to extinction E(τ) of the infected

cells while varying the values of Ns under the MDT treatment considering η = 0.28. Up

to the value of Ns = 14, expected time decreases from nearly 1800 days to 250 days, but

for larger values of Ns, the change in the estimated time E(τ) is relatively very slow. A
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7.5 Numerical Simulations

Figure 7.7: Description of the expected time to extinction E(τ) of the infected Schwann
cells Si with respect to Ns. Here, we have chosen the value of drug-efficacy rate η = 0.28
and the other parameter values are remained the same as in Figure 7.6.

Figure 7.8: Expected time to extinction E(τ) of the infected Schwann cells Si with re-
spect to Ns considering the value of drug-efficacy rate η = 0.22 and the other parameter
values are remained the same as in Figure 7.7. The other parameters are chosen from
Table 7.2.

comparative analysis is performed in Figure 7.8 for achieving the expected time to extinction
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7.5 Numerical Simulations

Figure 7.9: Change of percentage fall in the expected time to extinction E(τ) corre-
sponding to the change in the values of η in the Figures 7.6 and 7.7. The values of the
other parameters are chosen from Table 7.2.
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Figure 7.10: 3-D plot of the infected cells’ density Si with respect to η and κ. Rest of
parameters’ values are chosen from Table 7.2.

E(τ) by choosing η = 0.22. Simulations show that for lower value of drug-efficacy rate, longer

expected time to extinction is essentially needed up to the values of N = 14. Furthermore, in

Figure 7.9, change in the percentage fall in E(τ) between η = 0.22 and η = 0.28 is calculated
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7.6 Discussion

Figure 7.11: 3-D contour plot of the basic reproduction number R0 with respect to η
and θ. The other parameters are chosen from Table 7.2.

for gradually increasing Ns values. Here, it can be observed that the percentage change is

gradually decreasing with the increasing values of Ns.

Finally, in Figure 7.10, a 3-D plot is exhibited for depicting the change in the densities of

Si cells with respect to drug-efficacy rate η of MDT therapy and proliferation rate κ which

infers that Si density is the least for combined values of larger η values and relatively low κ

values. Finally, a 3-D contour plot demonstrating the coupled effect of η and θ on the basic

reproduction number R0 for system 7.1.7 has been depicted in Figure 7.11.

7.6 Discussion

In this Chapter, firstly, we have investigated the basic system dynamics of a deterministic

mathematical model. Then, the deterministic system is extended to a discrete stochastic

model with detailed presentation of all the possible transition states. The stochastic math-

ematical model is analyzed and investigated from different aspects of exact distribution,

quasi-stationary distribution and most importantly, bivariate normal distribution.

The analytical and numerical outcomes suggest that the proliferation rate of bacteria and

the efficacy of the MDT treatment are the most two important parameters contributing to the

exploration of the system dynamics. The expected time to extinction of the infected cells is

observed to be lower if the production rate of free bacteria is comparatively low and if MDT is
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being administered with high efficacy rate of η = 0.28. Also, focusing on the long-term system

dynamics for achieving the extinction of infected cells into a human body, our obtained results

suggests that the bacterial proliferation is inhibited and even, stopped successfully whenever

the M. leprae-induced infections can be blocked or controlled effectively and the recovery to

the healthy class through the proper combined drug therapeutic schedule of 1500−1800 days

can be shortened as much as possible.
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Chapter 8

Conclusion and Future Direction

In the final chapter, we will review the research contributions of the thesis as well as discuss

the future directions for research.

8.1 Conclusions

In this Section, we have discussed research contribution of the thesis chapter wise. The main

contribution of the thesis are as follows:

8.1.1 Chapter 2

Three strategies of optimal control are discussed in this Chapter. Strategy-I (with efficiency

index 58.74%) is more effective than Strategy-II (efficiency index 50.85%) for having a higher

efficiency index. Strategy-III has a much higher efficiency index (71.56%) than both Strategy-

I and II as we have used combination of the both drugs in this case. The main motive of

Strategy-I is to prevent new infections in a leprosy patient where Strategy-II focuses on

suppressing the natural replication of the M. leprae bacteria. Our analysis suggests that

preventing new infections is more advantageous and useful than only inhibiting bacterial

growth as once we can stop spreading the new infections, the bacterial load will automat-

ically decrease gradually. However, Strategy-III performs more effectively than the other

two as it concentrates on both of these two points. Hence, it is suggested that the optimal

control therapy with Strategy-III discussed in this Chapter is the most beneficial approach

of controlling leprosy. Also, after in depth analysis and investigation of a patient’s condition,

switching from Strategy-III to Strategy-I or even Strategy-II can be a very good option for

some specific cases after a certain period of time to avoid adverse drug effects. Finally, the
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investigations performed in this Chapter successfully describes the basic cell dynamics of lep-

rosy and the obtained results can further guide in developing a cost-effective drug regimen

for leprosy patients successfully.

8.1.2 Chapter 3

In this Chapter, we have incorporated the theta-logistic growth for M. leprae bacteria in

place of classical logistic growth. Comparing several scenarios for different values of θ (with

θ < 1, θ = 1 and θ > 1), we have come into the conclusion that for θ > 0.48, our proposed

system produces oscillatory periodic solutions. Biologically, this indicates that the densities

of the M. leprae bacteria and the infected Schwann cells fluctuate very rapidly in this case and

ultimately, lose stability when the intraspecific competition between the bacteria for available

resources crosses a specific critical value of θ∗ = 0.48. Evidently, the findings of this Chapter

completely justify our assumption of theta-logistic growth for the bacterial population and

effectively describe the relation of density-dependence and per capita growth rate (PGR) for

M. leprae which presents a novel insight to unfold the vastly complicated leprosy infection

process and the disease progression into the human body.

8.1.3 Chapter 4

Two different variants of delayed mathematical models are constructed in this Chapter and

furthermore, optimal control strategy with delay in state variables has been implemented on

both of these models. The analytical and the numerical outcomes of this Chapter conclude

that our proposed optimal control-induced delayed mathematical systems act very explicitly

and unambiguously at giving reliable predictions on the infection and disease transmission

process of leprosy. We strongly claim that our proposed systems, more precisely, the second

optimal control-induced delayed mathematical model should necessarily be used as a decisive

policymaker in a cost-effective preventive control strategy and also as a crucial tool for framing

a perfect drug dose regimen for leprosy as a more realistic and practical approach.

8.1.4 Chapter 5

In this Chapter, we have discussed a four dimensional mathematical model which success-

fully captures some basic and intriguing features of the disease dissemination process and

therapeutic approaches for leprosy. Our proposed treatment policy with a flexible version

of MDT with the prescribed zone of drug efficacy rate and treatment tenures for both pau-

cibacillary (PB) and multibacillary (MB) types of patients is much safer, effective and can
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really be a potential candidate for future clinical trials and for the pharmacists aiming to

develop an accurate and novel treatment regime. Our investigations validate the essence of

applying a modified version of MDT therapy with efficacy rate η in the safe and effective

zone i.e. η ∈ (0.025, 0.059) but necessarily for a longer treatment period of nearly 300 days

(10 months) for MB cases in comparisons to the scenarios of PB cases.

8.1.5 Chapter 6

This Chapter demonstrates the memory effect for experimenting with the leprosy pathophysi-

ology which actually involves the entire history before the present instant, and the implication

of fractional calculus can surely be viewed as a suitable and exclusive tool for modeling these

types of phenomena with hysteresis. The Chapter reveals that the whole M. leprae-induced

infection in leprosy not only depends on the present state but also on the previous memory

stages of the infection process. With the different circumstances and effects that the whole

infection mechanism experiences in various memory stages, the CF fractionalized system re-

sponds differently to the current conditions. The knowledge accumulated by the metabolic

activities in preceding stages confers fitness to the bacteria in an evolutionary way, which

validates that the history-dependent drug-resistant behavior is essentially a clear manifes-

tation of the memory effect in leprosy. Thus, to overcome the drug resistance scenario,

high-cost-related problems and side-effects of the combined therapy, the three-dimensional

Caputo-Fabrizio fractionalized optimal control mathematical model for the fractional order

ζ = 0.6 presented in this Chapter should certainly be considered by mathematical and clinical

scientists for all future studies on leprosy.

8.1.6 Chapter 7

Due to inherited randomness and noise, a stochastic mathematical model has been investi-

gated in this Chapter to explore the leprosy dynamics involving the joint probability distri-

bution of infected Schwann cells and M. leprae bacteria. Our experiments suggest that the

expected time to extinction for the infected Schwann cells gets lowered as the total Schwann

cell population size increases. Surface plot and contour diagrams generated from the bivari-

ate normal approximation suggests that infected cells’ density is strongly correlated with the

bacterial proliferation and efficacy of MDT therapy. The basic reproduction number for our

system which is a threshold and determining criterion for the disease prevalence into the

human body, can necessarily be lowered if MDT drug dose is administered with the proposed

regimen which simultaneously kills M. leprae as well as recovers the infected Schwann cells.
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8.2 Future research: An outline

We have previously discussed the contribution of this thesis in leprosy dynamics, after which

research on this topic will necessarily be continued to gain more extensive and profound

knowledge. Using some modern mathematical tools while incorporating new deeper biological

insights, we will be able to extend our systems and explore new horizons. Futuristic research

works can certainly be performed in the following directions.

• Firstly, it is important to note that the long tenure of treatment is still a concerning

issue for leprosy. In addition, classification of leprosy is not only limited to the PB and

MB cases but also, five different types forming a complete spectrum. To resolve this,

different mathematical models should be investigated for all these types and examining

the interplay from the point of view of uniform therapeutic schedule should be given

major importance.

• Evaluating drug holidays and implementing impulsive biologic therapy is a very in-

triguing mathematical tool which has been applied lately on many infectious and non-

infectious diseases. In leprosy, although the prescribed drug dose schedules support

drug-holidays, the perfect regimen is yet to be explored. Thus, to avoid the relapse

cases and adverse impacts of MDT, a more beneficial impulsive treatment should nec-

essarily be designed for leprosy.

• Finally, the influence of immune response and vital roles played by the complicated cy-

tokine chains and networks in leprosy can not be neglected. Various inflammatory and

anti-inflammatory cytokines, contribute significantly in the immunity and pathogenesis

of leprosy. Evidence suggests that the cytokines IL-10, IFN-γ, TNF-α play a crucial

roles in the clinical manifestation and progression of the disease in all sub-types of

leprosy. Thus, the futuristic works should precisely consider all these aspects whenever

aiming to get more elemental and essential insights on leprosy.
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Göllmann, L. and Maurer, H. (2013). Theory and applications of optimal control prob-
lems with multiple time-delays, Journal of Industrial and Management Optimization.
10(2), 413–441.

Goulart, I. M. B. and Goulart, L. R. (2008). Leprosy: diagnostic and control challenges for
a worldwide disease, Archives of dermatological research. 300, 269–290.

Grosset, J. H., Ji, B., Guelpa-Lauras, C.-C., Perani, E. G. and N’Deli, L. N. (1990). Clinical
trial of pefloxacin and ofloxacin in the treatment of lepromatous leprosy., International
Journal of Leprosy and Other Mycobacterial Diseases: Official Organ of the International
Leprosy Association. 58(2), 281–295.

Guckenheimer, J., Oster, G. and Ipaktchi, A. (1977). The dynamics of density dependent
population models, Journal of Mathematical Biology. 4(2), 101–147.

Gupta, U., Katoch, K., Singh, H., Natrajan, M. and Katoch, V. (2005). Persister studies
in leprosy patients after multi-drug treatment, International journal of leprosy and other
mycobacterial diseases. 73(2), 100.

Guragain, S., Upadhayay, N. and Bhattarai, B. M. (2017). Adverse reactions in leprosy
patients who underwent dapsone multidrug therapy: a retrospective study, Clinical phar-
macology: advances and applications. pp. 73–78.

Hale, J. K. (1977). Retarded functional differential equations: basic theory, Theory of func-
tional differential equations, Springer, pp. 36–56.
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